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The Mexican School of Particles and Fields (MSPF) is organized every two years by the Division of
Particles and Fields (DPyC) of the Mexican Physical Society. The MSPF is designed to complement the
education of advanced graduate students and young postdocs working in High Energy Physics (HEP) in
Mexico and abroad.

The 2018 University of Sonora School of High Energy Physics(USHEP)  is a school designed to
attract new graduate students to the newly created HEP program at the University of Sonora.

This joint school has been organized with programs that complement each other and will take place in
the colonial city of Hermosillo, Sonora, from the 21st to the 27th of October 2018. The format of the
joint school will consist of several courses devoted to advanced topics in elementary particle physics,
taught from a modern perspective, to be delivered by well known specialists in different areas of high
energy physics. The program will include theoretical and experimental review seminars on the latest
developments in the field. Poster sessions will be included too, aimed to allow the participants to show
their research, and to enhance the interaction of the students with the speakers. An excursion to a
beautiful beach is planned as well as a special dinner and a public lecture at the University of Sonora.

The program of the joint school includes the following topics and speakers :

Electroweak and Higgs Physics
Joseph Incandela (UCSB, U.S.A.) 
From the Higgs to the unknown: In Search of the genetic code of our universe (public
lecture) 
Usha Mallik (Uni. of Iowa, U.S.A.) 
Some Highlights of the Higgs boson measurements at the LHC (review talk)
Ian Lewis (Uni. of Kansas, U.S.A.) 
Theory of Higgs Physics at Colliders (course)

Mayda Velasco (Northwestern Uni., U.S.A.)  
Top, Electroweak and QCD at the LHC (course)

Physics Beyond the Standard Model
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Invariant under boosts!  Independent of Pμ 

Dirac: Front Form



Fig. 1. Dirac’s three forms of Hamiltonian dynamics.

2.4. Forms of Hamiltonian dynamics

Obviously, one has many possibilities to parametrize space—time by introducing some general-
ized coordinates xJ (x). But one should exclude all those which are accessible by a Lorentz
transformation. Those are included anyway in a covariant formalism. This limits considerably the
freedom and excludes, for example, almost all rotation angles. Following Dirac [123] there are no
more than three basically different parametrizations. They are illustrated in Fig. 1, and cannot be
mapped on each other by a Lorentz transform. They differ by the hypersphere on which the fields
are initialized, and correspondingly one has different “times”. Each of these space—time parametriz-
ations has thus its own Hamiltonian, and correspondingly Dirac [123] speaks of the three forms of
Hamiltonian dynamics: The instant form is the familiar one, with its hypersphere given by t"0. In
the front form the hypersphere is a tangent plane to the light cone. In the point form the time-like
coordinate is identified with the eigentime of a physical system and the hypersphere has a shape of
a hyperboloid.

Which of the three forms should be prefered? The question is diffi cult to answer, in fact it is
ill-posed. In principle, all three forms should yield the same physical results, since physics should
not depend on how one parametrizes the space (and the time). If it depends on it, one has made
a mistake. But usually one adjusts parametrization to the nature of the physical problem to
simplify the amount of practical work. Since one knows so little on the typical solutions of a field
theory, it might well be worth the effort to admit also other than the conventional “instant” form.

The bulk of research on field theory implicitly uses the instant form, which we do not even
attempt to summarize. Although it is the conventional choice for quantizing field theory, it has

S.J. Brodsky et al. / Physics Reports 301 (1998) 299—486 315

Instant Form Front Form 
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P.A.M Dirac, Rev. Mod. Phys. 21, 
392 (1949)

Dirac’s Amazing Idea: 
The “Front Form”

• No dependence on observer’s frame 

• Boosts are kinematical



General remarks about orbital angular mo-
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Light-Front Wavefunctions:  rigorous representation of 
composite systems in quantum field theory
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Current Matrix Elements are Overlaps of LFWFS
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Fixed LF time
Higher Fock States of the Proton

Wavefunction at fixed LF time:  Off-Shell in Invariant Mass

Eigenstate of LF Hamiltonian : all Fock states contribute

|p, Jz >=
X
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Advantages of the Dirac’s Front Form for Hadron Physics

• Measurements are made at fixed τ 

• Causality is automatic 

• Structure Functions are squares of LFWFs 

• Form Factors are overlap of LFWFs 

• LFWFs are frame-independent: no boosts, no pancakes! 

• Same structure function measured at an e p collider and the proton 
rest frame 

• No dependence of hadron structure on observer’s frame 

• Jz Conservation, bounds on ΔLz    Chiu, sjb

• LF Holography: Dual to AdS space 

• LF Vacuum trivial -- no vacuum condensates! 

Physics Independent of Observer’s Motion

Poincare’ Invariant

Roberts, Shrock, Tandy, sjb

Penrose, Terrell, Weisskopf



• Hadron Physics without LFWFs is like Biology without DNA!

General remarks about orbital angular mo-
mentum
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Intrinsic heavy quarks    s̄(x) ⇤= s(x)
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Violation of Gottfried sum rule

ū(x) ⌅= d̄(x)

Does not produce (C = �) J/⇥,�

Produces (C = �) J/⇥,�

Same IC mechanism explains A2/3

s(x), c(x), b(x) at high x !
Deuteron: Hidden Color

Fixed LF time

⌧ = t + z/c



! E866/NuSea (Drell-Yan)

Intrinsic sea quarks

d̄(x) �= ū(x)

Interactions of quarks at same
rapidity in 5-quark Fock state



• Non-symmetric strange and antistrange sea? 

• Non-perturbative physics
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Measure strangeness distribution  
in Semi-Inclusive DIS at JLab

Is s(x) = s̄(x)?

Tag struck quark flavor in semi-inclusive DIS ep! e0K+X

B. Q. Ma, sjb
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�

Probability (QCD) � 1
M2

Q

Proton 5-quark Fock State : 
Intrinsic Heavy Quarks

Collins, Ellis, Gunion, Mueller, sjb 
Polyakov, et al. 

 

Fixed LF time
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Q

Q

QCD predicts  
Intrinsic Heavy 

Quarks at high x!

Minimal off-
shellnessUse AdS/QCD LFWF



J. J. Aubert et al. [European Muon Collaboration], “Pro-
duction Of Charmed Particles In 250-Gev Mu+ - Iron In-
teractions,” Nucl. Phys. B 213, 31 (1983).

First Evidence for Intrinsic Charm

Measurement of Charm Structure  
Function! 

DGLAP / Photon-Gluon Fusion: factor of 30 too small

factor of 30 !

Two Components (separate evolution):

c(x,Q2) = c(x, Q2)extrinsic + c(x, Q2)intrinsic

gluon splitting 
(DGLAP)

Hoyer, Peterson, Sakai, sjb

x[c(x,Q) + c̄(x,Q)]



Ratio insensitive 
to gluon PDF, 

scales

�⇥(p̄p� �cX)
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Signal for significant 
IC  

at x > 0.1 

Measurement of !þ bþ X and !þ cþ X Production Cross Sections
in p !p Collisions at
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R. Beuselinck,43 V. A. Bezzubov,39 P. C. Bhat,50 V. Bhatnagar,27 G. Blazey,52 F. Blekman,43 S. Blessing,49 K. Bloom,67

A. Boehnlein,50 D. Boline,62 T. A. Bolton,59 E. E. Boos,38 G. Borissov,42 T. Bose,77 A. Brandt,78 R. Brock,65

G. Brooijmans,70 A. Bross,50 D. Brown,19 X. B. Bu,7 N. J. Buchanan,49 D. Buchholz,53 M. Buehler,81 V. Buescher,22

V. Bunichev,38 S. Burdin,42,‡ T. H. Burnett,82 C. P. Buszello,43 P. Calfayan,25 B. Calpas,15 S. Calvet,16 J. Cammin,71

M.A. Carrasco-Lizarraga,33 E. Carrera,49 W. Carvalho,3 B. C. K. Casey,50 H. Castilla-Valdez,33 S. Chakrabarti,72

D. Chakraborty,52 K.M. Chan,55 A. Chandra,48 E. Cheu,45 D. K. Cho,62 S. Choi,32 B. Choudhary,28 L. Christofek,77

T. Christoudias,43 S. Cihangir,50 D. Claes,67 J. Clutter,58 M. Cooke,50 W. E. Cooper,50 M. Corcoran,80 F. Couderc,18
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Consistent with EMC measurement of charm 
structure function at high x



Goldhaber, Kopeliovich, Schmidt, Soffer sjb

Intrinsic Charm Mechanism for Inclusive  
High-XF Higgs Production

H

Higgs can have > 80% of Proton Momentum!

