High-Energy Cosmic Particle Sources I Neutrinos and Gamma Ravs from Jets -

17 1 17

SAPP School

Era of Multi-Messenger Astroparticle Physics

Gamma Rays Fermi, HAWC, HESS, MAGIC, VERITAS, CTA etc.

Neutrinos IceCube, KM3Net Super-K etc.

Cosmic Rays PAMELA, AMS-02 Auger, TA etc.

Gravitational Waves LIGO, Virgo, KAGRA

Gamma-Ray Astrophysics in the Fermi Era (2008-)

Discovery of High-Energy Neutrinos (2013)

Neutrino (v): mysterious subatomic particle w. tiny mass

- "Ghost particle": interaction is 10,000 weaker than electromagnetic force
- High-energy v from space: discovered by the IceCube experiment

Discovery of Gravitational Waves (2016)

Gravitational wave (GW): ripples of spacetime

- Very tiny distortion: gravitational force is much weaker
 → source: neutron star, black hole (1993 Nobel Prize)
- "Einsteins' 100-yr homework": distortion is 1/10,000 of the atomic size for the entire Earth
- GWs from black hole mergers: discovered by Advanced-LIGO

Discovery of Binary Neutron Star Merger (2017)

- "concordance" picture
- gravitational wave
- gamma-ray burst
- kilonova/macronova
- X-ray/radio afterglow

(Evidence) of Blazar Neutrino Flare (2018)

no simple picture

- neutrino
- gamma ray
- X-ray
- optical/UV
- radio

Diversity of High-Energy Transients

Real-Time Alerts & Follow-Up Observations

Importance of Source Modeling

- Dynamics (hydro scale)
 outflow launch & propagation (energetics, velocity)
 composition (baryon, pair, magnetic field)
 dissipation (shocks, reconnection etc.)
- 2. Particle acceleration (plasma scale) shock acceleration, reconnection, electric field etc.
- Particle interactions (elementary processes) leptonic process hadronic processes heating & thermal radiation

Rich astrophysical EM data are often available

Source Dynamics?

- HD, MHD, RHD, RMHD (H: hydro, M: magneto, R: radiation)
 ex. supernova remnants – Sedov-Taylor solution
 - ex. GRB afterglow Blandford-McKee solution
- Single zone model is often used for HE sources

Importance of Source Modeling

- Dynamics (hydro scale) outflow launch & propagation (energetics, velocity) composition (baryon, pair, magnetic field) dissipation (shocks, reconnection etc.)
- 2. Particle acceleration (plasma scale) shock acceleration, reconnection, electric field etc.
- Particle interactions (elementary processes) leptonic process hadronic processes heating & thermal radiation

Rich astrophysical EM data are often available

How are Cosmic Rays Accelerated?

Particle Acceleration in Jets?

Origin of relativistic particles inside jets is under debate

McKinney & Blandford 09

- Jet: launched as Poynting-dominated (e.g., Blandford-Znajek mechanism)
- Maybe many pairs (1<n_e/n_p<1000)
- Toroidal-dominated at larger distances -> quasi-perpendicular shocks
- Emission region: particle-dominated but magnetized
- Inefficient shock acceleration for relativistic magnetized shocks (Sironi et al. 13, Bell et al. 18 etc.)

magnetic reconnection?

Importance of Source Modeling

- Dynamics (hydro scale) outflow launch & propagation (energetics, velocity) composition (baryon, pair, magnetic field) dissipation (shocks, reconnection etc.)
- 2. Particle acceleration (plasma scale) shock acceleration, reconnection, electric field etc.
- 3. Particle interactions (elementary processes) leptonic process hadronic processes heating & thermal radiation Rich astrophysical EM data are often available

Radiation Processes

Leptonic (electron/pair-induced) processes

synchrotron process

р

Inverse-Compton process

D

(two-photon annihilation, pair creation, bremsstrahlung etc.)

