

GEometryANdTracking
Simulation toolkit in C++:
– Variety of geometries → choose your own setup

– Variety of materials → choose your own materials

– Variety of particles → choose particle type energy position direction

– Variety of physics processes →available physics models, cuts

Open source:
– Code

– Manuals

– Examples
Nucl. Inst. and Methods Phys. Res. A, 506, 250

Transaction on Nuclear Science 53, 270

http://geant4.web.cern.ch

Geometry
Very complex geometries can be described at three levels:

● Solid: shapes and dimensions, boolean operations

● LogicalVolume: materials, sensitivity, mother and daughter
volumes, visualization etc

● PhysicalVolume: position in space and rotation

a logical volume can be placed multiple times originating different
physical volumes

→ single or repeated placements (replicas,parameterizations)

Physics
- electromagnetic interactions for all particles

- inelastic interactions

- elastic scattering

- capture

- decay of unstable particles

class MyPhysicsList: public G4VUserPhysicsList {

public:

MyPhysicsList();

~MyPhysicsList();

void ConstructParticle();

void ConstructProcess();

void SetCuts();

}

user can implement the methods to define particles processes and cuts (range based) on
generation of secondaries ex. delta rays from ionization, or gamma from bremsstrahlung

$G4SOURCE/ source/physics_lists/lists

plug&play Geant4 physics list

Tracking
Transportation of a particle ‘step-by-step’taking into account all possible interactions
with materials and fields

The transport ends if the particle:

 - is slowed down to zero kinetic energy (and it doesn't have any interaction at rest)

 - disappears in some interaction

 - reaches the end of the simulation volume

Geant4 allows the User to access the transportation process and retrieve the results
(USER ACTIONS)

- at the beginning and end of the transport

- at the end of each step in transportation

- if a particle reaches a sensitive detector

Geant4 example: compile
/home/isapp/geant4/geant/share/Geant4­10.1.3/examples/

● Source the geant4 script:

$ source /home/isapp/geant4/geant/bin/geant4.sh

● copy the example source code somewhere $path

$ cp ­r /home/isapp/geant4/geant/share/Geant4­
10.1.3/examples/basic/B2 $path­to­your­dir

$ cd $path­to­your­dir

$ mkdir B2­build

$ cd B2­build

$ cmake ­DGeant4_DIR=/home/isapp/geant4/geant/lib
/home/isapp/path­to­your­dir/B2

$ make

Geant4 example: run

● $./exampleB2a

● /gun/particle e­

● /gun/energy 300 MeV

● /run/beamOn 1

here you go!

writing your G4 application

writing your G4 application

Physics:

- use the Geant4 standard
provided physic lists:

- build/taylor our own
models

$G4SOURCE/ source/physics_lists/lists

G4app

 physics

writing your G4 application

Your detector geometry:

- shapes

- materials

- volumes

- placements

- sensitivity

G4app

 physics

geometry

writing your G4 application

The source of radiation:

- simple gun

- generic source

- external file
G4app

 physics

geometryprimary

writing your G4 application

et cetera..

- G4UserActions

- G4Hit/G4Digi read out and
digitization

- G4Visualization

- Analysis

G4app

 physics

geometryprimary

etc etc

G4VRecipe
writing an application you must have:

- a class derived from G4VUserDetectorConstruction
definition of your detector geometry

- a class derived from G4VUserPhysicsList
selection of the physics processes

- a class derived from G4VUserPrimaryGeneratorAction
producing primary events

optional classes inherit from:

- G4UserRunAction

- G4UserEventAction → to be done at the beginning/end of an event

- G4UserTrackingAction

- G4UserStackingAction

- G4UserSteppingAction

example of Main()
{

// Construct the default run manager

G4RunManager* runManager = new G4RunManager ;

// Set mandatory user initialization classes

MyDetectorConstruction* detector = new MyDetectorConstruction ;

runManager->SetUserInitialization(detector);

MyPhysicsList* physicsList = new MyPhysicsList;

runManager→SetUserInitialization(myPhysicsList);

// Set mandatory user action class (Primary Generator)

runManager->SetUserAction(new MyPrimaryGeneratorAction);

// Set optional user action classes (e.g. only a few of them)

MyEventAction* eventAction = new MyEventAction() ;

runManager->SetUserAction(eventAction);

MyRunAction* runAction = new MyRunAction() ;

runManager->SetUserAction(runAction);

delete runManager;

}

Generic Geant Simulation

● Generic implementation of G4 user classes
– Hits, event actions, run actions,…

– Persistence on Root files

– Extensible with plugins

● Speeds-up the development of a G4 Monte Carlo
simulation
– Only geometry has to be created

● Code:
– https://baltig.infn.it/mori/GGSSoftware

● User’s guide:
– https://wizard.fi.infn.it/ggs/manual/

thanks to Nicola Mori

https://baltig.infn.it/mori/GGSSoftware

Auger SD Simulation

● CORSIKA: primary CR propagated in the Atmosphere
output→ particle distribution at the ground

● Geant4: particles hit Water Cherenkov detectors →
emission of light & tracking incl. reflections → detection in
PMTs

output → photoelectron time distribution

● electronics and PMT: response to single ph.el. to transform
collected charge into a pulse in V → ADC

From p.el.(t) to ADCs

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