Also: intrinsic strangeness, bottom, top

pp� HXp

p

c
c̄

g

New production mechanism for Higgs



Figure 3: The cross section of inclusive Higgs production in fb, coming

from the nonperturbative intrinsic bottom distribution, at both LHC

(
√

s = 14 TeV, solid curve) and Tevatron (
√

s = 2 TeV, dashed curve)

energies.

that the cross section for inclusive Higgs production from intrinsic bottom is much

higher than the one coming from intrinsic charm. Although it is true that the Higgs-

quark coupling, proportional to mQ, cancels in the cross section with PIQ ∝ 1/m2
Q,

the matrix element between IQ and Higgs wave functions has an additional mQ factor.

This is because the Higgs wave function is very narrow and the overlap of the two

wave functions results in ΨQQ(0) ∝ mQ. Thus, the cross section rises as m2
Q, as we

see in the results.

We can compare our predictions for inclusive Higgs production coming from

IB with our previous ansatz for the Higgs production gluon-gluon fusion process

xdN/dx = 6(1 − x)5. At the maximum (xF = 0.9) of the IB curve we get a value of

roughly 50 fb, while there gluon-gluon gives 0.067 fb. Thus this high-xF region is the

ideal place to look for Higgs production coming from intrinsic heavy quarks.

We obtain essentially the same curves for Tevatron energies (
√

s = 2 TeV) , al-

though the rates are reduced by a factor of approximately 3.

We also show in Fig.4 the results for Higgs production coming from the perturba-

tive charm distribution. The magnitude of the production cross section is considerably
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Do heavy quarks exist in the proton at high x?

Conventional wisdom:
gluon splitting

Heavy quarks generated only at low x 
via DGLAP evolution 
from gluon splitting

Conventional wisdom is wrong even in QED!
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F ) = b(x, µ2
F ) ⌘ 0

at starting scale Q2
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Figure 2: Comparison of the HERMES x(s(x) + s̄(x)) data with the
calculations based on the BHPS model. The solid and dashed curves
are obtained by evolving the BHPS result to Q2 = 2.5 GeV2 using
µ = 0.5 GeV and µ = 0.3 GeV, respectively. The normalizations of
the calculations are adjusted to fit the data at x > 0.1 with statistical
errors only, denoted by solid circles.

their measurement of charged kaon production in SIDIS re-
action [6]. The HERMES data, shown in Fig. 2, exhibits
an intriguing feature. A rapid fall-off of the strange sea
is observed as x increases up to x ∼ 0.1, above which the
data become relatively independent of x. The data suggest
the presence of two different components of the strange
sea, one of which dominates at small x (x < 0.1) and the
other at larger x (x > 0.1). This feature is consistent
with the expectation that the strange-quark sea consists
of both the intrinsic and the extrinsic components hav-
ing dominant contributions at large and small x regions,
respectively. In Fig. 2 we compare the data with calcula-
tions using the BHPS model with ms = 0.5 GeV/c2. The
solid and dashed curves are results of the BHPS model
calculations evolved to Q2 = 2.5 GeV2 using µ = 0.5 GeV
and µ = 0.3 GeV, respectively. The normalizations are
obtained by fitting only data with x > 0.1 (solid circles in
Fig. 2), following the assumption that the extrinsic sea has
negligible contribution relative to the intrinsic sea in the
valence region. Figure 2 shows that the fits to the data are
quite adequate, allowing the extraction of the probability
of the |uudss̄⟩ state as

Pss̄
5 = 0.024 (µ = 0.5 GeV);

Pss̄
5 = 0.029 (µ = 0.3 GeV). (4)

We consider next the quantity ū(x) + d̄(x) − s(x) −
s̄(x). Combining the HERMES data on x(s(x)+s̄(x)) with
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Figure 3: Comparison of the x(d̄(x)+ū(x)−s(x)−s̄(x)) data with the
calculations based on the BHPS model. The values of x(s(x)+ s̄(x))
are from the HERMES experiment [6], and those of x(d̄(x) + ū(x))
are obtained from the PDF set CTEQ6.6 [11]. The solid and dashed
curves are obtained by evolving the BHPS result to Q2 = 2.5 GeV2

using µ = 0.5 GeV and µ = 0.3 GeV, respectively. The normalization
of the calculations are adjusted to fit the data.

the x(d̄(x)+ ū(x)) distributions determined by the CTEQ
group (CTEQ6.6) [11], the quantity x(ū(x)+ d̄(x)−s(x)−
s̄(x)) can be obtained and is shown in Fig. 3. This ap-
proach for determining x(ū(x)+ d̄(x)−s(x)− s̄(x)) is iden-
tical to that used by Chen, Cao, and Signal in their recent
study of strange quark sea in the meson-cloud model [12].

An important property of ū + d̄ − s − s̄ is that the
contribution from the extrinsic sea vanishes, just like the
case for d̄− ū. Therefore, this quantity is only sensitive to
the intrinsic sea and can be compared with the calculation
of the intrinsic sea in the BHPS model. We have

ū(x) + d̄(x) − s(x)− s̄(x) =

Puū(xū) + P dd̄(xd̄)− 2P ss̄(xs̄). (5)

We can now compare the x(ū(x) + d̄(x) − s(x) − s̄(x))
data with the calculation using the BHPS model. Since
ū+ d̄−s− s̄ is a flavor non-singlet quantity, we can readily
evolve the BHPS prediction to Q2 = 2.5 GeV2 using µ =
0.5 GeV and the result is shown as the solid curve in Fig. 3.
It is interesting to note that a better fit to the data can
again be obtained with µ = 0.3 GeV, shown as the dashed
curve in Fig. 3.

From the comparison between the data and the BHPS
calculations shown in Figs. 1-3, we can determine the prob-
abilities for the |uuduū⟩, |uuddd̄⟩, and |uudss̄⟩ configura-
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are obtained by evolving the BHPS result to Q2 = 2.5 GeV2 using
µ = 0.5 GeV and µ = 0.3 GeV, respectively. The normalizations of
the calculations are adjusted to fit the data at x > 0.1 with statistical
errors only, denoted by solid circles.
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an intriguing feature. A rapid fall-off of the strange sea
is observed as x increases up to x ∼ 0.1, above which the
data become relatively independent of x. The data suggest
the presence of two different components of the strange
sea, one of which dominates at small x (x < 0.1) and the
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calculations based on the BHPS model. The values of x(s(x)+ s̄(x))
are from the HERMES experiment [6], and those of x(d̄(x) + ū(x))
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the x(d̄(x)+ ū(x)) distributions determined by the CTEQ
group (CTEQ6.6) [11], the quantity x(ū(x)+ d̄(x)−s(x)−
s̄(x)) can be obtained and is shown in Fig. 3. This ap-
proach for determining x(ū(x)+ d̄(x)−s(x)− s̄(x)) is iden-
tical to that used by Chen, Cao, and Signal in their recent
study of strange quark sea in the meson-cloud model [12].