• Hadronic (ion-induced) processes hadronuclear (pp) process μ^+ photohadronic (py) process μ^+ LE γ μ^+ μ^+ γ

р

n

/e

(proton synchrotron, Bethe-Heitler, photodisintegration etc.)

 v_{μ}

 e^+

Neutrinos & Gammas from Pion Decay

 $\pi^0 \rightarrow \gamma + \gamma$ lifetime: 8.4x10⁻¹⁷ s

 $\frac{dn_{\gamma}}{d\varepsilon_{\gamma}} = \frac{m_{\pi}c}{2\varepsilon_{\gamma}^{*}} \int_{\varepsilon_{\pi}^{\min}}^{\infty} d\varepsilon_{\pi} \frac{1}{p_{\pi}} \frac{dn_{\pi}}{d\varepsilon_{\pi}} \quad \varepsilon_{\gamma}^{*} = \frac{1}{2}m_{\pi}c^{2} \ \varepsilon_{\pi}^{\min} = \frac{(\varepsilon_{\gamma}/\varepsilon_{\gamma}^{*} + \varepsilon_{\gamma}^{*}/\varepsilon_{\gamma})m_{\pi}c^{2}}{2}$

 $\pi^{\pm}
ightarrow \mu^{\pm} + v_{\mu}(\overline{v}_{\mu})$ lifetime: 2.6x10⁻⁸ s

 $\frac{dn_{\nu}}{d\varepsilon_{\nu}} = \frac{m_{\pi}c}{2\varepsilon_{\nu}^{*}} \int_{\varepsilon_{\pi}^{\min}}^{\infty} d\varepsilon_{\pi} \frac{1}{p_{\pi}} \frac{dn_{\pi}}{d\varepsilon_{\pi}} \quad \varepsilon_{\nu}^{*} = \frac{(m_{\pi}^{2} - m_{\mu}^{2})c^{2}}{2m_{\pi}}, \ \varepsilon_{\pi}^{\min} = \frac{(\varepsilon_{\nu}^{*}/\varepsilon_{\nu} + \varepsilon_{\nu}/\varepsilon_{\nu}^{*})m_{\pi}c^{2}}{2}$

 $\mu^{\pm}
ightarrow \overline{v}_{\mu}(v_{\mu}) + v_{e}(\overline{v}_{e}) + e^{\pm}$ lifetime: 2.2x10⁻⁶ s

$$\frac{dn_{\nu}}{d\varepsilon_{\nu}} = \int_0^1 dy \frac{1}{y} \int_{\varepsilon_{\nu}/y}^{(m_{\pi}^2/m_{\mu}^2)\varepsilon_{\nu}/y} d\varepsilon_{\pi} \frac{m_{\pi}c}{2\varepsilon_{\nu}^*} \frac{1}{p_{\pi}} n_{\varepsilon_{\pi}} \left[g_0(y) \mp P_{\mu}(y)g_1(y)\right]$$

 $\varepsilon_{v} \sim \varepsilon_{e} \sim \varepsilon_{\pi}/4$, $\varepsilon_{\gamma} \sim \varepsilon_{\pi}/2$ (in absence of meson/muon cooling)

Example: Cosmogenic Neutrinos

"Cosmogenic" neutrinos (Berezinsky & Zatsepin 69 PLB)

Resonance condition: $E_0 \epsilon_{CMB} \sim 0.2 \text{ GeV}^2$ Resonance energy: $E_0 \sim 10^{20} \text{ eV}$ $-> E_v \sim 0.05 E_0 \sim 5 \times 10^{18} \text{ eV}$

Spectrum: $E_{\nu}^{2} \Phi_{\nu} \sim E_{\nu}^{2}$ (E<E₀) (due to decay kinematics) $E_{\nu}^{2} \Phi_{\nu} \sim \text{const}$ (E>E₀) (due to multi-pion production)

Nuclei lead to lower cosmogenic neutrino fluxes

(e.g., KM & Beacom 10)

