High-energy astrophysics
and black holes.

Gustavo E. Romero

Instituto Argentino de Radioastronomia (IAR) and University of La Plata

March 3rd, 2019; ISAPP school 2019 @ the Pierre Auger Observatory.



General relativity: gravitation is a manifestation

of the curvature of spacetime

Einstein’s equations
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A black hole is a spacetime region, 1.€. what characterizes the black
hole 1s 1ts metric and 1ts curvature. What i1s peculiar of this
spacetime region 1s that it 1s causally disconnected from the rest of
the spacetime: no events 1n this region cannot affect events outside
the region.
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Axially symmetric black hole (Kerr)
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Kerr black hole
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When gix < 0 the stationary condition cannot be fulfilled, and hence a massive
particle cannot be stationary inside the surface defined by gr = 0 —> ergosphere



Back holes, nevertheless, can act on the external
medium. This action can be done through the effects
of gravitation. We distinguish several forms in which
such action might occur:

e —

r§ Accretion of matter and fields onto the black hole.
|§ Effects of the ergosphere.

| 4> Tidal disruptions.

<4 Perturbation of spacetime (generation of gravitational waves).
I* Generation of bow-shocks.

<4 Effects on background light.

<4 Effects on the CMB.

<4 Evaporation.
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The 1dea of BH was not widely accepted until Lynden-Bell paper (1965?
“ and the interpretation of the X-ray emission of binaries by accretionh
&nto collapsed objects. i

Standard disk model (Shakura & Sunyaev 1973): conservation of angular momentum leads
to the formation of a disk around the BH. Energy 1s dissipated through radiation created by
viscosity. Then angular momentum 1s removed and there is an inflow. If the disk 1s optically
thick each ring radiates as a blackbody of different temperature.
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Basic equations for (thin) accretion disks

Simplifying assumptions:

1. The disk is axisymmetric, 1.e. 0/0p = 0.
2. The disk 1s thin, 1.e. 1ts characteristic size scale in the z -

axis IS H <= R

3. The matter in the disk 1s in hydrostatic equilibrium 1n the

z-direction.

4. The self-gravitation of the disk 1s negligible.

® Equation of continuity

® Equation of momentum transfer

® Energy dissipation in the disk

® Viscous stresses v = aasH.

® Equation of state P = Pgas + Praa = £ Ly dose
® Opacity law
® Relation between electron and proton temperature.
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Structure of the thin disks
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1. An outer region (large R ) in which gas pressure dominates over radiation
pressure and the opacity 1s due to free-free absorption.

2. A middle region (smaller R ) in which gas pressure dominates over
radiation pressure but opacity 1s due to Thomson scattering off electrons.

3. An 1mner region (small R ) in which radiation pressure dominates over
gas pressure and opacity 1s mainly due to scattering.



Thin accretion disk
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Spectrum

2
IV(V’ R) = BV(V’ R) — [exp(thz//kT)—l] '

The total flux at frequency v detected by an observer at a distance d whose
line of sight forms and angle 64 with the normal to the disk is:

F,(v) = < [ 9r RT, dR.

The flux grows as I, o< v? for photon energies hv < kT (Rout ), and decreases
exponentially for hv > KT (R;,). For intermediate energies the spectrum has the
characteristic dependence F, o v'/3. As T(Rout) approaches T(R;,) this part
of the spectrum narrows, and it becomes similar to that of a simple blackbody.

Theoretical spectrum of thin accretion disc. Multi-color b|ackbody disk SED
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Changes in the accretion disk spectrum with different parameters




Diagnostics through Fe K-alpha lines

It 1s possible to determine the spin
parameter a
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The spectrum of X-ray binaries is more complex: more components
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X-ray spectral components
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Eddington limits

The Eddington luminosity, also referred to as the Eddington limit, 1s the
maximum luminosity that can be achieved when there i1s balance between the
force of radiation acting outward and the gravitational force acting inward. The
state of balance 1s called hydrostatic equilibrium.
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The super-Eddington wind 1s
driven by radiation pressure.



ADAFE
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}, The assumptlon that all the heat generated by V1500$1ty is radiated away |
| does not hold for all accretion rates. Under some conditions the radial §
| velocity of the accretion flow becomes large and the heat cannot be §
| transformed into radiation and emitted fast enough. A significant fraction of |
| the heat 1s stored as kinetic energy in the flow and advected onto the
| accretor. At the same time the disk “inflates”, so that the thin disk

assumption breaks down. This regime is known as “Advected Dominated |
| Accretion Flow” (ADAF) |
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ADAFE
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. There are two types of advection-dominated accretion flows. Optically
. thick ADAFs develop at very high accretion rates, typically larger than the |§

Eddington value. In this limit the radiation gets trapped in the accretion flow §

and 1s advected because the optical depth 1s very large. |

| Optically thin ADAFs occur in the opposite limit of sufficiently low

| accretion rates. In this regime the cooling timescale of the flow is longer ||
than the accretion timescale, resulting again in a significant fraction of the

1! energy being advected. These models are similar to the disk + corona ‘

| models. |
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Main ADAF assumptions:

+ The total pressure 1s considered as the sum of the pressure of a two-
temperature gas and the magnetic pressure.

+ The heat generated by viscosity 1s preferably transferred to 1ons.
tHenee 1,1,

+ Electrons cool completely.
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The spectrum of AGNs extends along the whole e.m. range:

1

there is non-thermal emission
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VLA 20cm M87 = Virgo A
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Declination Offset (mas)
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Mechanisms of Jet Dissipation
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Basic equations that rule the outflow (ideal MHD)
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The jet structure and evolution 1s determined by the Grad-Shafranov or
transfield equation and the Euler equation.