An important property of ū + d̄ − s − s̄ is that the
contribution from the extrinsic sea vanishes, just like the
case for d̄− ū. Therefore, this quantity is only sensitive to
the intrinsic sea and can be compared with the calculation
of the intrinsic sea in the BHPS model. We have

ū(x) + d̄(x) − s(x)− s̄(x) =

Puū(xū) + P dd̄(xd̄)− 2P ss̄(xs̄). (5)

We can now compare the x(ū(x) + d̄(x) − s(x) − s̄(x))
data with the calculation using the BHPS model. Since
ū+ d̄−s− s̄ is a flavor non-singlet quantity, we can readily
evolve the BHPS prediction to Q2 = 2.5 GeV2 using µ =
0.5 GeV and the result is shown as the solid curve in Fig. 3.
It is interesting to note that a better fit to the data can
again be obtained with µ = 0.3 GeV, shown as the dashed
curve in Fig. 3.

From the comparison between the data and the BHPS
calculations shown in Figs. 1-3, we can determine the prob-
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Some Key QCD Issues in Electroproduction
• Intrinsic Heavy Quarks 

• Role of Color Confinement in DIS 

• Hadronization at the Amplitude Level 

• Leading-Twist Lensing: Sivers Effect 

• Diffractive DIS 

• Static versus Dynamic Structure Functions 

• Origin of Shadowing and Anti-Shadowing 

• Is Anti-Shadowing Non-Universal: Flavor Specific? 

• Nuclear Correlations and Effects: Hidden Color 

• Are Sum Rules valid for Nuclei? 



Novel QCD Phenomena  
at an Electron-Ion Collider 

BNLJLAB



 Stan Brodsky Physics on the Light-Front
 Quark Confinement and Novel QCD 

Phenomena

The Mexican School 
of Particles and Fields 

2018 Sonora School 
of High Energy Physics

Novel Effects Derived from Light-Front 
Wavefunctions

• Color Transparency

• Intrinsic heavy quarks at high x

• Asymmetries 

• Spin correlations, counting rules at x to 1

• Diffractive deep inelastic scattering

• Nuclear Effects:  Hidden Color

s(x) 6= s̄(x), ū(x) 6= d̄(x)

ep ! epX



Fundamental Question: Quark Confinement!!

n What is the mechanism that confines quarks and 
gluons?

n What sets the mass of the proton when mq=0 ?
n QCD: No knowledge of MeV units:                                             

Only ratios of masses can be predicted!
n Novel proposal by de Alfaro, Fubini, and Furlan 

(DAFF): Mass scale κ can appear in Hamiltonian 
leaving the action conformal!

n Unique Color-Confinement Potential  



Profound Questions for Hadron Physics

• Origin of the QCD Mass Scale 

• Color Confinement 

• Spectroscopy:  Tetraquarks, Pentaquarks, Gluonium, Exotic 
States 

• Universal Regge Slopes: n, L,  both Mesons and Baryons 

• Massless Pion: Bound State 

• Dynamics and Spectroscopy 

• QCD Coupling at all Scales 

• QCD Vacuum —Do QCD Condensates Exist?
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 Stan Brodsky Physics on the Light-Front
 Quark Confinement and Novel QCD 

Phenomena

The Mexican School 
of Particles and Fields 

2018 Sonora School 
of High Energy Physics

Supersymmetry in QCD

• A hidden symmetry of Color SU(3)C in hadron 
physics

• QCD: No squarks or gluinos!

• Emerges from Light-Front Holography and 
Super-Conformal Algebra

• Color Confinement

• Massless Pion in Chiral Limit



HQCD
LF |ψ >=M2|ψ >

Dirac’s Front Form: Fixed τ = t+ z/c

Bound States in Relativistic Quantum Field Theory: 

Light-Front Wavefunctions

Remarkable new insights from AdS/CFT ,the duality 
between conformal field theory  and Anti-de Sitter Space 

Invariant under boosts.   Independent of Pμ

Direct connection to QCD Lagrangian

 (xi,~k?i,�i)

P+ = P0 + Pz

Fixed ⌅ = t + z/c

xi = k+

P+ = k0+k3
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⇧(⇤, b�)

⇥ = d�s(Q2)
d lnQ2 < 0

u

Off-shell in invariant mass

x =
k+

P+
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k0 + k3

P 0 + P 3



Light-Front QCD

Eigenvalues and Eigensolutions give Hadronic 
Spectrum and Light-Front wavefunctions

HQCD
LF |�h >= M2

h|�h >

HQCD
LF =

�

i

[
m2 + k2

�
x

]i + Hint
LF

Fig. 6. A few selected matrix elements of the QCD front form Hamiltonian H"P
!

in LB-convention.

10. For the instantaneous fermion lines use the factor ¼
"

in Fig. 5 or Fig. 6, or the corresponding
tables in Section 4. For the instantaneous boson lines use the factor ¼

#
.

The light-cone Fock state representation can thus be used advantageously in perturbation
theory. The sum over intermediate Fock states is equivalent to summing all x!-ordered diagrams
and integrating over the transverse momentum and light-cone fractions x. Because of the restric-
tion to positive x, diagrams corresponding to vacuum fluctuations or those containing backward-
moving lines are eliminated.

3.4. Example 1: ¹he qqN -scattering amplitude

The simplest application of the above rules is the calculation of the electron—muon scattering
amplitude to lowest non-trivial order. But the quark—antiquark scattering is only marginally more
difficult. We thus imagine an initial (q, qN )-pair with different flavors fOfM to be scattered off each
other by exchanging a gluon.

Let us treat this problem as a pedagogical example to demonstrate the rules. Rule 1: There are
two time-ordered diagrams associated with this process. In the first one the gluon is emitted by the
quark and absorbed by the antiquark, and in the second it is emitted by the antiquark and
absorbed by the quark. For the first diagram, we assign the momenta required in rule 2 by giving
explicitly the initial and final Fock states
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LQCD � HQCD
LF

Hint
LF : Matrix in Fock Space

Physical gauge: A+ = 0

Exact frame-independent formulation of 
nonperturbative QCD!

H
int
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LFWFs: Off-shell in P- and invariant mass
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X

n=3
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In terms of the hadron four-momentum P =
(P+, P�, ⌦P⇤) with P± = P0 ± P3, the light-
front frame independent Hamiltonian for a
hadronic composite system HQCD

LC = PµPµ =
P�P+� ⌦P2

⇤, has eigenvalues given in terms of
the eigenmass M squared corresponding to
the mass spectrum of the color-singlet states
in QCD,

HQCD
LC |�h⇧ =M2

h |�h⇧
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difficult. We thus imagine an initial (q, qN )-pair with different flavors fOfM to be scattered off each
other by exchanging a gluon.

Let us treat this problem as a pedagogical example to demonstrate the rules. Rule 1: There are
two time-ordered diagrams associated with this process. In the first one the gluon is emitted by the
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Fig. 2. The Hamiltonian matrix for a SU(N)-meson. The matrix elements are represented by energy diagrams. Within
each block they are all of the same type: either vertex, fork or seagull diagrams. Zero matrices are denoted by a dot ( ) ).
The single gluon is absent since it cannot be color neutral.

mass or momentum scale Q. The corresponding wavefunction will be indicated by corresponding
upper scripts,

!!""
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Consider a pion in QCD with momentum P"(P%, P
!
) as an example. It is described by
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where the sum is over all Fock space sectors of Eq. (3.7). The ability to specify wavefunctions
simultaneously in any frame is a special feature of light-cone quantization. The light-cone
wavefunctions !

!#! do not depend on the total momentum, since x
#
is the longitudinal momentum

fraction carried by the i"# parton and k
!#

is its momentum “transverse” to the direction of the
meson; both of these are frame-independent quantities. They are the probability amplitudes to find
a Fock state of bare particles in the physical pion.

More generally, consider a meson in SU(N). The kernel of the integral equation (3.14) is
illustrated in Fig. 2 in terms of the block matrix &n : x

#
, k

!#
, !

#
"H"n ' : x'

#
, k'

!#
, !'

