High-Energy Cosmic Particle Sources II - Supernovae & Cosmic-Ray Emission -

SAPP School

One Comment: Coincident Examples

Black hole merger GW150914 GRB 150914

Blazar flare IceCube-170922A TXS 0506+056

Neutron star merger GW170817 GRB 170817A

~3σ (~4σ w.o. γ)

No simple concordance

No simple concordance

Concordance

~5σ

What Can vs and GWs Tell Us?

Supernova

Gamma-ray burst

"Cosmic explosions"

A single explosion can easily outshine an entire galaxy containing hundreds of billions of stars.

What Can vs and GWs Tell Us?

Supernova

Gamma-ray burst

What are their mechanisms?

"Cosmic explosions"

A single explosion can easily outshine an entire galaxy containing hundreds of billions of stars.

Path to Core-Collapse Supernova

Supernova as a Multi-Messenger Source

Nakamura+

Optical Spectra

Late Time (Nebula Phase) Spectra

Diversity of Core-Collapse Supernovae

II-P/II-L – core-collapse supernovae from red/blue super giants Ibc/IIb – core-collapse supernovae from binaries or WR stars Ia – white dwarf merger or white dwarf – star binary

II/Ibc – found in star-forming galaxies Ia – found in both star-forming and elliptical galaxies

Long Gamma-Ray Bursts

~10⁵¹ erg in γ rays
Relativistic jets
Black hole w. accretion disk Fast-rotating magnetar
Broadline Ic supernovae/hypernovae

Trans-Relativistic SNe (Low-Luminosity GRBs)

Trans-Relativistic SNe (Low-Luminosity GRBs)

Jets: Key to GRB-SN Connection

indirect counterparts in e,g., opt, X rays

GRB 060218: Shock Breakout?

Campana+ 06 Nature

Shock Breakout from Dense Circumstellar Wind

photon diffusion time $t_{diff} \sim R^2/\kappa_{rad} \sim n\sigma_T R^2/c$

dynamical time: t_{dyn} ~ R/βc, β=V/c

at breakout from wind $t_{diff} = t_{dyn} \Leftrightarrow \tau_T = 1/\beta = c/V$

Choked Jets as Hidden Neutrino Factories?

Luminous Supernovae as Long-Duration Transients

Luminous SNe explanations w. radioactivity for I and II often have difficulty

- SLSN-I (hydrogen poor) enegy injection by engine?
- SLSN-II (hydrogen) circumstellar material interaction

Type IIn: Interactions w. Dense CSM

Interactions w. dense wind or CSM are common (SLSN-II, IIn, IIb)

Evidence for Dense Material in "Ordinary" SNe II

Luminous Supernovae as Long-Duration Transients

Luminous SNe explanations w. radioactivity for I and II often have difficulty

- SLSN-I (hydrogen poor) energy injection by engine?
- SLSN-II (hydrogen) circumstellar material interaction

Newborn Pulsar Scenario for Ibc/SLSNe I

- parameters: $B_{dip} \& P_i$ (or $L_{em} \& t_{em}$), V_{ej} , M_{ej}
- assumption: all Poynting energy is converted into thermal energy

Origin of Supernova Diversity?

Newborn pulsars: luminosity governed by B (mag.) and P (period)

GRB-SLSN Connection?

GRB 111209A: consistent w. SLSN-like SN

Nonthermal Nebular Emission?

Crab pulsar (age ~ 1240 yr)

Connection to Fast Radio Bursts?

Persistent radio emission seen in FRB 121102 Associated with non-thermal emission from a young pulsar?