Astrophysical Extragalactic Scenarios

$E_v \sim 0.04 E_p$: PeV neutrino \Leftrightarrow 20-30 PeV CR nucleon energy

Cosmic-ray Accelerators (ex. UHECR candidate sources)

Cosmic-ray Reservoirs

Cosmic-Ray Accelerators

CRs may or may not escape

Gamma-Ray Bursts

~10⁵¹ erg/s in γ rays
Relativistic jets

Massive star deaths (long)
 Compact object mergers (short)

HE Particle Production Sites

Inner jet inside a star r < 10^{12} cm, B > 10^{6} G TeV-PeV v, no y

Meszaros & Waxman 01 PRL Razzaque et al. 03 PRL KM & Ioka 13 PRL Inner jet (prompt/flare) r ~ 10^{12} - 10^{16} cm B ~ 10^{2-6} G PeV v, GeV-TeV y

Waxman & Bahcall 97 PRL Dermer & Atoyan 03 PRL KM & Nagataki 06 PRL

Afterglow r ~ 10¹⁴-10¹⁷ cm B ~ 0.1-100 G EeV v, GeV-TeV γ e.g., Waxman & Bahcall 00 ApJ

Dermer 02 ApJ KM 07 PRD

GRB Prompt Emission

Evidence for Thermal Components

"modified" thermal emission or possible black-body in broken power law

Prompt Emission Models

Wolf-Rayet star R~10¹¹-10¹² cm "Classical" scenario r~10¹³-10^{15.5} cm

Problems

- spectrum

- empirical relations

- rad. efficiency

External shock r~10¹⁶-10¹⁷ cm

Photosphere $(\tau_T = n\sigma_T(r/\Gamma) = 1)$ $r \sim 10^{11} \cdot 10^{13}$ cm (photospheric radius)

Internal shock w. modified physics r~10¹³-10^{15.5} cm (wide range) magnetic dissipation ex. r~10¹⁰-10¹⁷ cm (model-dependent)

Basics of v and y-ray Emission

Single-Zone Analytic vs Numerical Modeling

before neutrino mixing

after neutrino mixing

Multipion/higher resonances are relevant for hard spectra (β <1) (more important for thermal spectra)

One-Zone vs Single Zone Modeling

HE Particle Production Sites

Inner jet inside a star r < 10^{12} cm, B > 10^{6} G TeV-PeV v, no y

Meszaros & Waxman 01 PRL Razzaque et al. 03 PRL KM & Ioka 13 PRL Inner jet (prompt/flare) r ~ 10^{12} - 10^{16} cm B ~ 10^{2-6} G PeV v, GeV-TeV y

Waxman & Bahcall 97 PRL Dermer & Atoyan 03 PRL KM & Nagataki 06 PRL

Afterglow r ~ 10¹⁴-10¹⁷ cm B ~ 0.1-100 G EeV v, GeV-TeV γ e.g., Waxman & Bahcall 00 ApJ

Dermer 02 ApJ KM 07 PRD

Afterglow Theory

- 1. Dynamics Blandford-McKee solution
- Acceleration power-law (shock acceleration of electrons)
 synchrotron (+ inverse Compton)

Observational Confirmation

Evidence for Jets

Golden Example: GW170817

Evidence for Long-Lasting Central Engines

GRB 060607

- Energetic ($E_{flare} \sim 0.1-1 E_{GRBy}$)
- $\delta t > 10^{2-3} s$, $\delta t/T < 1 \rightarrow$ internal dissipation
- Flaring in the softer energy range (far-UV/X-ray/γ-ray)
- Lower Lorentz factors (maybe)
- Common (at least 1/3-1/2 of LGRBs) (also seen in SGRBs)
- Mechanism: fallback disk or long-lived magnetar

Neutrino Afterglow Emission

- Afterglows are typically explained by external shock scenario
- Flares and early afterglows may come from internal dissipation

UHECRs may be accelerated during the afterglow phase

Forward shock is unlikely to accelerate CRs up to UHECR energies Reverse shock emission is mildly relativistic and feasible

GeV-TeV Gamma Rays?