#
$. The structure of this

matrix depends of course on the way one has arranged the Fock space, see Eq. (3.7). Note that most
of the block matrix elements vanish due to the nature of the light-cone interaction as defined in
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Heisenberg Equation

Light-Front QCD DLCQ: Solve QCD(1+1) for 
any  quark mass and flavors

Minkowski space; frame-independent; no fermion doubling; no ghosts
trivial vacuum

Hornbostel, Pauli, sjb



number of coupled integral eigenvalue equations, 

- - 

where V is the interaction part of HLC. Diagrammatically, V involves completely 

irreducible interactions--i.e. diagrams having no internal propagators-coupling 

Fock states (Fig. 5). These equations determine the hadronic spectrum and 

xJ= 
: 3 II 

- - 
0 
. . . 

. 
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1 II 

0 l . . f 

- - IL 7 - - . . . . . . 
Figure 5. Coupled eigenvalue equations for the light-cone wa.vefunctious of a 

pion. 

wave functions. Although the potential is essentially trivial, the many channels 

required to describe an hadronic state make these equations very difficult to solve. 

Nevertheless the first attempts at a direct solution have been made. 

The bulk of the probability for a nonrelativistic system is in a single Fock 

state-e.g. (eE> for positronium, or Ibb) for the r meson. For such systems it 

is useful to replace the full set of multi-channel eigenvalue equations by a single 

equation for the dominant wavefunction. To see how this can be done, note that 

the bound state equation, say for positronium, can be rewritten as two equations 

using the projection operator P onto the subspace spanned by eE states, and its 

complement & E 1 - P: 

Hpp IPs)~ + HPQ IPs)~ = h4” IPs)p 

(29) 

H&p [Ps)~ + HQQ jP& = hf” h)g 

where H~Q E PHQ.. ., and lPsjp E P jPs) . . . . Solving the second of these 

equations for IPs)~ and substituting the result into the first equation, we obtain 

a single equation for the ee or valence part of the positronium state: 

Her [Ps)~ = Al2 IPS)P (30) 
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LIGHT-FRONT MATRIX EQUATION
G.P. Lepage, sjb

A+ = 0

⇥� ggg � d̄X

⇥� ggg � p̄n̄X

R = �(⇥�d̄X)
�(⇥�p̄n̄X)

R = C

ū(x) ⇥= d̄(x)

s̄(x) ⇥= s(x)

Minkowski space; frame-independent; no fermion doubling; no ghosts

Rigorous Method for Solving Non-Perturbative QCD!

Causal, Frame-Independent



Hornbostel, Pauli, sjbDLCQ: QCD(1+1) 



HQED

Coupled Fock states

Effective two-particle equation

 Azimuthal  Basis

Confining AdS/QCD  
potential!  

HLF
QCD
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Semiclassical first approximation to QCD  

U(⇣) = 4⇣2 + 22(L + S � 1)

Light-Front QCD

AdS/QCD:

�2 = x(1� x)b2
�

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

P+ = P0 + Pz

Fixed ⌅ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

⇧(⇤, b�)

⇥ = d�s(Q2)
d lnQ2 < 0

u

Sums an infinite # diagrams

LQCD

Eliminate higher Fock states              
and retarded interactions

⇥
� d2

d⇣2
+

1� 4L2

4⇣2
+ U(⇣)

⇤
 (⇣) =M2 (⇣)

mq = 0
Single variable Equation!



Light-Front Holography  

AdS/QCD 
Soft-Wall  Model 

Conformal Symmetry 
of the action  

U(⇣) = 4⇣2 + 22(L + S � 1)

Exploring QCD, Cambridge, August 20-24, 2007 Page 9

Confinement scale:   

Light-Front Schrödinger Equation Unique 
Confinement Potential!

de Tèramond, Dosch, sjb

 ' 0.5 GeV

• de Alfaro, Fubini, Furlan: Scale can appear in Hamiltonian and EQM 
without affecting conformal invariance of action!• Fubini, Rabinovici: 

e'(z) = e+2z2

Single variable  ζ

⇥
� d2

d⇣2 � 1�4L2

4⇣2 + U(⇣)
⇤
 (⇣) = M2 (⇣)

�
� d2

d2�
+ V (�)

⇥
=M2⇥(�)

�
� d2

d�2 + V (�)
⇥
=M2⇥(�)

�2 = x(1� x)b2
⇥.

Jz = Sz
p =

⇤n
i=1 Sz

i +
⇤n�1

i=1 ⌥z
i = 1

2

each Fock State

Jz
p = Sz

q + Sz
g + Lz

q + Lz
g = 1

2

GeV units external to QCD: Only Ratios of Masses Determined



AdS/QCD G. F. de Téramond

Scale Transformations

• Isomorphism of SO(4, 2) of conformal QCD with the group of isometries of AdS space

SO(1, 5)

ds2 =
R2

z2
(�µ⇥dxµdx⇥ � dz2),

xµ ⇤ ⇥xµ, z ⇤ ⇥z, maps scale transformations into the holographic coordinate z.

• AdS mode in z is the extension of the hadron wf into the fifth dimension.

• Different values of z correspond to different scales at which the hadron is examined.

x2 ⇤ ⇥2x2, z ⇤ ⇥z.

x2 = xµxµ: invariant separation between quarks

• The AdS boundary at z ⇤ 0 correspond to theQ⇤⌅, UV zero separation limit.

Caltech High Energy Seminar, Feb 6, 2006 Page 11

invariant measure

AdS/CFT

AdS5
Exploring QCD, Cambridge, August 20-24, 2007 Page 9

Maldacena



7th International Conference on High Energy Physics in the LHC Era7th International Conference on High Energy Physics in the LHC Era

 Stan Brodsky Physics on the Light-Front
 Quark Confinement and Novel QCD 

Phenomena

The Mexican School 
of Particles and Fields 

2018 Sonora School 
of High Energy Physics

•Soft-wall dilaton profile breaks 
conformal invariance

•Color Confinement in z

•Introduces confinement scale κ

•Uses AdS5 as template for conformal 
theory

e'(z) = e+2z2

Dilaton-Modified AdS

Exploring QCD, Cambridge, August 20-24, 2007 Page 9

https://indico.cern.ch/event/628450/
https://indico.cern.ch/event/628450/


AdS Soft-Wall Schrödinger Equation for  
bound state  of  two scalar constituents:

Derived from variation of Action for Dilaton-Modified AdS5 

Identical to Single-Variable Light-Front Bound State Equation in ζ! 

U(z) = �4z2 + 2�2(L + S � 1)

• de Teramond, sjbPositive-sign dilaton

⇥
� d2

dz2
� 1� 4L2

4z2
+ U(z)

⇤
�(z) =M2�(z)

⌅(x,�b⇤) = ⌅(⇥)

⇤(z)

⇥ =
�

x(1� x)�b2⇤

z

z�

z0 = 1
⇥QCD

�d⇥ np

⌅(x,�b⇤) = ⌅(⇥)

⇤(z)

⇥ =
�

x(1� x)�b2⇤

z

z�

z0 = 1
⇥QCD

�d⇥ np

e'(z) = e+2z2



⌅(x,�b⇤) = ⌅(⇥)

⇤(z)

⇥ =
�

(x(1� x)|b⇤|

z

z�

z0 = 1
⇥QCD

�d⇥ np

⌅(x,�b⇤) = ⌅(⇥)

⇤(z)

⇥ =
�

x(1� x)�b2⇤

z

z�

z0 = 1
⇥QCD

�d⇥ np

⌅(x,�b⇤) = ⌅(⇥)

⇤(z)

⇥ =
�

x(1� x)�b2⇤

z

z�

z0 = 1
⇥QCD

�d⇥ np

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

LF(3+1)                AdS5

Light-Front Holography: Unique mapping derived from equality of LF 
and AdS  formula for EM and gravitational current matrix elements 

and identical equations of motion

⇤(x, �) =
�

x(1� x)��1/2⇥(�)

de Teramond, sjb

(µR)2 = L2 � (J � 2)2

P+ = P0 + Pz

Fixed ⌅ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

⇧(⇤, b�)

⇥ = d�s(Q2)
d lnQ2 < 0

u

Light-Front Holographic Dictionary



G. de Teramond, H. G. Dosch, sjb 

U(⇣2) = 4⇣2 + 22(J � 1)

z ! ⇣

Pion: Negative term  for J=0 cancels 
positive terms from LFKE and potentialm⇡ = 0 if mq = 0

Massless pion! 

