ISAPP 2019 @ the Pierre Auger Observatory

UHECR: Summary, Open Questions & Perspectives

BERGISCHE UNIVERSITÄT WUPPERTAL Karl-Heinz Kampert Bergische Universität Wuppertal

Bundesministerium für Bildung und Forschung

Primary goal of HE-Astroparticle Physics: Find Sources of UHECRs

- several lectures about this - Which messenger is the best?
- Photons?
- Neutrinos?
- or UHECR, or all together?
- Reminder: Unexpected surprises in UHECR observations → Seeing E_{max} of UHECR accelerators!
- What are the next logical steps science wise?
- - Taking shape: AugerPrime, TA*4
 - Go to space? POEMMA, EUSO...
 - Other dreams at ground

Karl-Heinz Kampert – University Wuppertal

Menu...

• How do we address the next (UHECR) challenges experimental wise?

Primary goal of HE-Astroparticle Physics: Find Sources of UHECRs

- Which messenger is the best?
- Photons?
- Neutrinos?
- or UHECR, or all together?
- Reminder: Unexpected surprises in UHECR observations → Seeing E_{max} of UHECR accelerators!
- What are the next logical steps science wise?
- Taking shape: AugerPrime, TA*4 - Go to space? POEMMA, EUSO...
- Other dreams at ground

Karl-Heinz Kampert – University Wuppertal

Menu...

• How do we address the next (UHECR) challenges experimental wise?

The High Energy Cosmic Messengers

$p_{CR} + \text{matter} \rightarrow \pi^{\pm} + \pi^{0} + X$ a/o radiation fields

proton

 $\downarrow \gamma + \gamma$ $\downarrow \mu + \nu_{\mu} + \nu_{e}$

CRs

 \mathcal{V}

Cosmic Coincidence or Grand Unified Picture ?

10 orders of magnitude in energy, but $E^2 \cdot \Phi$ is about the same \rightarrow energy generation rates per decade in E are the same

Suggests again a common / related origin

but no gutananteel(z)

ISAPP @ Auger, 08.03.19

A "Best" Messenger ??

⊕ straight lines \oplus unexplored at >10¹⁷ eV \odot UHE Horizon < 10 Mpc \ominus no clean probe of hadron acceleration Karl-Heinz Kampert - University of Wuppertal

above 40 EeV

- ⊕ clean hadronic probe
- \odot Horizon = Hubble \Rightarrow isotropic
- \odot point sources could be difficult, unless flaring sources

A "Best" Messenger ??

No clear winner: Competition and Multi-Messenger Cooperation

UHECR: unique probe of ZeVatrons !

Karl-Heinz Kampert - University of Wuppertal

above 40 EeV

Primary goal of HE-Astroparticle Physics: Find Sources of UHECRs

- Which messenger is the best?
- Photons?
- Neutrinos?
- or UHECR, or all together?
- Reminder: Unexpected surprises in UHECR observations (see Michael Ungers talk of yesterday)
- What are the next logical steps science wise?
- - Taking shape: AugerPrime, TA*4
 - Go to space? POEMMA, EUSO...
- Other dreams at ground

Karl-Heinz Kampert – University Wuppertal

Menu...

• How do we address the next (UHECR) challenges experimental wise ?

UHECR before Auger

Karl-Hein

Las Meninas by Diego Velazquez 1656

UHECR in 2019

Las Meninas by Pablo Picasso 1957

UHECR before Auger

Karl-Hein

Las Meninas by Diego Velazquez 1656

UHECR in 2019

dipole!

O

hot spot?

T

 $A + \gamma$ ankle?

GZK or E_{max} ?

cutoff!