Hard component comes later (external shock component?)

10²

10

10³

E (GeV)

Subjects: Gamma Ray, >GeV, TeV, VHE, Request for Observations, Gamma-Ray Burst

Referred to by ATel #: 12395, 12475

Active Galactic Nuclei

Particle Acceleration in AGN Jets?

Hillas condition: $E_{max} \sim ZeBr\Gamma \sim 3x10^{19} \text{ eV Z} (\Gamma/10) (B/0.1 \text{ G}) (r/10^{17} \text{ cm})$

Blazars: Success of Multiwavelength Observations

Spectral energy distribution (SED): typically "two hump" structure

Leptonic Scenario

Broadband HE radiation: relativistic electrons accelerated in magnetized jets LE hump = synchrotron emission (B' \sim 0.1-1 G)

HE hump = synchrotron self-Compton (SSC) or external inverse-Compton (EIC)

• Basic tool: one-zone syn./SSC model w. syn. self-absorption and internal $\gamma\gamma$

• EIC target: bloadline regions (BLR), dust torus, (scattered) accretion disk

Intra-Source Cascades

VHE γ /e injection by cosmic rays

Bethe-Heitler process

pγ meson production

$$\gamma + \gamma
ightarrow e^+ + e^-$$

(Lepto-)Hadronic Scenario?

- Nonthermal synchrotron radiation from primary electrons for radio through optical (low-energy hump)
- Cascades via photomeson production $p+\gamma \rightarrow p/n, \ \pi \rightarrow p/n, \ \nu, \ \gamma, \ e$
- Proton and ion synchrotron radiation $p+B \rightarrow p+\gamma$

"SEDs can usually be fitted by both leptonic and leptohadronic scenarios" caveats:

- large CR power is necessary $(L_p \sim 10^{47} 10^{49} \text{ erg/s} \sim 10^3 10^6 \text{ L}_e)$
- much more free parameters

smoking gun? -> neutrinos!

Photomeson Production in AGN Jets KM, Inoue & Dermer 14 dust torus $\sim \sim \sim$ (IR) 222 accretion disk (UV, X) $\sim \sim \sim$ cosmic ray blazar! broadline region blazar zone (opt, UV) (broadband) $\sim \sim \sim$ $E'^b_{\ \nu} \approx 0.05 E'^b_{\ p} \simeq 80 \text{ PeV } \Gamma^2_1 (E'_s / 10 \text{ eV})^{-1}$ inner jet photons $E'^{b}_{\nu} \approx 0.05 (0.5 m_{p} c^{2} \bar{\epsilon}_{\Delta} / E'_{\rm BL}) \simeq 0.78 \text{ PeV}$ **BLR** photons $p\gamma \rightarrow \Delta^{+} \rightarrow \pi + N$ $E'^{b}_{\nu} \simeq 0.066 \text{ EeV}(T_{\text{IR}}/500 \text{ K})^{-1}$ **IR** dust photons

Ex. Neutrinos from FSRQs

interactions w. internal radiation field (Δ -res.+direct prod.)

$$f_{p\gamma}(E'_p) \simeq 7.8 \times 10^{-4} L^s_{\mathrm{rad},45} \Gamma_1^{-4} \delta t'_5^{-1} (E'_s/10 \text{ eV})^{-1} \begin{cases} (E'_\nu/E'^b_\nu)^{\beta_h - 1} \\ (E'_\nu/E'^b_\nu)^{\beta_l - 1} \end{cases}$$

interactions w. external radiation fields (Δ -res.+multi-pion)

$$f_{p\gamma} \approx \hat{n}_{\rm BL} \sigma_{p\gamma}^{\rm eff} r_{\rm BLR} \simeq 5.4 \times 10^{-2} f_{\rm cov,-1} L_{\rm AD,46.5}^{1/2}$$

 $f_{p\gamma} \simeq 0.89 L_{\rm AD,46.5}^{1/2} (T_{\rm IR}/500 \text{ K})^{-1}$ independent of Γ

Brighter is Better

Relativistic Jet Sources: Summary

- Source physics is important
- Rich EM data are available: do not ignore
- GRBs and blazars motivated by GW170817 & IceCube-170922A

HE neutrino & gamma-ray emissions

GRB?