~⇣2 = ~b2?x(1� x)
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S = 0 S = 0

Soft Wall 
Model

Pion mass  
automatically zero!

mq = 0

Quark separation 
increases with L

Pion has 
zero mass!

Same slope in n and L!
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Figure 1: Comparison of the light-front holographic prediction [1] M
2(n, L, S) =

4�(n+ L+ S/2) for the orbital L and radial n excitations of the meson spectrum with
experiment. See Ref. [2]

1 Introduction

A remarkable empirical feature of the hadronic spectrum is the near equality of the

slopes of meson and baryon Regge trajectories. The square of the masses of hadrons

composed of light quarks is linearly proportional not only to L, the orbital angular

momentum, but also to the principal quantum number n, the number of radial nodes in

the hadronic wavefunction as seen in Fig. 1. The Regge slopes in n and L are equal, as in

the meson formula M
2
M
(n, L, S) = 4�(n+L+S/2 from light front holographic QCD [1],

but even more surprising, they are observed to be equal for both the meson and baryon

trajectories, as shown in Fig. 2. The mean value for all of the slopes is  =
p
� = 0.523

GeV. See Fig. 3.

4

Equal Slope in n and LM2(n,L, S) = 42(n + L + S/2)

mq = 0



Structure of the Vacuum in Light-Front Dynamics

• Results easily extended to light quarks masses (Ex: K-mesons)
[GdT, S. J. Brodsky and H. G.Dosch, arXiv:1405.2451 [hep-ph]]

• First order perturbation in the quark masses

�M2 = h |
X

a

m2
a/xa| i

• Holographic LFWF with quark masses
[S. J. Brodsky and GdT, arXiv:0802.0514 [hep-ph]

 (x, ⇣) ⇠
p

x(1� x) e�
1
2�

�m2
q

x +
m2

q
1�x

�
e�

1
2� ⇣2

• Ex: Description of diffractive vector meson production at HERA
[J. R. Forshaw and R. Sandapen, PRL 109, 081601 (2012)]

• For the K⇤

M2
n,L,S = M2

K± + 4�
✓

n +
J + L

2

◆

• Effective quark masses from reduction of higher Fock states as functionals of the valence state:

mu = md = 46 MeV, ms = 357 MeV

Niccolò Cabeo 2014, Ferrara, May 20, 2012
Page 33

De Tèramond, Dosch, sjb

from LF Higgs mechanism

Effective mass from m(p2) Tandy, Roberts, et al



Prediction from AdS/QCD: Meson LFWF

�(x, k�)
0.20.40.60.8

1.3

1.4

1.5

0

0.05

0.1

0.15

0.2

0

5

       “Soft Wall” 
model

�(x, k�)(GeV)

de Teramond, 
Cao, sjb⇥M(x, Q0) ⇥

�
x(1� x)

⇤M(x, k2
⇤)

µR

µR = Q

µF = µR

Q/2 < µR < 2Q

µ�

massless quarks

Note coupling  

k2
�, x

Provides Connection of Confinement to Hadron Structure

⇤M (x, k⇥) =
4⇥

�
�

x(1� x)
e
� k2

⇥
2�2x(1�x)

x

1� x

�⇡(x) =
4p
3⇡

f⇡

p
x(1� x)

f⇡ =
p

Pqq̄

p
3

8
 = 92.4 MeV Same as DSE!

e'(z) = e+2z

C. D. Roberts et al.



General remarks about orbital angular mo-
mentum

�n(xi, k�i,�i)

�n
i=1(xi

 R�+ b�i) =  R�

xi
 R�+ b�i

�n
i
 b�i =  0�

�n
i xi = 1

0.20.40.60.8

1.3

1.4

1.5

0

0.05

0.1

0.15

0.2

0

5

�(x, k�)(GeV)

�(x, k�)

• Light Front Wavefunctions:                                   

P+ = P0 + Pz

Fixed ⌅ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

⇧(⇤, b�)

⇥ = d�s(Q2)
d lnQ2 < 0

u

“Hadronization at the Amplitude Level”

o↵-shell in P� and invariant massM2
qq̄

General remarks about orbital angular mo-
mentum

�n(xi, k�i,�i)

�n
i=1(xi

 R�+ b�i) =  R�

xi
 R�+ b�i

�n
i
 b�i =  0�

�n
i xi = 1

Boost-invariant LFWF connects confined quarks and gluons to hadrons

x,~k?

1� x,�~k?



J. R. Forshaw,  
R. Sandapen

�⇤p! ⇢0p0

�L

�T

⇤M (x, k⇥) =
4⇥

�
�

x(1� x)
e
� k2

⇥
2�2x(1�x)



• “History” : Compute any subgraph only once since the LFPth 
numerator does not depend on the process — only the 
denominator changes!

• Wick Theorem applies, but few amplitudes since all k+ > 0.

• Jz Conservation at every vertex

• Unitarity is explicit

• Loop Integrals are 3-dimensional

• hadronization: coalesce comoving quarks and gluons to 
hadrons using light-front wavefunctions

Light-Front Perturbation Theory for pQCD

Z 1

0
dx

Z
d2k?

General remarks about orbital angular mo-
mentum

�n(xi, k�i,�i)

�n
i=1(xi

 R�+ b�i) =  R�

xi
 R�+ b�i

�n
i
 b�i =  0�

�n
i xi = 1

at order gn|
X

initial

Sz �
X

final

Sz |  n

K. Chiu, sjb

T = HI +HI
1

M2
initial �M2

intermediate + i✏
HI + cdots



A.P.  Trawinski, S.D. Glazek, H. D. Dosch, G. de Teramond, sjb

Connection to the Linear Instant-Form Potential

Linear instant nonrelativistic form V (r) = Cr for heavy quarks

Harmonic Oscillator U(⇣) = 4⇣2 LF Potential for relativistic light quarks



!10 !5 0 5 10

!4

!3

!2

!1

0

1

2

log!FΠ!q2""

q2(GeV2)

Frascati

BaBar ISR

spacelike timelike

JLab

log |F⇡(s)|
Pion Form Factor from AdS/QCD and Light-Front Holography



 Stan Brodsky Physics on the Light-Front
 Quark Confinement and Novel QCD 

Phenomena

The Mexican School 
of Particles and Fields 

2018 Sonora School 
of High Energy Physics

Remarkable Features of  
Light-Front Schrödinger Equation

•Relativistic, frame-independent

•QCD scale appears - unique LF potential

•Reproduces spectroscopy and dynamics of light-quark hadrons with 
one parameter

•Zero-mass pion for zero mass quarks!

•Regge slope same for n and L  -- not usual HO

•Splitting in L persists to high mass   -- contradicts conventional 
wisdom based on breakdown of chiral symmetry

•Phenomenology: LFWFs, Form factors, electroproduction

•Extension to heavy quarks

U(⇣) = 4⇣2 + 22(L + S � 1)

Dynamics + Spectroscopy! 



QCD Lagrangian

LQCD = �1
4
Tr(Gµ⌫Gµ⌫) +

nfX

f=1

i ̄fDµ�µ f +
nfX

f=1

mf  ̄f f

iDµ = i@µ � gAµ Gµ⌫ = @µAµ � @⌫Aµ � g[Aµ, A⌫ ]

Classical Chiral Lagrangian is Conformally Invariant  

Where does the QCD Mass Scale come from?  

• de Alfaro, Fubini, Furlan: Scale can appear in Hamiltonian and EQM 
without affecting conformal invariance of action!

Unique confinement potential!