(predicted by KM, Kashiyama & Meszaros 16) (see Metzger+ 17, Kashiyama & KM 17) $M_{
m ej}=3M_\odot, {\cal E}_{
m sn}=10^{51}{
m erg}$

-

Energies and rates of the cosmic-ray particles

Grigorov Akend 10⁰ protons only MSU KASCADE Tibe **KASCADE**-Grande ceTop73 all-particle HiRes1&2 10⁻² TA2013 electrons Auger2013 Model H4a (GeV cm⁻²sr⁻¹ **CREAM** all particle positrons 10⁻⁴ γ**=3.0** knee Supernova E²dN/dE $\gamma = 3.3$ 10⁻⁶ 2nd antiprotons knee γ**=2.6** 10⁻⁸ Fixed target ankle HERA TEVATRON RHIC LHC 10⁻¹⁰ 10¹² 10² 10⁴ 10^{6} 10⁸ 10¹⁰ 10^{0} E (GeV / particle) GeV ZeV

CR spectrum

$$\frac{dN_{\rm CR}}{dE} \propto E^{-s_{\rm CR}}$$

<u>Open problems</u> •Sources? •Galactic/extragalactic? •Composition?

Acceleration?Propagation?

%energy scale
 MeV=10⁶ eV, GeV=10⁹ eV,
 TeV=10¹² eV, PeV=10¹⁵ eV,
 EeV=10¹⁸ eV, ZeV=10²¹ eV

First Order Fermi Acceleration

Diffusive shock acceleration mechanism (DSA)

(Axford, Krymskii, Bell, Blandford & Ostriker) Shock Front shock=converging flows Upstream Downstream $u = V_1 - V_2$ $\mathbf{v_2} \quad E' = \gamma_u (E + u \ p \cos \theta)$ V₁ MHD waves energy gain per cycle $\frac{\Delta E}{E} = 2 \frac{u}{c} \cos \theta$ MHD waves collision rate ~ $\cos\theta$ $\langle \cos\theta \rangle = \frac{2}{3}$ V₁ $\begin{vmatrix} V_2 & \frac{\langle \Delta E \rangle}{E} = 4 \frac{V_1 - V_2}{3c} \end{aligned}$ "first-order"

Energy Gain vs Escape

energy gain after N crossings

$$p_N \propto \left(1 + \frac{\langle \Delta p \rangle}{p}\right)^N \sim \exp\left(\frac{4(V_1 - V_2)N}{3c}\right)$$

escape: determined by the incoming and outgoing fluxes

- incoming from upstream: $R_{\rm in}({\rm up} \to {\rm down}) = \int_{{\rm up} \to {\rm down}} dn_1 v \cos \theta = \frac{v n_1}{4\pi} \int_0^{2\pi} d\phi \int_0^1 d\cos \theta = \frac{1}{4} v n_1$
- outgoing from downstream: $R_{out} = n_2 V_2$

residual number

after N crossings

$$P_{\rm esc} = \frac{R_{\rm out}}{R_{\rm in}} = \frac{4V_2}{c}$$
$$n_N \propto (1 - P_{\rm esc})^N \sim \exp\left(-\frac{4V_2N}{c}\right)$$

final spectrum

$$\frac{dn}{dp} = \frac{dn}{dt}\frac{dt}{dp} \propto \exp\left(-\frac{4(V_1 - V_2)N}{3c}\left[1 + \frac{3V_2}{V_1 - V_2}\right]\right) \sim p^{-\frac{(1 + \frac{3V_2}{V_1 - V_2})}{s}}$$

Maximum Energy in DSA

- Strong adiabatic shock: r_c=V₁/V₂=4
 -> s=1+3V₂/(V₁-V₂)=2 --- similar to the expected value
- Spectral index does not depend on details of turbulence but the maximum energy does
- Cycle/acceleration times depend on diffusion coefficient " κ " $t_{cy} = t_u + t_d = \frac{4\kappa}{V_1c} + \frac{4\kappa}{V_2c}$ $\kappa = \frac{1}{3}r_Lc\left(\frac{B}{\delta B}\right)^2 \approx \frac{cE}{3Ze}\xi_B$ acceleration time $t_{acc} = \frac{t_{cy}}{\langle \Delta p \rangle / p} = \frac{3r_c(r_c + 1)}{r_c - 1}\frac{\kappa}{V_1^2}$ $t_{acc} < t_{dyn} = \frac{R}{V}$ gives a necessary condition $E < E_{max} = \frac{3}{20}\xi_B ZeBR(V/c) \sim Z10^{15} \text{ eV } \xi_B\left(\frac{B}{300 \ \mu G}\right)\left(\frac{R}{3 \ pc}\right)\left(\frac{V}{3000 \ \text{km s}^{-1}}\right)$