- Prompt: internal dissipation thermal + heating/acceleration
- Afterglow: external shock emission successful theory
- Evidence for long-lasting central engines

Blazar?

Blazar emission: internal dissipation - leptonic vs hadronic FSRQs: external radiation fields relevant

Problems for Discussion

1. How likely can we detect HE neutrinos from GW170817 if on-axis

(suppl.1): check the afterglow theory (suppl.2): check the relevance of pp

2. Estimate photomeson production efficiency for TXS 0506+056 and required power of CRs

(suppl.1): check the $\gamma\gamma$ optical depth (suppl.2): check the Bethe-Heitler optical depth

2 Frames, 3 Time Scales

GW170817

Long-Lasting Emission from Short GRBs

Parameters

Parameters	Г	$L^*_{\gamma,\mathrm{iso}}$ (erg s ⁻¹)	$\mathscr{E}^*_{\gamma,\mathrm{iso}}$ (erg)	r _{diss} (cm)	$E_{\gamma,\mathrm{pk}}$ (keV)	Energy Band (keV)
EE-mod	30	3×10^{48}	10 ⁵¹	10^{14}	1	0.3–10
EE-opt	10	3×10^{48}	10^{51}	$3 imes 10^{13}$	10	0.3-10
Prompt	10^{3}	10^{51}	10^{51}	3×10^{13}	500	$10 - 10^3$
Flare	30	10^{48}	3×10^{50}	3×10^{14}	0.3	0.3-10
Plateau	30	10^{47}	3×10^{50}	3×10^{14}	0.1	0.3–10
Quantities	<i>B</i> (G)	$L_{\gamma,\rm iso}~({\rm erg~s}^{-1})$	$\mathscr{E}_{\gamma,\mathrm{iso}}$ (erg)	$E_{p,M}$ (EeV)	$E_{\nu,\mu}$ (EeV)	$E_{\nu,\pi}$ (EeV)
EE-mod	2.9×10^3	$1.2 imes10^{49}$	3.8×10^{51}	21	0.020	0.28
EE-opt	5.0×10^4	$3.4 imes 10^{49}$	1.1×10^{52}	6.0	3.9×10^{-4}	5.4×10^{-3}
Prompt	6.7×10^3	6.1×10^{51}	6.1×10^{51}	60	0.29	4.0
Flare	5.3×10^2	$3.5 imes 10^{48}$	1.0×10^{51}	25	0.11	1.5
Plateau	1.8×10^2	3.8×10^{47}	$1.1 imes 10^{51}$	13	0.33	4.6

$$E_{\nu_{\mu}}^{2}\frac{dN_{\nu_{\mu}}}{dE_{\nu_{\mu}}}\approx\frac{1}{8}f_{p\gamma}f_{\sup\pi}E_{p}^{2}\frac{dN_{p}}{dE_{p}}\qquad E_{\nu_{e}}^{2}\frac{dN_{\nu_{e}}}{dE_{\nu_{e}}}\approx E_{\overline{\nu}_{\mu}}^{2}\frac{dN_{\overline{\nu}_{\mu}}}{dE_{\overline{\nu}_{\mu}}}\approx\frac{1}{8}f_{p\gamma}f_{\sin\mu\pi}f_{\sin\mu\mu}E_{p}^{2}\frac{dN_{p}}{dE_{p}},$$

$$\begin{split} \phi_{\nu_e+\bar{\nu}_e} &= \frac{10}{18} \phi^0_{\nu_e+\bar{\nu}_e} + \frac{4}{18} (\phi^0_{\nu_\mu+\bar{\nu}_\mu} + \phi^0_{\nu_\tau+\bar{\nu}_\tau}) \\ \phi_{\nu_\mu+\bar{\nu}_\mu} &= \frac{4}{18} \phi^0_{\nu_e+\bar{\nu}_e} + \frac{7}{18} (\phi^0_{\nu_\mu+\bar{\nu}_\mu} + \phi^0_{\nu_\tau+\bar{\nu}_\tau}) \end{split}$$

Neutrinos Coinciding w. Gravitational Waves?

