

Recent Results from Neutrino and Dark Matter Experiments Mark Chen Queen's University

XVIII Mexican School of Particles and Fields

October 23, 2018

Neutrino Physics is a big field now!

- Neutrino oscillations
 - Long baseline
 - Short baseline
 - Accelerator
 - Reactor
 - Atmospheric
- Neutrino mass
 - Direct mass measurements
 - Double beta decay
 - Neutrino mass theory (and mixing matrix theory)
- Neutrino sources from nature
 - Solar
 - Geo
 - Supernova
 - Astrophysical energetic sources (e.g. AGN blazars)

Dark Matter Experimental Searches

- Direct Detection
 - Spin-independent
 - Spin-dependent
 - WIMPs
 - Axions
 - Light WIMP candidates
 - Hidden sector particles

- Indirect Detection (γ , ν , cosmic ray antimatter)
- Production at Colliders
- Fixed target DM production-detection

Scorpion S4E17 TV show copying the DEAP-3600 detector schematic

Dark Matter Candidates

DARK MATTER CANDIDATES:

PICO is a bubble chamber DM detector at SNOLAB with world-leading sensitivity to *spin-dependent* WIMP-nucleon couplings

How does PICO work?

figure from G. Giroux

PICO-60 Results from 2017

- 52.2 kg of C_3F_8 (45.7 kg fiducial volume)
- Most sensitive spin-dependent DM search
- Dashed exclusion curves are indirect detection limits (model-dependent)
- PandaX-II uses xenon that also has spindependent sensitivity...but not as good as fluorine

C. Amole et al., Phys. Rev. Lett. 118, 251301 (2017)

PICO-60 Recent Results

- Lower energy threshod from 3.29 keV to 2.45 keV
- Measure/calibrate lower threshold nucleation efficiency and acoustic parameter using neutrons
- Slightly larger fiducial volume, other small analysis improvements

$\frac{1}{3} = \frac{1}{8} = \frac{1}{3} = \frac{1}{8} = \frac{1}{3} = \frac{1}$				
	2.45keV	3.29keV	Total	
Exposure (kg-d)	1404.2	1167.0	2571.2	
WIMP candidates	3	0	3	
Multiple bubble events*	2	3	5	

Combined DICO.60 (E results

Background prediction			
Neutron background from multiples**	0.8	0.5	1.3
Neutron background from simulation	0.38	0.25	0.63
Gamma background	0.13	0.03	0.16
⁸ B CEVNS background	0.10	0.06	0.16

Rough (2-sigma) agreement between observation and background simulation, but we choose not to make use of the background prediction in setting exclusion limits.

*Multiples exposure is larger than WIMP search exposure due to fewer cuts. **Expect 3.8 multiples per single bubble from neutron backgrounds.

PICO-60 Recent Results

- Lower energy threshod from 3.29 keV to 2.45 keV
- Measure/calibrate lower threshold nucleation efficiency and acoustic parameter using neutrons
- Slightly larger fiducial volume, other small analysis improvements

LABORATORI Nazionali del Gran Sasso

XENON1T is a two-phase LXe TPC DM detector at Gran Sasso lab in Italy with world-leading sensitivity to *spin-independent* WIMP-nucleon couplings

from L. Grandi, IDM2018, July 2018

How does XENON1T work?

- 2 tonne active liquid xenon volume (3.2 T total); 1.3 T fiducial volume
- S2:S1 ratio discriminates between nuclear recoils (WIMP, neutron) and electron recoils (gamma-ray backgrounds)

from L. Grandi, IDM2018, July 2018

How does XENON1T work?

- 2 tonne active liquid xenon volume (3.2 T total); 1.3 T fiducial volume
- S2:S1 ratio discriminates between nuclear recoils (WIMP, neutron) and electron recoils (gamma-ray backgrounds)

from E. Aprile *et al.*, PRL 121, 111302 (2018)

XENON1T Recent Results

- 1 tonne-year exposure
- 1.4-10.6 keV_{ee} equivalent to 4.9-40.9 keV_{nr}

from E. Aprile et al., PRL 121 111302 (2018)

XENON1T Recent Results

- 1 tonne-year exposure
- 1.4-10.6 keV_{ee} equivalent to 4.9-40.9 keV_{nr}

from L. Grandi, IDM2018, July 2018

XENON1T Recent Results

INSIDE WIMP BOX @BEST FIT VALUES FOR 200 GEV WIMP

) CESVN

NEUTRON
ER (RN DOMINATED)
SURFACE
ACCIDENTALS
WIMP

INSIDE WIMP BOX

from E. Aprile et al., PRL 121 111302 (2018)

XENON1T Recent Results

from *Snowmass "P5 G2DM" study arXiv:1310.8327*

XENON1T Recent Results

DEAP-3600 is a LAr scintillating DM detector at SNOLAB – it's the DM detector with the *largest fiducial mass* (2.2 tonnes) and has leading spinindependent WIMP *sensitivity with Ar*, especially at high mass >200 GeV

How does DEAP work?