Hillas condition $E < ZeBR\beta$

Complications

- Diversity among different astrophysical shocks?
- Magnetic field amplification mechanism and cosmic-ray feedbacks on dynamics & waves
- Shock obliquity: parallel vs perpendicular
- Relativistic shocks
- Roles of radiation (radiative, radiation-mediated)
- Electron acceleration & heating
- Many other acceleration mechanisms

Particle-In-Cell Simulations

Collisionless shock: plasma-mediated

 v_{pl} , $v_{c} >> v_{Coul}$ -> shocks are formed via plasma instabilities

Injection & Energy fraction? Magnetic fields? CR feedbacks?

Galactic Supernova Remnants as CR Ion Sources

Fermi established supernova remnants as CR "ion"

Knee Accelerators?

Theoretically challenging

(upstream) B amplification: CR streaming instability

supernovae in dense winds?

ex. Bell+ 13 MNRAS

No evidence for PeVatrons (so far)

-> targets for HAWC/CTA

Zirakashvili & Ptuskin 16 APh (cf. Sveshnikova 03 ApJ KM, Thompson & Ofek 14 MNRAS)

-

Energies and rates of the cosmic-ray particles

CR spectrum

"Simplified" View of Cosmic-Ray Escape

Escaping CR spectrum *≠* **Accelerated CR spectrum**

Ex. Cosmic-Ray-Illuminated Molecular Clouds

Cf. TeV Gamma-Ray Halo

HAWC established PWNe as e⁻e⁺ emitters

Applications to Extragalactic Sources?

CR escape spectrum: source-dependent (dynamics & acceleration & magnetic field amplification)

Jet-induced cocoon (Begelman & Cioffi 89)

Jet velocity ~ const. cocoon velocity $V_c \propto t^{-1/2}$

Jet head $R_h \propto t$ cocoon size $R_c \propto t^{1/2}$

Volume $\propto R_h R_c^2 \propto t$ Pressure: $P_{cr} \propto \rho V_c^2 \propto t^{-1}$

 $S_{esc} \neq S$

 $E_{max} \propto R_c V_c B \propto B$ $\mathcal{E}_{inj} \propto R_h R_c^2 P_{cr} \propto t$

Energies and rates of the cosmic-ray particles

CR spectrum

 $-s_{\mathrm{CR}}$

UHECR Source Candidates: Cosmic Monsters

The strongest mag. fields B ~ 10¹⁵ G

The brightest explosions $L_{\gamma} \sim 10^{52}$ erg/s

The most massive black holes M_{BH}~10⁸⁻⁹M_{sun}

The largest gravitational object R_{vir}~ a few Mpc

cf. B_{sun} ~1 G, L_{sun} ~4x10³³ erg/s, M_{sun} ~2x10³³ g, R_{sun} ~7x10¹⁰ cm

Luminosity Requirement

Blandford 00

Hillas
condition
$$E < ZeB'l'\beta'\Gamma = ZeB'r\beta'$$
magnetic
luminosity
$$L_B = \epsilon_B L = (4\pi r^2 \Gamma^2 c\beta) \frac{{B'}^2}{8\pi}$$

$$\int \mathbf{if} \beta \boldsymbol{\sim} \beta'$$

$$L_B > \frac{1}{2} \Gamma^2 c\beta \left(\frac{E}{Ze\beta'}\right)^2 \sim 2 \times 10^{46} \text{ erg s}^{-1} \Gamma^2 \beta^{-1} \left[E/(Z10^{20.5} \text{ eV})\right]^2$$