GW170817: supporting the NS merger origin of short GRBs

Kimura, KM, Meszaros & Kiuch 17 ApJL used in ANTARES-IceCube-Auger-LIGO-VIRGO

The Detection Probabilities within a Given Time Interval, $\mathcal{P}_{\Delta T}$

NS–NS ($\Delta T = 10$ years)	IC (all)	Gen2 (all)
EE-mod-dist-A	0.11-0.25	0.37-0.69
EE-mod-dist-B	0.16-0.35	0.44-0.77
EE-opt-dist-A	0.76-0.97	0.98-1.00
EE-opt-dist-B	0.65-0.93	0.93-1.00
NS-BH ($\Delta T = 5$ years)	IC (all)	Gen2 (all)
EE-mod-dist-A	0.12-0.28	0.45-0.88
EE-mod-dist-B	0.18-0.39	0.57-0.88
EE-opt-dist-A	0.85-0.99	1.00-1.00
EE-opt-dist-B	0.77-0.97	0.99–1.00

- GW170817: off-axis (~30 deg) so SGRB models are OK (unlikely to be a long-lived fast-spinning magnetar)
- Gen-2 can see ~a few events/decade coinciding w. GW signals
- UHE v detectors should look (~1/yr for A_{eff} =10¹¹ cm² at EeV)

Neutrinos Coinciding w. Gravitational Waves?

GW170817: supporting the NS merger origin of short GRBs

ANTARES, IceCube, Auger, & LIGO-Virgo ApJL 17

theoretical models short GRB jets (Kimura, KM, Meszaros & Kiuchi 17) magnetar in the ejecta (Fang & Metzger 17)

(see also KM, Zhang & Meszaros 09)

- GW170817 Neutrino limits (fluence per flavor: $\nu_x + \overline{\nu}_x$) 10^{3} ± 500 sec time-window ANTARES 10^{2} E^2F [GeV cm⁻²] Auger 10^{1} IceCube 10^{0} Kimura et al. 10^{-1} EE moderate 10^{-2} Kimura et al Kimura et al 0° EE optimisti prompt 10^{-3} 10^{3} Auger 10^{2} E^2F [GeV cm⁻²] ANTARES 10^{1} IceCube 10^{0} Fang & Metzger 30 days 10^{-1} Fang & Metzger 10^{-2} 3 days 14 day time-window 10^{-3} 10^{-3} 10^{-3} $10^9 \ 10^{10} \ 10^{11}$ 10^{4} 105 $10^6 \quad 10^7$ 10^{8} E/GeV
- GW170817: off-axis (~30 deg): the models are still consistent
- On-axis events coinciding w. GW signals could be seen

"Tale" of Past Galactic Neutron Merger Remnants?

GW170817 confirmed transrelativistic ejecta w. V~0.2-0.3c -> $E_{p}^{max} \sim 30 \text{ PeV} >> \text{knee}$

TALE spectrum: second knee at ~10¹⁷ eV break at ~10^{16.2} eV

IceCube-170922A

Blazar Flares?