LAr scintillation time profile

DEAP-3600 Recent Results

- 9.87 tonne-day exposure soon, new results with 2.2 tonne-year exposure
- 10-31 keV_{ee} equivalent to 37-105 keV_{nr}

Calibration: nuclear recoil discrimination using deployed gamma and neutron sources

DEAP-3600 Recent Results

- 9.87 tonne-day exposure soon, new results with 2.2 tonne-year exposure
- * 10-31 keV_{ee} equivalent to 37-105 keV_{nr}

DEAP-3600 Recent Results

- 9.87 tonne-day exposure soon, new results with 2.2 tonne-year exposure
- 10-31 keV_{ee} equivalent to 37-105 keV_{nr}

Concluding Remarks: Dark Matter Searches

- Searches for WIMP (neutralino) dark matter are excluding lots of parameter space
- Will supersymmetry be found at the LHC?
- Is supersymetric DM alive?
- All of the leading dark matter experiments are seeing... signals in excess of background!
 - Does that mean the signal is just around the corner?
 - Does that mean we need a better handle on backgrounds (estimation and reducing)?
 - Just low statistics and nothing to get excited about? Yeah, probably...
- Searches for particle dark matter are branching out to test other DM candidates/models

Neutrino Physics is a big field now!

- Neutrino oscillations
 - Long baseline
 - Short baseline
 - Accelerator
 - Reactor
 - Atmospheric
- Neutrino mass
 - Direct mass measurements
 - Double beta decay
 - Neutrino mass theory (and mixing matrix theory)
- Neutrino sources from nature
 - Solar
 - Geo
 - Supernova
 - Astrophysical energetic sources (e.g. AGN blazars)

Double Beta Decay

Majorana neutrino mass has this term in the Lagrangian

It's precisely this term that is responsible for the process below, neutrinoless double beta decay

Photo Gallery

Neutrinoless Double Beta Decay Experiments

Summary of Recent Double Beta Decay Results

Experiment	Isotope	T _{1/2} lower limit [yr]	m _{ββ} upper limit range [meV]
EXO-200	¹³⁶ Xe	1.8×10 ²⁵	150-400
KamLAND-Zen	¹³⁶ Xe	1.1×10 ²⁶	60-160
GERDA	⁷⁶ Ge	8.0×10 ²⁵	120-260
Majorana Demonstrator	⁷⁶ Ge	1.9×10 ²⁵	240-520
CUORE	¹³⁰ Te	1.5×10 ²⁵	110-500

$$\left[T_{1/2}\right]^{-1} = G_{0\nu} \frac{\left\langle m_{\beta\beta} \right\rangle^2}{m_e^2} \left| M_{0\nu} \right|^2$$

$$\left|\sum_{i} m_{i} U_{ei}^{2}\right| \equiv \left\langle m_{\beta\beta} \right\rangle$$

- Is the upgraded Sudbury Neutrino Observatory
- 3.9 tonnes of tellurium in 780 tonnes of liquid scintillator
- Search for double beta decay of ¹³⁰Te
- Te loading starts in 2019

Long Baseline Experiments

Long Baseline Experiments

How to make a neutrino beam

The T2K long baseline neutrino oscillation experiment

What is measured in an accelerator neutrino oscillation experiment?

v_{μ} disappearance

v_e appearance

What is measured in an accelerator neutrino oscillation experiment?