Transient Sources AND/OR Sources of Nuclei

UHECR Source Candidates: Cosmic Monsters

Maximum CR Energy

Nearby FR I & blazars seen by Fermi

Radio & X-ray data

Godfrey & Shabala 13

 $E < ZeB'l'\beta'\Gamma$

$$L_B > \sim 2 \times 10^{46} \text{ erg s}^{-1} \Gamma^2 \beta^{-1} \left[E / (Z 10^{20.5} \text{ eV}) \right]^2$$

Energy Losses

acceleration (plasma frame) $t_{acc} \eta r_L / c = \eta \epsilon_A / (ZeBc)$

photohadronic/photonuclear energy loss (plasma frame)

$$-\frac{1}{\varepsilon_p}\frac{d\varepsilon_p}{dt} = \frac{c}{2}\int d\cos\theta(1-\beta\cos\theta)\int d\varepsilon\frac{dn}{d\varepsilon}\sigma_{p\gamma}(\bar{\varepsilon})\kappa_{p\gamma}(\bar{\varepsilon})$$

$$\stackrel{\text{cross}}{\underset{\text{section}}{\text{cross}}} \underset{\text{section}}{\text{inelasticity}}$$

$$t_{pγ}$$
 ~ ($n_γ \kappa_{pγ} c \sigma_{pγ}$)⁻¹∝ $ε_p^{1-β}$ (for photon index β>1)

synchrotron energy loss (plasma frame)

$$-\frac{1}{\varepsilon_N}\frac{d\varepsilon_N}{dt} = \frac{1}{\gamma_N m_N c^2} \frac{2}{3} \frac{Z^4 e^4}{m_N^2 c^4} c\beta_N^2 \sin^2 \alpha \gamma_N^2 B^2$$
$$\mathbf{t_{syn}} \sim \frac{6\pi m_N^4 c^3}{\sigma_T Z^4 B^2 m_e^2 \varepsilon_N} \propto B^{-2} \varepsilon_N^{-1} (A^4/Z^4)$$

Example: Active Galactic Nuclei

Ε~Γε

E^{max} ~ 3x10¹⁹ eV limited by dynamical time

E^{max} ~ 3x10¹⁷ eV limited by pγ losses

UHECR Composition?

Composition **well above** the ankle: *under debate...*

TA: compatible w. light (or mixed) Auger combined-fit:

- nucleus-rich abundance ($f_H=f_{Fe}=0, f_{He}=0.67, f_N=0.28, f_{Si}=0.05$)
- hard spectra (s~1: best-fit)

again need TAx4

New Challenges for Source Modeling

1. Nucleus-survival problem luminosity requirement \rightarrow powerful sources powerful in radiation \rightarrow efficient disintegration

- Heavy-rich composition
 a. intrinsic abundance
 b. reacceleration
 c. injection mechanism
- 3. Hard spectrum of nuclei
 a. hard "escape" spectrum
 b. hard "accelerated" spectrum
 c. hardening due to "energy losses"

photodisintegration

Giant Dipole Resonance (GDR) $A+\gamma
ightarrow (A-1)+p/n$

threshold: ~10 MeV

$$\sigma_{A\gamma} \sim \alpha \pi R_A^2 \sim 30 (A/56)^{0.7} \text{ mb}$$

 $\epsilon_{A} \epsilon_{\gamma} \sim 10^{-2} A GeV^{2}$ $\epsilon_{nuc} = \kappa \epsilon_{A} \sim \epsilon_{A}/A$

Neutrinos from n decay

analogy from py interactions

Example: Active Galactic Nuclei

Ε~Γε

E^{max} ~ 10²¹ eV limited by dynamical time

E^{max} ~ 5x10¹⁷ eV limited by Aγ losses

New Challenges for Source Modeling

- 1. Nucleus-survival problem luminosity requirement \rightarrow powerful sources powerful in radiation \rightarrow efficient disintegration
- Heavy-rich composition
 a. intrinsic abundance
 b. reacceleration
 c. injection mechanism
- 3. Hard spectrum of nuclei
 a. hard "escape" spectrum
 b. hard "accelerated" spectrum
 c. hardening due to "energy losses"