Good chances to detect them
even if subdominant in the diffuse v sky
1. Observational reason: temporal & spatial coincidence
2. Theoretical reason "enhanced" jet power + target photons

(see e.g., KM & Waxman 16, KM et al.18)

IceCube 170922A & TXS 0506+056

IceCube 2018 Science

- IceCube EHE alert pipeline
- Automatic public alert (through AMON/GCN)
- Kanata observations of blazars
 -> Fermi-LAT (Tanaka et al.)
 ATel #10791 (Sep/28/17)
- X-ray observations reported by members of Penn State people
- Swift (Keivani et al.)
 GCN #21930, ATel #10942
 NuSTAR (Fox et al.)
 ATel #10861

Our Observations of TXS 0506+056

Quasi-simultaneous SED

XRT & UVOT light curves

Keivani, KM, Petropoulou, Fox et al. 2018

TXS 0506+056 SED Modeling: Hadronic

TXS 0506+056 SED Modeling: Leptonic

2014-2015 Neutrino Flare

Single-zone models predict F_x~10⁻¹⁰ erg/cm²/s by cascades

(violating Swift-BAT limit)

KM, Oikinomou & Petropoulou 18 ApJ

confirmed by numerical studies: Rodrigues et al. 18 Reimer et al. 18 Petropoulou, KM et al. in prep.

No simple picture

Petropoulou, KM+ in prep.

Multi-Zone Picture?

Problems

Severe X-ray constraints on the maximum neutrino flux
 Severe CR power requirement for low v production efficiency

Relaxing X-ray suppression?

- 1. Anisotropic cascades (isotropization & time delay)
- 2. Avoiding Bethe-Heitler (for neutron beams)
- 3. Scattering ($N_H > 10^{25} \text{ cm}^{-2}$)

Efficient v production?

- 1. External radiation fields
- 2. pp interactions w. clouds

see

KM, Oikinomou & Petropoulou 18 ApJ

Need more information: X-ray/ γ -ray monitoring, X-ray/ γ -ray polarization

Open Questions

Source physics

- Gamma-ray origin: leptonic vs hadronic?
- CR acceleration process & magnetic fields?
- Jet properties (total power composition etc.)
- What can we learn about engines (jet-disk connection)?
- Origins of extragalactic background emissions
- Can AGN jets be the dominant origin of UHECRs?
- Can be blazars be the dominant origin of HE neutrinos?
- Interplay of BL Lacs, FSRQs, FR I galaxies & FR galaxies etc.?

Blazars as Powerful EeV v Sources

Blazar (radio galaxy) = BL Lacs (FR-I) + FSRQs (FR-II)

- FSRQs: efficient v production, dominant in the neutrino sky
- BL Lacs: inefficient ν production, dominant in the UHECR sky as FR-I

- Unique v spectrum: PeV v by BLR photons & EeV v by dust IR photons

- Only bright FSRQs are dominant -> promising source identification
- Consistent w. IceCube (1-10% at PeV), UHECRs are isotropized at kpc-Mpc

HE Neutrinos from AGN Jets: Constraints

Standard simplest jet models as UHECR accelerators: many constraints... - Blazars: power-law CR spectra & known SEDs→ hard spectral shape

HE Neutrinos from AGN Jets: Constraints

Standard simplest jet models as UHECR accelerators: many constraints...

Blazars: power-law CR spectra & known SEDs→ hard spectral shape
 IceCube 9-yr EHE analyses give a limit of <10⁻⁸ GeV cm⁻² s⁻¹ sr⁻¹ at 10 PeV

Can Blazars Explain the IceCube Data?

- Cutoff or steepening around a few PeV (ex. stochastic acceleration)
 But the models give up the simultaneous explanation of UHECRs
- Neutrino data at <~100 TeV are not explained by proposed models and there are constraints from stacking and clustering analyses

Subphotospheric GRB Emission
Non-Thermal Photospheric Neutrinos

• Dissipative baryonic photosphere (e.g., Rees & Meszaros 05 ApJ) $\tau_T = n_e \sigma_T (r/\Gamma) \sim 1-10 \Leftrightarrow f_{pp} = (\kappa_{pp} \sigma_{pp} / \sigma_T) \tau_T \sim 0.05-0.5$ collisionless shocks require $\tau_T < 1-10 \rightarrow f_{p\gamma} > f_{pp}$