Las Meninas by Pablo Picasso 1957

End of the CR-Spectrum (0°-80°)

Karl-Heinz Kampert - University of Wuppertal

End of the CR-Spectrum (0°-80°)

arXiv:1708.06592 Update from: PRL 101, 061101 (2008), Physics Letters B 685 (2010) 239

Karl-Heinz Kampert - University of Wuppertal

Longitudinal Shower Development -> Primary Mass

KHK, Unger, APP 35 (2012) **EPOS 1.99** Simulations

Emax of Sources vs GZK-Energy losses

N-sources Fe-sources

Flux suppression above 5.1019 eV due to...

e czik-effect

 $p + \gamma_{CMB} \to \Delta \to p + \pi^0 \to \gamma \to n + \pi^+ \to \nu$

smoking gun...

⇒ cosmogenic neutrino & photon fluxes sensitive to origin of flux suppression

Karl-Heinz Kampert - University of Wuppertal

ISAPP @ Auger, 08.03.19

no cosmogenic neutrinos or photons

e Emax of sources

Independent test of seeing Emax of sources vs GZK suppression

EeV Neutrinos detectable in inclined air showers

- **Protons & nuclei** initiate showers high in the atmosphere.
 - Shower front at ground:
 - mainly composed of muons
 - electromagnetic component absorbed in atmosphere.
- Neutrinos can initiate "deep" showers close to ground.
 - Shower front at ground: electromagnetic + muonic components

Searching for neutrinos \Rightarrow searching for inclined showers with electromagnetic component

Top of the a
Earth
Top of the EI
Earth
EM com
μΞ

EeV Neutrinos detectable in inclined air showers

- **Protons & nuclei** initiate showers high in the atmosphere.
 - Shower front at ground:
 - mainly composed of muons
 - electromagnetic component absorbed in atmosphere.
- Neutrinos can initiate "deep" showers close to ground.
 - Shower front at ground: electromagnetic + muonic components

Searching for neutrinos \Rightarrow searching for inclined showers with electromagnetic component

Example of an inclined event seen in Auger

Karl-Heinz Kampert - University of Wuppertal

Signal (VEM)

EeV Neutrino Limits challenge protons suffering GZK-losses

Karl-Heinz Kampert - University of Wuppertal

EeV Photon Limits challenge protons suffering GZK-losses

Photons can be identified by deep X_{max} and low muon number

Karl-Heinz Kampert - University of Wuppertal

Auger Collaboration, JCAP04 (2017) 009

M. Niechciol (Uni Siegen), Diss. N. Krohm / P. Papenbreer (BUW)

Connax of Southes Consequences lo Neutrinos

- ... yet, no observation of cosmogenic neutrinos and pholons
 - ...but not all of parameter space tested, yet
- ...could be a guaranteed source of UHE neutrinos for doing particle physics

-> wish to improve sensitivities even further (more later)

Karl-Heinz Kampert - University of Wuppertal

... 102° eV proton beam is at least subdominant

... still, there are some indications for a small energies -> wish to identify those event-by event

Convinax of Sources Consequences lo particle physics

... cons-energies for doing particle physics is limited

fraction 0(10%-20%) of protons at the highest

Engrax of Sources Consequences to UHECR astronomy

- ... seeing the sources of UHECR is more difficult than we had hoped
- ... more source candidates possible because of relaxed constraints at sources

-> if light primaries could be selected at highest energies, procon-astronomy still possible

All-Particle Flux Map above 8 EeV

Auger Collaboration, Science 357 (2017) 1266

Auger Collaboration, ApJ 868 (2018) 1

map smoothed with 45° top-hat Galactic coordinates

Evolution with Energy: 8-16 EeV

Auger Collaboration, ApJ 868 (2018) 1

map smoothed with 45° top-hat Galactic coordinates

180 $8 \text{ EeV} \le \text{E} < 16 \text{ EeV}$

Auger Collaboration, ApJ 868 (2018) 1

map smoothed with 45° top-hat Galactic coordinates

Evolution with Energy: >32 EeV

Auger Collaboration, ApJ 868 (2018) 1

map smoothed with 45° top-hat Galactic coordinates

180 $E \ge 32 \text{ EeV}$

Auger: ApJL 853: L29 (2018)

map smoothed with 15° top-hat Galactic coordinates

Evolution with Energy: >60 EeV

Auger: ApJL 853: L29 (2018)

map smoothed with 7° top-hat Galactic coordinates

Full-Sky picture of TA and Auger

flux map:

 $\Phi(E_{Auger/TA} > 40/53.2 \text{ EeV}) \text{ [km}^{-2} \text{ sr}^{-1} \text{ yr}^{-1}\text{]} - Equatorial coordinates - R = 20^{\circ}$

significance map:

Karl-Heinz Kampert - University of Wuppertal

- two "warm spots" with 4.7/4.2 σ local significance
- post-trial 2.2/1.3 σ
- aligned along super-galactic plane?

... apparently E grows faster than Z!

Karl-Heinz Kampert - University of Wuppertal

ISAPP @ Auger, 08.03.19

Mean Rigidity vs Primary Energy

Rigidity $\simeq E/Z$ continues to increase with energy despite increasing mass

Karl-Heinz Kampert - University of Wuppertal

ISAPP @ Auger, 08.03.19

- Which messenger is the best?
- Photons?
- Neutrinos?
- or UHECR, or all together?
- Reminder: Unexpected surprises in UHECR observations (see Michael Ungers talk of yesterday)
- What are the next logical steps science wise ?
- - Taking shape: AugerPrime, TA*4
 - Go to space? POEMMA, EUSO...
 - Other dreams at ground

Menu...

• Primary goal of HE-Astroparticle Physics: Find Sources of UHECRs

• How do we address the next (UHECR) challenges experimental wise ?

Just improve statistics..?

... more statistics is always nice :-) in fact, TA suffers most from statistics \rightarrow TA*4

... combine improved statistics with improved performance -> AugerPrime

anisotropy studies

Karl-Heinz Kampert - University of Wuppertal

- -> we can gain a lot by composition enhanced

Karl-Heinz Kampert - University of Wuppertal

SD: 700 → 2800 km²

 500 new SD stations on 2.08 km spacing • 2 new FD stations • Optimized for UHECR above cutoff (fully efficient above ~60 EeV) \rightarrow hot spot verification $\rightarrow prime goal$

First stations are now being deployed

This is not a picture from an end-time movie

TA*4 Deployment

- Deploy SDs with helicopters.
- Communication towers will be constructed.
- Communication b/w SDs and comm. tower will be tuned.
- \rightarrow start DAQ from SDs!

Pictures below: deployment of TALE SDs last year.

Karl-Heinz Kampert - University of Wuppertal

Karl-Heinz Kampert - University of Wuppertal

TA*4 Energy Threshold

Issue: Threshold in cut-off region!

SD array: square grid with 2.08 km spacing E > 57 EeV:

- Reconstruction efficiency > 95%
- Angular resolution: 2.2°
- Energy resolution: \sim 25%

Science Goals of AugerPrime

- **1. Elucidate the origin of the flux suppression**, i.e. GZK vs. maximum energy scenario
 - fundamental constraints on UHECR sources
 - galactic vs extragalactic origin
 - reliable prediction of GZK v- and -y fluxes
- 2. Search for a flux contribution of protons up to the highest energies at a level of ~ 10%

- proton astronomy up to highest energies - prospects of future UHECR experiments

3. Study of extensive air showers and hadronic multiparticle production above $\sqrt{s}=70$ TeV

- particle physics beyond man-made accelerators - derivation of constraints on new physics phenomena

Key Elements of AugerPrime

Measure primary mass with 10 times better statistics

Scintillators on top of each Water Cherenkov Tank (non invasive, fast to install, robust technology, relatively inexpensive)

Karl-Heinz Kampert - University of Wuppertal

- 3.8 m² scintillators (SSD) on each 1500 m array stations improve e/μ discr.
- upgrade of station electronics
- additional small PMT to increase dynamic range
- buried muon counters in 750 m array (AMIGA)
- increased FD uptime