Ex. Low-Luminosity GRBs/Engine-Driven Supernovae

- 1. Dominantly "intermediate" mass nuclei: consequences of progenitor models
- 2. Instantaneous escaping spectrum: hard
- 3. Nuclei can survive (cf. Bronlcoli+)
- 4. Correlation w. starburst galaxies

Zhang, KM+ 18, Zhang & KM 19

 $\log_{10}(E/eV)$

19.0

19.5

20.0

20.5

 $\sigma(X_{
m max}) ~[{
m g~cm^{-2}}]$

60

50 40

30 20

10 18.0

18.5

Ex. Magnetars & Fast-Rotating Pulsars

Fang, Kotera, KM & Olinto 12 ApJ Fang, Kotera, KM & Olinto 14 PRD see also Arons 03 ApJ KM, Meszaros & Zhang 09 PRD

Ex. Active Galactic Nuclei Jet Shear

shear acceleration: Fermi acc. at the jet-cocoon boundary

- 1. Recycling galactic TeV-PeV CRs
- 2. Hard spectrum predicted
- 3. Nuclei can survive
- 4. Correlation w. radio galaxies

cf. O'Sullivan+ 09, Caprilori 15, Matthews+ 18

from Kimura KM Zhang 18 PRD

Ex. Active Galactic Nuclei Embedded in Clusters

Hardening due to photodisintegration in environments (ex. Unger+ 15 PRD)

- Low-energy CRs: confinement in clusters
- CR nuclei: photodisintegration during diffusion consistent w. Fermi acceleration (s~2)
- Correlation w. large-scale structures/AGN

Fang & KM 18 Nature Physics

Summary II

Source physics is important

- 1. dynamics 2. particle acceleration 3. particle interaction
- Supernova: established multi-messenger source long GRB: next multi-messenger target diversity of transients (SN-GRB-SLSN-FRB etc.) "What is the central engine?"
- Cosmic-ray "emission" diffusive shock acceleration: standard escaping CRs ≠ accelerated CRs Auger results: new challenges for source models

Problems for Exercise (Astro)

Kilonova: (brighter than nova and dimmer than supernova)

The discovery of a neutron star merger event, GW170817, which is coincident with GRB 170817A, was followed by the observations of their electromagnetic counterparts. In particular, the optical and infrared counterpart is so-called a kilonova/macronova, which is likely to be powered by r-process elements. Analogous to supernovae, the ejecta with total mass M freely expands with velocity V. Initially, the system is optically thick, i.e. the optical depth for the ejecta, $\tau = \xi K \rho R$, is larger than unity. Here K is the opacity, $\rho \approx \frac{3M}{4\pi R^3}$ is the mass density, R is the ejecta radius, and $\xi = 0.1$ is a correction factor related to the density structure. Most of the photons in the ejecta can break out when the expansion is faster than the photon diffusion time. For the near-infrared component, the observed luminosity at the peak time (about a week after the coalescence) is $L_{\rm NIR} = 10^{41}$ erg s⁻¹ and the effective temperature is $T_{\rm NIR} = 3000$ K. For simplicity, the ejecta is assumed to be spherical.

- 1. Estimate the ejecta radius R at the peak time.
- 2. By equating the photon diffusion time to the ejecta expansion time, give the condition for the photon breakout using τ and V. You may ignore numerical factors.
- 3. Using the previous result and assuming V = 0.1c and $K = 10 \text{ cm}^2 \text{ g}^{-1}$, estimate the ejecta mass M.
- 4. If the ejecta is powered by radioactive nuclei, as in the theory of supernova light curves, the luminosity around the peak time is essentially equal to the heating luminosity Q. According to the Fermi theory, the heating luminosity is roughly given by

$$Q(t) = \frac{m_e}{\langle A \rangle m_p} \frac{Mc^2}{t_F} \left(\frac{t}{t_F}\right)^{-1.2},\tag{1}$$

where $t_F = 8610$ s, $m_p/m_e \simeq 1836$ is the proton-electron mass ratio, and $\langle A \rangle$ is the average mass number. Assuming that the peak time is 10^6 s, give the order of magnitude estimate on $\langle A \rangle$ and discuss its implications.