Limitation of Shock Acceleration

Collisionless shock

Radiation-mediated shock

Neutrinos Probe Dissipation Mechanisms

Collision w. compound flow (ex. Meszaros & Rees 00)

Quasi-Thermal Neutrinos from pn Collisions

- $\varepsilon_v \sim 0.1\Gamma\Gamma_{rel}m_pc^2 \sim 100 \text{ GeV}(\Gamma/500)(\Gamma_{rel}/2)$: quasithermal
- pn collisional dissipation is unavoidable

 ε_ν²φ_ν~ε_γ²φ_γ: required to explain prompt emission
 much less uncertainty in meson production efficiency

Novel Acceleration Process in Neutron-Loaded Jets

"Neutron-Proton-Converter Acceleration" (Derishev+ 03 PRD) another Fermi acceleration mechanism without diffusion

NPC Acceleration: Spectra & Effects

We first performed Monte Carlo simulations for test particles

- Nucleon spectra consisting of **bumps** rather than a power law
- >10% of incoming neutron energy can be used for NPC acc.
- Enhancement of the detectability of GeV-TeV neutrinos

Kashiyama, KM & Meszaros 13 PRL

Prospects for DeepCore+IceCube

- Including DeepCore is essential at 10-100 GeV
- Reducing atmospheric v background is essential
 → select only bright GRBs w. > 10⁻⁶ erg cm⁻²

Possible Neutrino Production Sites

Realistic Picture

Two pieces of important physics were overlooked

KM & loka 13 PRL

- 1. Ballistic jets inside stars \rightarrow collimation shock & collimated jet
- 2. CR acceleration at collisionless shocks \rightarrow inefficient at radiation-mediated shocks

Jet Propagation

 Jet propagation has been unders controlled by luminosity, duratior

- 1. ram pressure balance at jet head
- 2. cocoon dynamics
- 3. collimation shocks

(Bromberg+ 11 ApJ, Mizuta & loka 13 ApJ)

jet head radius

$$r_h \approx 8.0 \times 10^9 \text{ cm } t^{3/5} L_{j0,52}^{1/5} (\theta_j / 0.2)^{-4/5} \varrho_{a,4}^{-1/5}$$

cf. uncollimated shock

$$r_h \approx 2\Gamma_h^2 ct \simeq 2.3 \times 10^{13} \text{ cm} L_{0.52}^{1/2} \rho_{\text{ext}}^{-1/2} r_{\text{ext},13.5}^{-1} t_{1.5}$$

- Collimation is crucial for jets propagating in high-density environments
- Must be taken into account for neutrino emission from choked jets jet-stalling condition L < L_{JS}: change by many order of magnitudes

SNe with Slow Jets (Failed GRBs)

If CRs carry $E_{CR}^{iso} \sim 0.5 \times 10^{53}$ erg (GRB) \rightarrow # of μ s ~ 0 events (due to radiation mediated shocks)

"Radiation Constraints" on Non-thermal Neutrino Production

Basic Picture

Story of high-energy neutrino production

- Internal shock scenario maybe CR acceleration (if collisionless) $p\gamma$ interactions in inner jets, pp interactions are inefficient $f_{pp} \lesssim \frac{\kappa_{pp} \sigma_{pp}}{\sigma_T} \simeq 0.04$ target photons by collimation-shocked jet (w. screening) & inner jets adiabatic losses during the expansion of the emission region and will not interact w. stellar material (hot spot and cocoon)
- <u>Collimation shock scenario</u> possible CR acceleration (if collisionless)
 pγ interactions in collimation-shocked jets target photons by collimation-shocked jet little adiabatic losses due to the collimation and pp interactions should occur during the advection
- <u>Reverse shock scenario</u>
 CR acceleration is usually difficult
- <u>Forward shock scenario</u> No CR acceleration (collisional)

Choked Jets as Hidden Neutrino Factories?