1
p(v-V)v=—-VP —pVP + E(V x B) x B.
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The origin of jets is related to the central compact object

Funnel—jet Disk:'—jet
AN 2

NSl A

Accretion disk

Black hole

Both the black hole itself and the accretion disk can launch outflows



Rotation + poloidal field —> outtlow

A. Tchekhovskoy



Magnetic model of jets

+ Jets are produced by rapidly rotating BHs with magnetized accretion
disks.

+ Power source - the rotational energy:.
+ The energy is extracted via magnetic torque as Poynting flux.
+ Jet collimation is due to external medium.

+ Jet acceleration is via conversion of the electromagnetic energy into the
bulk kinetic energy.

+ Jet emission is via energy dissipation at shocks (kinetic energy) and /or
reconnection sites (magnetic energy).
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Accretion-disk driven jets
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Mass loading argument favours BH over accretion disk
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slow wind relativistic jet
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While plasma is carried into the hole only (not
ejected), electromagnetic power is ejected along
the rotation axis.

This Poynting power should eventually be
turned into particles and a very fast jet.

Magnetic field is tied to infalling plasma, not
horizon.

Frame dragging in the ergosphere twists up the
field lines just as
accretion disk case.

in the non-relativistic

Back-reaction of the magnetic field accelerates
the ergospheric plasma to relativistic speeds
counter to the hole’s rotation: negative energy
plasma.

Accretion of negative energy plasma spins
down the hole
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Relativistic Outflow driven by
Magnetic Field from Ergosphere

Kerr black hole

Ergosphere

Magnetic field Hings

Magnetic field
flux tube acts as
EB
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Initial collimation of relativistic jets requires a “nozzle”,
external confining medium.

\ / Suspects:

* Thick disk (torus)
* Disk corona

+ Disk wind

« |[SM




Mass load of jets

In the laboratory frame, the rotation of the magnetic field will
induce an electric field. 1f not screened, this field could in principle
be tapped for the acceleration of particles. By Gauss’ law, the induced
electric field is supported by a local charge density corresponding to a
particle number density (commonly referred to as the Goldreich—
Julian [GJ] density well inside the light cylinder.
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Particles accelerated in the gap can trigger electromagnetic cascades
outside the gap injecting pairs.
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Neutrons produced in the disk by pp collisions can decay inside the jet
injecting p and electrons.
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Additional load by entrainment of external medium




Evolution of magnetisation in the outflow
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Gamma-ray bursts: Collapsar

X-rays < optical < infrared < radio

- ’ ’ ’
Y-rays Bow shock ' /", inflow  V}
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Pair load by neutrino annihilation
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Collapsar: jet interactions

Several shocks - - also External Shock

possible cross-shock IC

Flow decelerating into
the surrounding medium
Internal Shock -
Collisions betw. diff. Reverse Forward
parts of the flow shock<= shock

Photospheric
le th. radiation
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Short gamma-ray bursts: binary neutron star merger

Crashing neutron stars can make gamma-ray burst jets

Magnetic fields

Neutron stars

Masses: 1.5 suns

Diameters: 17 miles (27 km)
Separation: 11 miles (18 km)

Simulation begins 7.4 milliseconds 13.8 milliseconds

Jet-like
magnetic field

Black hole forms
Mass: 2.9 suns
Horizon diameter: 5.6 miles (9 km)

15.3 milliseconds 21.2 milliseconds 26.5 milliseconds

Credit: NASAAEIZIB/M, Koppitz and L. Rezzolla




Neutrino cooled accretion disks
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Simulations

Temperature

Neutrino cooling Velocity field
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Neutrino cooled accretion disks
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Depending on the viewing angle,
these events can be detected with
LIGO for d<100 Mpc (Romero et
al 2010)




Tidal effects

Some objects can approach the BH close enough to undergo tidal effects

—_
To distant
attracting mass M

Differential acceleration dg = —2cdr.
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Gravitational capture: : " 3 Cloud G2

Unbound debris

Bound debris

Horizqn
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G2 was likely a light binary system, a protostar, or a clump 1n a stream.

- Feb. 2014
(32 survived! e Sept. 2014
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Other tidal disruption events (TDE)

TDE rate: 10-%-107>/yr/galaxy

Several tens detected

Formation of transient accretion disks and jets
Both thermal and non-thermal emission
Super-Eddington accretion rates

Timescales from months 1n X-rays to years in radio

reprocessing from
stellar matter & ISM

inspiral of |
compact objects §

interaction of
unbound gas

with ISM
squeezing/

disruption
of star

\..J

accretion phase
-2 luminous flare,
sometimes: jet
formation

artist's view, NASA/CXC/M. Weiss/ Komossa et al. 2004

ASASSN-14li, the closest tidal
disruption discovered in ten years.
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max binding
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= R (MBH / M*)1/3

~ 3/2 1/2
tmin R« I\/lBH

Duration of event:

WD = hours

MS = months - years

RG = decades - centuries




For more comprehensive treatments and discussions

Lecture Notes in Physics 876 | Proceedings of the International Astronomical Usien

Jets at All Scales

Gustavo E. Romero
Gabriela S. Vila

Introduction
to Black Hole
Astrophysics

—Thank you

@ Springer




h, (t)

Gravitational waves from BH mergers
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The Gravitational Wave Spectrum

Quantum fluctuations in early universe

Binary Supermassive Black
Holes in galactic nuclei %
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GRAVITATIONAL-WAVE TRANSIENT CATALOG-1 BILIGO (2)VIR® ¥ Gegraia
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