QCD does not know what MeV units mean! 
Only Ratios of Masses Determined



G = uH + vD + wK

G| (⌧) >= i
@

@⌧
| (⌧) >

G = H⌧ =
1
2
�
� d

2

dx2
+

g

x2
+

4uw � v
2

4
x

2
�

Retains conformal invariance of action despite mass scale! 

Identical to LF Hamiltonian with unique potential and dilaton! 

• de Alfaro, Fubini, Furlan

⇥
� d2

d⇣2
+

1� 4L2

4⇣2
+ U(⇣)

⇤
 (⇣) =M2 (⇣)

U(⇣) = 4⇣2 + 22(L + S � 1)

4uw � v2 = 4 = [M ]4

• Dosch, de Teramond, sjb

New term

(dAFF)



fixed uniquely: it is, like the original Hamiltonian with unbroken dilatation symmetry,179

a constant of motion (2). This procedure breaks scale invariance by a redefinition of180

the fields and the time parameter (16). The Lagrangian, expressed in terms of the181

original fields Q(t) is unchanged up to a total derivative (2). The dAFF mechanism182

is reminiscent of spontaneous symmetry breaking, however, this is not the case since183

there are no degenerate vacua (14) and thus a massless scalar 0++ state is not required.184

The dAFF mechanism is also di↵erent from usual explicit breaking by just adding a185

term to the Lagrangian (15).186

In their discussion of the evolution operator H⌧ dAFF mention a critical point,187

namely that “the time evolution is quite di↵erent from a stationary one”. By this188

statement they refer to the fact that the variable ⌧ is related to the variable t by189

⌧ =
2p

4uw � v2
arctan

✓
2tw + vp
4uw � v2

◆
, (22)

i.e., ⌧ has only a finite range. Since q2(⌧) vanishes at the borders of this range (See190

(16)), the surface term in (18) vanishes also there. In our approach ⌧ = x+/P+
191

can be interpreted as the LF time di↵erence of the confined q and q̄ in the hadron,192

a quantity which is naturally of finite range and in principle could be measured in193

double-parton scattering processes. It is also interesting to notice that the conformal194

group in one dimension with generators Ht, K and D is locally isomorphic to the195

group SO(2, 1) and thus, a correspondence can be established between the SO(2, 1)196

group of conformal quantum mechanics and the AdS2 space with isometry group197

SO(2, 1) (16).198

Following the work of de Alfaro, Fubini and Furlan in Ref. (2), we have discussed199

in this letter an e↵ective theory which encodes the fundamental conformal symmetry200

of the QCD Lagrangian in the limit of massless quarks. It is an explicit model in201

which the confinement length scale appears in the light-front Hamiltonian from the202

breaking of dilatation invariance, without a↵ecting the conformal invariance of the203

action. In the context of the dual holographic model it shows that the form of the204

dilaton profile is unique, which leads by the mapping to the light-front Hamiltonian205

9

dAFF: New Time Variable

• Identify with difference of LF time Δx+/P+ 

between constituents 

• Finite range  

• Measure in Double-Parton Processes

Retains conformal invariance of action despite mass scale! 



{Q,S+} = f �B + 2iD, {Q+, S} = f �B � 2iD

B =
1
2
[ +, ] =

1
2
�3{ , +} = 1

 =
1
2
(�1 � i�2),  + =

1
2
(�1 + i�2)

{Q,Q
+} = 2H, {S, S

+} = 2K

generates conformal algebra

[H,D]= i H, [H, K] =2 i D, [K, D] = - i K

Q =  +[�@x +
f

x
], Q+ =  [@x +

f

x
], S =  +x, S+ =  x

Haag, Lopuszanski, Sohnius (1974)

Superconformal Quantum Mechanics 

Q '
p

H, S '
p

K



Consider Rw = Q + wS; w: dimensions of mass squared

Superconformal Quantum Mechanics 

Retains Conformal Invariance of Action

G11 =
�
� @2

x + w2x2 + 2wf � w +
4(f + 1

2 )2 � 1
4x2

�

New Extended Hamiltonian  G is diagonal:

G = {Rw, R
+
w} = 2H + 2w2

K + 2wfI � 2wB

G22 =
�
� @2

x + w2x2 + 2wf + w +
4(f � 1

2 )2 � 1
4x2

�

Fubini and Rabinovici 

2B = �3

Eigenvalue of G: M2(n,L) = 42(n + LB + 1)

Baryon Equation

Identify f � 1
2 = LB , w = 2

Q '
p

H, S '
p

K

� = 2



�
� @2

⇣ + 4⇣2 + 22(LB + 1) +
4L2

B � 1
4⇣2

�
 +

J = M2 +
J

Baryon Equation

Meson Equation

M2(n,LB) = 42(n + LB + 1)

�
� @2

⇣ + 4⇣2 + 22LB +
4(LB + 1)2 � 1

4⇣2

�
 �J = M2 �J

�
� @2

⇣ + 4⇣2 + 22(J � 1) +
4L2

M � 1
4⇣2

�
�J = M2�J

M2(n,LM ) = 42(n + LM )

Meson-Baryon Degeneracy for LM=LB+1

S=1/2, P=+

LF Holography

S=0, I=1 Meson is superpartner of S=1/2, I=1 Baryon

Superconformal  
Quantum Mechanics 

Same   !
S=0, P=+

� = 2
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Figure 2: Orbital and radial baryon excitation spectrum. Positive-parity spin-12 nucleons (a) and

spectrum gap between the negative-parity spin-32 and the positive-parity spin-12 nucleons families

(b). Minus parity N (c) and plus and minus parity ∆ families (d), for
√
λ = 0.49 GeV (nucleons)

and 0.51 GeV (Deltas).

cluster. The predictions for the daughter trajectories for n = 1, n = 2, · · · are also shown in

this figure. Only confirmed PDG [23] states are shown. The Roper state N(1440) and the

N(1710) are well accounted for as the first and second radial excited states of the proton.

The newly identified state, the N(1900) [23] is depicted here as the first radial excitation of

the N(1720). The model is successful in explaining the parity degeneracy observed in the

light baryon spectrum, such as the L = 2, N(1680)−N(1720) pair in Fig. 2 (a). In Fig. 2

(b) we compare the positive parity spin-12 parent nucleon trajectory with the negative parity

7
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Meson-Baryon 
Mass Degeneracy 

for LM=LB+1

Same slope

M2(n,LB) = 42(n + LB + 1)

M2(n,LM ) = 42(n + LM )

M2
meson

M2
nucleon

=
n + LM

n + LB + 1

de Tèramond, Dosch, Lorcè, sjbSuperconformal Quantum Mechanics 
Light-Front Holography

Universal slopes in n, L
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Fit to the slope of Regge trajectories, 
including radial excitations

Same Regge Slope for Meson, Baryons:  
Supersymmetric feature of hadron physics

mu = md = 46 MeV, ms = 357 MeV

From ↵g1(Q2)
Deur

� = 2 de Tèramond, Dosch, Lorce’, sjb



Fermionic Modes and Baryon Spectrum
[Hard wall model: GdT and S. J. Brodsky, PRL 94, 201601 (2005)]

[Soft wall model: GdT and S. J. Brodsky, (2005), arXiv:1001.5193]

From Nick Evans

• Nucleon LF modes

⇤+(�)n,L = ⇥2+L

⌅
2n!

(n + L)!
�3/2+Le�⇥2�2/2LL+1

n

�
⇥2�2

⇥

⇤�(�)n,L = ⇥3+L 1⇤
n + L + 2

⌅
2n!

(n + L)!
�5/2+Le�⇥2�2/2LL+2

n

�
⇥2�2

⇥

• Normalization ⇤
d� ⇤2

+(�) =
⇤

d� ⇤2
�(�) = 1

• Eigenvalues

M2
n,L,S=1/2 = 4⇥2 (n + L + 1)

• “Chiral partners”
MN(1535)

MN(940)
=
⇤

2

LC 2011 2011, Dallas, May 23, 2011 Page 13

Quark Chiral 
Symmetry of 
Eigenstate!