Karl-Heinz Kampert - University of Wuppertal

N^µmax VS Xmax

Technical Realisation

100% duty cycle

15% duty cycle

$$\Rightarrow \begin{pmatrix} S_{\rm em} \\ S_{\mu} \end{pmatrix} = \begin{pmatrix} a_{\rm em} \\ 1 - a_{\rm em} & 1 \end{pmatrix}$$

Proton Astronomy

Assume 155 events above energy threshold (e.g. 55 EeV) with $f_{\rm P}$ proton and (1- $f_{\rm P}$) iron fraction assume 75% of all protons correlate to source (quite realistic), no Fe correlates and assume that 20% of all events correlate to sources by chance (quite realistic)

Merit factor = 0; (Auger)

Karl-Heinz Kampert - University of Wuppertal

correlation improves to 4.5 σ significance

Karl-Heinz Kampert - University of Wuppertal

Science Expections by 2030

- Origin of the flux suppression will be known
- Simple astrophysical scenarios will be discriminated
- If proton fraction > 15%, it will be noted, and ...
- if > 20%, realistic prospects for point source identification
- TA Hot Spot will either be proven or falsified
- UHECR source classes and source candidates will be identified
- Neutrino and photon limits will be improved only by factor 2-3
- Basic particle physics at $\sqrt{140}$ TeV will have been done
- LIV and BSM parameters will be improved significantly

GRAND: The Giant Radio Array for Neutrino Detection

Karl-Heinz Kampert - University of Wuppertal

Goal:

Explore the E>10¹⁷eV neutrinos is uncharted territory

could also do some UHECR physics

Karl-Heinz Kampert

Idea: Deploy - in a simple way - a huge number of antennas and search for Earth skimming neutrinos

Cosmic ray

GRAND 200k: 200,000 km²

Extensive air shower

 Antenna optimized tor horizontal showers Bow-tie design, 3 perpendicular arms • Frequency range: 50-200 MHz Inter-antenna spacing: 1 km

Planned Sensitivities for cosmogenic neutrinos

Karl-Heinz Kampert - University of Wuppertal

present limits from Auger and IceCube

GZK-Flux range from p-sources

 10^{11}

Most of that parameter range could be tested

Cosmogenic fluxes may be of reach

Karl-Heinz Kampert - University of Wuppertal

All these lines represent expected sensitivities

Flux may be as low as this in case we see E_{max} of sources

 10^{11}

POEMMA: Probe of Extreme Multi-Messenger Astrophysics

Stereoscopic Observations from Space

POEMMA Camera

light

Karl-Heinz Kampert - University of Wuppertal

Schmidt optics 45° fov, like Auger telescopes

Ø 3.3 m corrector lens

Ø 1.6 m focal area (MAPMTs for fluorescence SiPMs for Cherenkov)

Ø 4 m diameter mirror

Exposures by 2030 and beyond....

year

POEMMA: expected statistics & Xmax-resolution

- X_{max} resolution not much worse than that of Auger

APP @ Auger, 08.03.19

UHECR before Auger

Karl-Hein

Las Meninas by Diego Velazquez 1656

UHECR in 2019 mixed!

dipole!

O

 $GZK \text{ or } E_{max}$?

cutoff!

Las Meninas by Pablo Picasso 1957

관

1 1

UHECR in 2019 mixed!

dipole!

O

hot spot?

亚

1 1

$A + \gamma$ ankle?

$GZK \text{ or } E_{max}$?

cutoff!

Las Meninas by Pablo Picasso 1957

UHECR in 2030

a shining source will be identified

Sandro Boticelli: The Birth of Venus (1494-1486)

UHECR in 2019 mixed!

O

hot spot?

亚

11 11

 $A + \gamma$ ankle?

 $GZK \text{ or } E_{max}?$

cutoff!

Las Meninas by Pablo Picasso 1957

UHECR in 2030+ source hunting season has been opened

Domenichino: Diana and her Nymphs (1616) ISAPP @ Auger, 08.03.19

Thank you for your attention!

Karl-Heinz Kampert - University of Wuppertal

ISAPP @ Auger, 08.03.19