- Δm^2_{32}
- $sin^2\theta_{23}$
- $sin^2\theta_{13}$
- Neutrino mass hierarchy (normal or inverted)
- δ_{CP}

$$egin{bmatrix} 1 & 0 & 0 \ 0 & c_{23} & s_{23} \ 0 & -s_{23} & c_{23} \end{bmatrix} egin{bmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{CP}} \ 0 & 1 & 0 \ -s_{12} & c_{12} & 0 \ -s_{12} & c_{12} & 0 \ 0 & 0 & 1 \end{bmatrix} \ = egin{bmatrix} c_{12}c_{13} & c_{13}e^{i\delta_{CP}} & 0 & c_{13} \end{bmatrix} egin{bmatrix} c_{12}c_{13} & s_{13}e^{-i\delta_{CP}} \ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta_{CP}} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta_{CP}} & s_{23}c_{13} \ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta_{CP}} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta_{CP}} & c_{23}c_{13} \end{bmatrix} egin{bmatrix} c_{12}c_{23} - s_{12}c_{23}s_{13}e^{i\delta_{CP}} & s_{23}c_{13} \ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta_{CP}} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta_{CP}} & c_{23}c_{13} \end{bmatrix} egin{bmatrix} c_{12}c_{23} - s_{12}c_{23}s_{13}e^{i\delta_{CP}} & c_{23}c_{13} \ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta_{CP}} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta_{CP}} & c_{23}c_{13} \ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta_{CP}} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta_{CP}} & c_{23}c_{13} \ s_{13}e^{i\delta_{CP}} & c_{23}c_{13} \ s_{13}e^{i\delta_{CP}} & c_{23}c_{13} \ s_{13}e^{i\delta_{CP}} & c_{23}c_{13} \ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta_{CP}} & c_{23}c_{13} \ s_{13}e^{i\delta_{CP}} & c_{23}c_{13} \ s_{13}e^{i\delta_{CP}} \ s_{23}c_{13} \ s_{13}e^{i\delta_{CP}} & c_{23}c_{13} \ s_{13}e^{i\delta_{CP}} \ s_{23}c_{13} \ s_{13}e^{i\delta_{CP}} \ s_{1$$

On the neutrino mass hierarchy...

NOvA

NOvA content from M. Sanchez, Neutrino 2018, June 2018

NOvA Detector Signals

NOvA v_{μ} disappearance

Near Detector

Far Detector (note: spectrum distorted by oscillations)

113 events observed in FD, 730 events expected if no oscillations

NOvA v_e appearance

- 58 events for neutrino with 15 background
- 18 events for antineutrino with 5.3 background

NOvA CP violation

Normal hierarchy preferred: 1.8 σ Some ability to start to constrain δ_{CP}

T2K content from M. Wascko, Neutrino 2018, June 2018

T2K v_{μ} disappearance

T2K v_e appearance

Neutrino appearance:

- 75 events observed
- 73.8 events predicted best-fit oscillations

Antineutrino appearance:

- 9 events observed
- 6.5 if no oscillation
- 11.8 with oscillations

T2K Latest Results oscillation parameters

	NH	IH
$sin^2\theta_{23}$	$0.536\substack{+0.031\\-0.046}$	$0.536\substack{+0.031\\-0.041}$
l∆m²l	2.434 ± 0.064	$2.410\substack{+0.062\\-0.063}$

T2K CP violation

Normal hierarchy preferred @ 88.8% CP-conserving δ_{CP} lie outside 2 σ region

Is the 3-flavor oscillation picture complete?

MiniBooNE

Built at Fermilab to test/resolve the LSND anomaly

MiniBooNE L/E ~500 m/500 MeV LSND L/E ~30 m/30 MeV

- Different backgrounds, different systematics, different (similar) detector
- However, MiniBooNE saw its own low-energy "background" excess...

MiniBooNE content from E.-C. Huang, Neutrino 2018, June 2018

MiniBooNE: Mineral Oil Cherenkov/Scintillator Detector

POT

• Double the neutrino data set, consistency checks, improved background estimates

Week

A.A. Aguilar-Arevalo et al., arXiv:1805.12028

Previously MiniBooNE had a low-energy excess in neutrino mode inconsistent with oscillations Now with double the data, the low-energy data fits the oscillation hypothesis

MiniBooNE+LSND Oscillation Results

Simple 2-neutrino oscillation model

Δm² is large: ~0.1-1.0 eV² inconsistent with 3-neutrino model

Confirms LSND at 4.8o

Concluding Remarks: Neutrino Physics Recent Results

- We've learned a lot since the discovery of neutrino oscillations 20 years ago!
- We're closing in on the mass hierarchy and the CP violating phase
- We still need to understand neutrino mass are neutrinos Majorana fermions? → double beta decay
- What's going on with LSND and MiniBooNE? Maybe more surprises? Mixing with sterile neutrinos?

Our work here is not done!