Nucleon: Equal Probability for L=0,1

R1
0 d⇣

R 1
0 dx 2

+(⇣
2, x) =

R1
0 d⇣

R 1
0 dx 2

�(⇣
2, x) = 1

2



• Compute Dirac proton form factor using SU(6) flavor symmetry

F p
1 (Q2) = R4

⇧
dz

z4
V (Q, z)�2

+(z)

• Nucleon AdS wave function

�+(z) =
�2+L

R2

⌃
2n!

(n + L)!
z7/2+LLL+1

n

�
�2z2

⇥
e��2z2/2

• Normalization (F1
p(0) = 1, V (Q = 0, z) = 1)

R4

⇧
dz

z4
�2

+(z) = 1

• Bulk-to-boundary propagator [Grigoryan and Radyushkin (2007)]

V (Q, z) = �2z2

⇧ 1

0

dx

(1� x)2
x

Q2

42 e��2z2x/(1�x)

• Find

F p
1 (Q2) =

1⇤
1 + Q2

M2
⇢

⌅⇤
1 + Q2

M2
⇢0

⌅

withM⇥
2
n ⇤ 4�2(n + 1/2)

LC 2011 2011, Dallas, May 23, 2011 Page 20



Space-Like Dirac Proton Form Factor

• Consider the spin non-flip form factors

F+(Q2) = g+

⇤
d� J(Q, �)|⇥+(�)|2,

F�(Q2) = g�

⇤
d� J(Q, �)|⇥�(�)|2,

where the effective charges g+ and g� are determined from the spin-flavor structure of the theory.

• Choose the struck quark to have Sz = +1/2. The two AdS solutions ⇥+(�) and ⇥�(�) correspond

to nucleons with Jz = +1/2 and�1/2.

• For SU(6) spin-flavor symmetry

F p
1 (Q2) =

⇤
d� J(Q, �)|⇥+(�)|2,

Fn
1 (Q2) = �1

3

⇤
d� J(Q, �)

�
|⇥+(�)|2 � |⇥�(�)|2

⇥
,

where F p
1 (0) = 1, Fn

1 (0) = 0.

Exploring QCD, Cambridge, August 20-24, 2007 Page 52
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JADE determination of �s(MZ)
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H
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�
final ⇤

H
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Harmonic Oscillator Confinement 
Normalized to anomalous 

moment

F p
2 (Q2)

� = 0.49 GeV

G. de Teramond, sjb 

From overlap of L = 1 and L = 0 LFWFs



Using SU(6) flavor symmetry and normalization to static quantities
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Superconformal Algebra
2X2 Hadronic Multiplets

&%
'$ue &%

'$e ee
�M , LB + 1  B+, LB

-R
†
�

&%
'$e ee
 B�, LB + 1

&%
'$e eu u
�T , LB

-R
†
�

Figure 1: The supersymmetric quadruplet {�M , B+, B�,�T }. Open circles represent
quarks, full circles antiquarks. The tetraquark has the same mass as its baryon partner in the
multiplet. Notice that the LF angular momentum of the negative-chirality component wave
function of a baryon  B� is one unit higher than that of the positive-chirality (leading-twist)
component  B+.

spinor wavefunction  B+ and  B�, plus two bosonic wave functions, namely the meson

�B and the tetraquark �T . These states can be arranged as a 2⇥ 2 matrix:

 
�M(LM = LB + 1)  B�(LB + 1)

 B+(LB) �T (LT = LB)

!
, (21)

on which the symmetry generators (1) and the Hamiltonian (17) operate 9.

According to this analysis, the lowest-lying light-quark tetraquark is a partner of

the b1(1235) and the nucleon; it has quantum numbers I, J
P = 0, 0+. The partners of

the a2(1320) and the �(1233) have the quantum numbers I = 0, JP = 1+. Candidates

for these states are the f0(980) and a1(1260), respectively.

2.4 Inclusion of quark masses and comparison with experiment

We have argued in [11] that the natural way to include light quark masses in the

hadron mass spectrum is to leave the LF potential unchanged as a first approximation

and add the additional term of the invariant mass �m
2 =

P
n

i=1
m

2
i

xi
to the LF kinetic

energy. The resulting LF wave function is then modified by the factor e
� 1

2��m
2
, thus

providing a relativistically invariant form for the hadronic wave functions. The e↵ect of

the nonzero quark masses for the squared hadron masses is then given by the expectation

value of �m
2 evaluated using the modified wave functions. This prescription leads to

9It is interesting to note that in Ref. [20] mesons, baryons and tetraquarks are also hadronic states
within the same multiplet.

12

Meson Baryon

TetraquarkBaryon

Bosons, Fermions with Equal Mass!

Proton: |u[ud]> Quark + Scalar Diquark
Equal Weight: L=0, L=1

R†
� q ! [q̄q̄]

3C ! 3C

R†
� q̄ ! [qq]

3̄C ! 3̄C



]

uu

ū

uu

uu
L = 0

L = 1

R†
� q ! [q̄q̄]

3C ! 3C

R†
� q̄ ! (qq)
3̄C ! 3̄C

( )

( ) ( )
[

JPC = 2++

JP =
3

2

+ JPC = 1++

L = 0

�+(1232)

L = 1, S = 1

u u

u ū

f2(1270)

S = 1

S = 0

Superconformal Algebra 4-Plet 

Vector ()+ Scalar [] Diquarks

Tetraquark

Meson Baryon

d̄

a1(1260)



M. Nielsen, 
sjbNew Organization of the Hadron Spectrum

Baryon        TetraquarkMeson



Dosch, de Teramond, sjb

Supersymmetry across the light and heavy-light spectrum



Dosch, de Teramond, sjb

Supersymmetry across the light and heavy-light spectrum

Heavy charm quark mass does not break supersymmetry



a


a

Superpartners for states with one c quark

predictions             beautiful agreement!M. Nielsen, sjb



Dosch, de Teramond, sjb

Supersymmetry across the light and heavy-light spectrum

Heavy bottom quark mass does not break supersymmetry



Regge slope for heavy-light mesons, baryons:  
increases with heavy quark mass

R(GeV)



]

R†
� q ! [q̄q̄]

3C ! 3C

[

S = 0

c̄ c

c c

Double-Charm Baryon (SELEX)

⌅+
CC(3520)

JP =
1

2

+

JPC = 0++

hc(3525)

c

⌘0c

c

c c̄ q̄

R†
� q̄ ! [qq]

3̄C ! 3̄C

S = 0

Predict Tetraquark Tcc̄qq̄

MT ⇠ 3520 MeV]

] ][[

[

dd

d
LB = 0

LB = 1

LM = 1, S = 0

LT = 0

Scalar Diquarks

JPC = 1+�



SELEX (3520± 1 MeV ) JP = 1
2

� |[cd]c >
Two decay channels: ⌅+

cc ! ⇤+
c K

�⇡+, pD+K�



 Stan Brodsky Physics on the Light-Front
 Quark Confinement and Novel QCD 

Phenomena

The Mexican School 
of Particles and Fields 

2018 Sonora School 
of High Energy Physics

Underlying Principles

• Poincarè Invariance: Independent of the observer’s Lorentz frame  

• Quantization at Fixed Light-Front Time 

• Causality: Information within causal horizon 

• Light-Front Holography: AdS5 = LF (3+1) 

• Single fundamental hadronic mass scale κ: but retains the 
Conformal Invariance of the Action (dAFF)!  

• Unique color-confining LF Potential! 