Problems for Exercise (CR)

1. Self-similar solution (w. fixed B)

- a. When does the deceleration happen?
- b. What is the time evolution of radius for the Sedov-Taylor phase?
- c. What is the time evolution of injected particles (assuming that it is proportional to energy carried by a shell)?
- d. What is the time evolution of the maximum energy assuming the Sedov-Taylor expansion?

optional.

What is the time evolution of the maximum energy assuming the Blandford-McKee expansion or jet-induced cocoon expansion?

 Estimate photodisintegration optical depth for TXS 0506+056

a. Estimate the iron energy that causes a resonance with 4 keV photons

- b. Estimate the photodisintegration optical depth (L_X=3x10⁴⁴ erg/s, r=10¹⁸ cm, Γ =20)
- c. Can UHECR irons survive? (assume photon index β =2.8~3)

Cosmic-Ray Reservoirs

Astrophysical Extragalactic Scenarios

$E_v \sim 0.04 E_p$: PeV neutrino \Leftrightarrow 20-30 PeV CR nucleon energy

Cosmic-ray Accelerators (ex. UHECR candidate sources)

Cosmic-Ray Reservoirs

Starburst/Star-Forming Galaxies: Basics

High-surface density M82, NGC253: $\Sigma_g \sim 0.1 \text{ gcm}^{-3} \rightarrow n \sim 200 \text{ cm}^{-3}$ high-z MSG: $\Sigma_g \sim 0.1 \text{ g cm}^{-3} \rightarrow n \sim 10 \text{ cm}^{-3}$ submm gal. $\Sigma_q \sim 1 \text{ gcm}^{-3} \rightarrow n \sim 200 \text{ cm}^{-3}$

CR accelerators
 Supernovae, hypernovae, GRBs,
 Super-bubbles (multiple SNe)
 Galaxy mergers, AGN

SBG CR luminosity density $Q_{\rm cr} \sim 8.5 \times 10^{44} \ {\rm erg} \ {\rm Mpc}^{-3} \ {\rm yr}^{-1} \ \epsilon_{{\rm cr},-1} \rho_{\rm SFR,-3}$

(SFG CR energy budget ~ Milky Way CR budget is ~10 times larger)

advection time (Gal. wind) $t_{\rm esc} \approx t_{\rm adv} \approx h/V_w \simeq 3.1 \ {\rm Myr} \ (h/{\rm kpc}) V_{w,7.5}^{-1}$

pp efficiency $f_{pp} \approx \kappa_p \sigma_{pp} nct_{esc} \simeq 1.1 \ \Sigma_{g,-1} V_{w,7.5}^{-1}(t_{esc}/t_{adv})$

Gamma-Ray Detection from Starbursts

Starbursts have been detected in GeV-TeV gamma rays

Luminosity Function & Calorimetry

Star-Forming/Starburst Galaxies, vs, ys

Starbursts can potentially explain v and γ simultaneously, but keep in mind

- Normalization is uncertain (L_{γ} - L_{IR} , uncertain AGN contribution)
- Spectral indices are uncertain (could be s_{SB}=2.0 at high energies)

Necessity of Super-Pevatrons

Our Galaxy's CR spectrum Knee at 3 PeV → neutrino knee at ~100 TeV

Normal supernovae (SNe) are not sufficient to explain >0.1 PeV data

Possible solutions

- 1. B fields amplified to ~ mG KM+ 13
- 2.Hypernovae (HNe) KM+ 13, Liu+ 14, Senno+ 15
- 3. Trans-relativistic supernovae gamma-ray bursts Dado & Dar 14, Wang+ 15
- 4. Type IIn/IIb supernovae

Zirakashvilli & Ptuskin 16

- 5. Super-bubbles
- 6. AGN disk-driven outflows Tamborra+ 14
- 7. Galaxy mergers Kashiyama & Meszaros 14

Senno, Meszaros, KM, Baerwald & Rees 15 ApJ Xiao, Meszaros, KM & Dai 16 ApJ

Ex. Star-Forming Galaxies w. AGN

Starbursts can potentially explain ν and γ simultaneously but...

- 1. CR accelerators are more powerful than supernovae (beyond the knee)
- 2. Diffusion should be much slower than expected from that of our Galaxy
- 3. Tension with Fermi and IACT data (normalization & photon index)

1. Disk-driven winds are likely to accelerate CRs up to ~10-100 PeV

- 2. Diffusion coefficients can be smaller from those of star-forming galaxies
- 3. Consistent w. Fermi limits and CR spectra can be harder

Example: Galaxy Groups and Clusters

- Intracluster gas density (known)
 n~10⁻⁴ cm⁻³, a fewx10⁻² cm⁻³ (center)
- CR accelerators

 active galactic nuclei
 accretion shocks (massive clusters)
 galaxy/cluster mergers

AGN jet luminosity density $Q_{\rm cr} \sim 3.2 \times 10^{46} \ {\rm erg} \ {\rm Mpc}^{-3} \ {\rm yr}^{-1} \ \epsilon_{{\rm cr},-1} L_{j,45} \rho_{{\rm GC},-5}$

cluster luminosity density $Q_{\rm cr} \sim 1.0 \times 10^{47} \ {\rm erg} \ {\rm Mpc}^{-3} \ {\rm yr}^{-1} \ \epsilon_{{\rm cr},-1} L_{{\rm ac},45.5} \rho_{{\rm GC},-5}$

pp efficiency $f_{pp} \approx \kappa_p \sigma_{pp} nct_{int} \simeq 0.76 \times 10^{-2} \ g\bar{n}_{-4} (t_{int}/2 \ \text{Gyr})$

Gamma-Ray Limits?

Gamma-Ray Limits on Galaxy Clusters

Issues:

- γ -ray limits from nearby clusters
- overshooting diffuse γ -ray bkg.
- radio constraints for massive clusters
- -> spectral indices cannot be steep accretion shock scenario is disfavored

γ rays from virial shocks have been constrained

- CR pressure:
 - < 1% of thermal pressure
- CR efficiency: < 15%

but see: Ackermann+ 16 ApJ Reiss+ 17

Gamma-Ray Limits on Galaxy Clusters

OK

 10^{4}

10⁵

10⁷

E [GeV]

10⁸

10⁹

10⁶

10¹¹

10¹⁰

10⁻⁹

10⁻¹⁰

 10^{3}

- radio constraints for massive clusters
- -> spectral indices cannot be steep accretion shock scenario is disfavored
AGN with Galaxy Clusters

- Maximum energy of CRs is expected to be high enough (if AGN are the sources of UHECRs)
- Gigantic! \rightarrow CR confinement is easy (E < eBR~10²¹ eV)

0.1

0.01

 10^{-3}

10

 10^{-5}

 10^{-6}

 10^{-7}

 10^{-8}

 10^{-9}

 10^{-10}

Warren, Abazajian, Holz &

1014

1015

1016

10¹¹ 10¹²

Teodoro 06 ApJ

 $n/d\ln M \left[h^3 \text{Mpc}^{-3}\right]$

CR diffusion time $t_{\rm diff} \approx (r_{\rm vir}^2/6D) \simeq 1.6 \, {\rm Gyr} \, \varepsilon_{p,17}^{-1/3} B_{-6.5}^{1/3} (l_{\rm coh}/30 \, {\rm kpc})^{-2/3} M_{15}^{2/3}$

 $t_{\text{diff}} = t_{\text{inj}} \implies \varepsilon_{\nu}^{b} \approx 0.04 \varepsilon_{p}^{b} \simeq 2.0 \text{ PeV } B_{-6.5} (l_{\text{coh}}/30 \text{ kpc})^{-2} M_{15}^{2} (t_{\text{inj}}/2 \text{ Gyr})^{-3}$ v break

gas density: relatively known
(β profile)

Testing CR Reservoir Models w. Neutrinos

Starburst galaxies: $n_0 \sim 10^{-5}$ Mpc⁻³ (calorimetric or L_{γ} - L_{IR} corr.) Galaxy clusters: $n_0 \sim 10^{-5}$ Mpc⁻³, $n_0 \sim 10^{-6}$ Mpc⁻³ (massive

Good chances to see neutrinos if CR reservoir models are correct

Gamma-Ray Transparency

escaping γ = attenuated component + intra-source cascade component

- E_{τ=1}~100 TeV for clusters, E_{τ=1}~10 TeV for starbursts (escape is possible for elliptical galaxies except for cores)
- GeV-TeV gamma rays should escape from the sources

Multi-Messenger Implications

Multi-Messenger Cosmic Particle Backgrounds

Energy budgets are all comparable (a few x 10⁴³ erg Mpc⁻³ yr⁻¹)

High-Energy Cosmic Particle Energetics

High-Energy Cosmic Particle Energetics

Energy budgets are all comparable (a few x 10⁴³ erg Mpc⁻³ yr⁻¹)

Neutrino-Gamma-UHECR Connection?

Grand-unification of neutrinos, gamma rays & UHECRs

- Explain ν data by confined CRs with energies less than a few PeV
- Escaping CRs may contribute to the observed UHECR flux

UHECR Composition

Composition at Earth

Composition at the Sources?

Nuclear Cascade

diffuse CR flux formula (computationally heavy)

$$\Phi_{A}(E) = \sum_{A'} \frac{c}{4\pi} \int_{z_{\min}}^{z_{\max}} dz \left| \frac{dt}{dz} \right| F_{\text{GRB}}(z) \int_{L_{\min}}^{L_{\max}} \frac{d\rho_{0}}{dL} \int_{E'_{\min}}^{E'_{\max}} dE' \frac{dN_{A'}}{dE'} \frac{d\eta_{AA'}(E, E', z)}{dE}$$

Application to Low-Luminosity Gamma-Ray Bursts

"Top-down" theory model

- Abundance: results from stellar evolution
- Acceleration: results from DSA
- Survival: based on LL GRB observations

Spectrum & composition are not free!

 $\log_{10}(E/eV)$

Zhang, KM et al. 2018 PRD

What Can We Learn from UHECR Sky

Deflection & Time Delay

deflection by the extragalactic magnetic field a coherence length I_c

$$\delta_{\rm rms} \simeq \frac{(2dl_c/9)^{1/2}}{R_L} \simeq 0.8^{\circ} Z \left(\frac{E}{10^{20} \,{\rm eV}}\right)^{-1} \left(\frac{d}{10 \,{\rm Mpc}}\right)^{1/2} \left(\frac{l_c}{1 \,{\rm Mpc}}\right)^{1/2} \left(\frac{B}{10^{-9} \,{\rm G}}\right)$$

time delay & time spread

$$\tau \simeq \delta_{\rm rms}^2 d/4 \simeq 1.5 \times 10^3 \, Z^2 \left(\frac{E}{10^{20} \, {\rm eV}}\right)^{-2} \left(\frac{d}{10 \, {\rm Mpc}}\right)^2 \left(\frac{l_c}{1 \, {\rm Mpc}}\right) \left(\frac{B}{10^{-9} \, {\rm G}}\right)^2 \, {\rm yr}$$

Importance of Structured Magnetic Fields

- B_{EGMF} is an "effective" value
- Earth or sources are embedded in structured magnetic fields
- Structured magnetic fields clusters: ~0.1-10 μG, filament: ~10-100 nG

Encouraging News: Cross Correlation