• Superconformal Algebra:  Mass Degenerate 4-Plet:

U(⇣2) = 4⇣2

Meson qq̄ $ Baryon q[qq] $ Tetraquark [qq][q̄q̄]

z $ ⇣ where ⇣2 = b2?x(1� x)

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

P+ = P0 + Pz

Fixed ⌅ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

⇧(⇤, b�)

⇥ = d�s(Q2)
d lnQ2 < 0

u

�2 = x(1� x)b2
�

⌧



`

• Universal quark light-front kinetic energy 

• Universal quark light-front potential energy 

• Universal Constant Contribution from AdS 
and Superconformal Quantum Mechanics

�M2
LFKE = 2(1 + 2n + L)

�M2
LFPE = 2(1 + 2n + L)

Equal: 
Virial 

Theorem 

hyperfine spin-spin

�M2
spin = 22(L + 2S + B � 1)

M2
H

2
= (1 + 2n + L) + (1 + 2n + L) + (2L + 4S + 2B � 2)

Universal Hadronic Decomposition



e+

e�
��

��

T+

�(e+e� ! MT ) / 1
sN�1

Use counting rules to identify composite structure

N = 6

Lebed, sjb



5 Non-Perturbative QCD Coupling From LF Holography
With A. Deur and S. J. Brodsky

• Consider five-dim gauge fields propagating in AdS5 space in dilaton background ⇧(z) = ⇤2z2

S = �1
4

�
d4x dz

⇧
g e⇥(z) 1

g2
5

G2

• Flow equation
1

g2
5(z)

= e⇥(z) 1
g2
5(0)

or g2
5(z) = e��2z2

g2
5(0)

where the coupling g5(z) incorporates the non-conformal dynamics of confinement

• YM coupling �s(⇥) = g2
Y M (⇥)/4⌅ is the five dim coupling up to a factor: g5(z)⌅ gY M (⇥)

• Coupling measured at momentum scale Q

�AdS
s (Q) ⇤

� ⇥

0
⇥d⇥J0(⇥Q)�AdS

s (⇥)

• Solution

�AdS
s (Q2) = �AdS

s (0) e�Q2/4�2
.

where the coupling �AdS
s incorporates the non-conformal dynamics of confinement

Hadron 2009, FSU, Tallahassee, December 1, 2009 Page 27

Running Coupling from  Modified AdS/QCD
Deur,  de Teramond, sjb

e�(z) = e+2z2



•Can be used as standard QCD coupling

•Well measured

•Asymptotic freedom at large Q2

•Computable at large Q2 in any pQCD 
scheme

•Universal  β0,  β1

Bjorken sum rule defines effective charge ↵g1(Q2)
Z 1

0
dx[gep

1 (x,Q2)� gen
1 (x,Q2)] ⌘ ga

6
[1� ↵g1(Q2)

⇡
]



�AdS
s (Q)/⇥ = e�Q2/4�2

�s(Q)
⇥

Deur,  de Teramond, sjb

 = 0.54 GeV

Analytic, defined at all scales, IR Fixed Point

Q (GeV)

�
s(Q

)/�

�g1/� (pQCD)
�g1/� world data

��/� OPAL

AdS

Modified AdS

Lattice QCD (2004) (2007)
�g1/� Hall A/CLAS
�g1/� JLab CLAS

�F3/�GDH limit

0

0.2

0.4

0.6

0.8

1

10 -1 1 10

Sublimated gluons below 1 GeVAdS/QCD dilaton captures the higher twist corrections to  effective charges for Q < 1 GeV

e' = e+2z2



Perturbative QCD

Holographic QCD

(asymptotic freedom)

Q0

Non−perturbative

0

0.2

0.4

0.6

0.8

1
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-1

1 10

Q (GeV)

α
g
1
(Q

)/
π

Transition scale Q0

Perturbative QCD
(Asymptotic Freedom)

↵s
g1

(Q2)
⇡

Nonperturbative QCD 
(Quark Confinement)

All-Scale QCD Coupling

e�
Q2
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Deur, de Tèramond, sjbm⇢ =
p

2
mp = 2

� ⌘ 2

 = 0.513± 0.007 GeV
Fit to Bj + DHG Sum Rules:

Q0 = 0.87± 0.08 GeV

MS schemeReverse Dimensional Transmutation!

Use Q0 for starting 
DGLAP  and ERBL 

Evolution

Experiment:
⇤MS = 0.332± 0.017 GeV

5-Loop � Prediction:
⇤MS = 0.339± 0.019 GeV
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FIG. 2. Solid (blue) curve: predicted process-independent
RGI running-coupling α̂PI(k2), Eq. (6). The shaded (blue)
band bracketing this curve combines a 95% confidence-level
window based on existing lattice-QCD results for the gluon
two-point function with an error of 10% in the continuum
extraction of the RGI product LF in Eqs. (1). World data
on αg1

[55–80]. The shaded (yellow) band on k > 1GeV
represents αg1

obtained from the Bjorken sum by using QCD
evolution [81–83] to extrapolate high-k2 data into the depicted
region, following Refs. [55, 56]; and, for additional context, the
dashed (red) curve is the light-front holographic model of αg1

canvassed in Ref. [45].

charge αg1(k
2) are depicted in Fig. 2 and therein com-

pared with our prediction for the process-independent
RGI running-coupling α̂PI(k2). Owing to asymptotic
freedom, all reasonable definitions of a QCD effective
charge must agree on k2 ! 1GeV2 and our approach
guarantees this connection. To be specific, in terms of
the widely-used MS running coupling [3]:

αg1(k
2) = α

MS
(k2)(1 + 1.14α

MS
(k2) + . . .) , (8a)

α̂PI(k
2) = α

MS
(k2)(1 + 1.09α

MS
(k2) + . . .) , (8b)

where Eq. (8a) may be built from, e.g. Refs. [84, 85].
Significantly, there is also near precise agreement with

data on the IR domain, k2 " m2
0, and complete accord

on k2 ≥ m2
0. Fig. 1 makes plain that any agreement on

k2 ∈ [0.01, 1]GeV2 is non-trivial because ghost-gluon in-
teractions produce as much as 40% of α̂PI(k2) on this
domain: if these effects were omitted from the gluon
vacuum polarisation, then αg1 and α̂PI would differ by
roughly a factor of two on the critical domain of transi-
tion between strong and perturbative QCD.

5: Conclusions.—We have defined and calculated a
process-independent running-coupling for QCD, α̂PI(k2)
[Eq. (6), Fig. 1]. This is a new type of effective charge,
which is an analogue of the Gell-Mann–Low effective cou-
pling in QED, being completely determined by the gauge-
boson two-point function. Our prediction for α̂PI(k2) is

parameter-free, being obtained by combining the self-
consistent solution of a set of Dyson-Schwinger equa-
tions with results from lattice-QCD; and it smoothly uni-
fies the nonperturbative and perturbative domains of the
strong-interaction theory. This process-independent run-
ning coupling is known to unify a vast array of observ-
ables, e.g. the pion mass and decay constant, and the
light meson spectrum [86]; the parton distribution am-
plitudes of light- and heavy-mesons [87–89], associated
elastic and transition form factors [90, 91], etc.
Finally, and perhaps surprisingly at first sight, α̂PI(k2)

is almost pointwise identical at infrared momenta to the
process-dependent effective charge, αg1 , defined via the
Bjorken sum rule, one of the most basic constraints on
our knowledge of nucleon spin structure, and in com-
plete agreement on the domain of perturbative momenta
[Fig. 2]. Equivalence on the perturbative domain is guar-
anteed for any two reasonable definitions of QCD’s ef-
fective charge, but here the subleading terms differ by
just 4% [Eqs. (8)]. An excellent match at infrared mo-
menta, i.e. below the scale at which perturbation theory
would locate the Landau pole, is non-trivial; and crucial
to this agreement is the careful treatment and incorpo-
ration of a special class of gluon-ghost scattering effects.
One is naturally compelled to ask how these two appar-
ently unrelated definitions of a QCD effective charge can
be so similar? We attribute this outcome to a physi-
cally useful feature of the Bjorken sum rule, viz. it is
an isospin non-singlet relation and hence contributions
from many hard-to-compute processes are suppressed,
and these same processes are omitted in our computa-
tion of α̂PI(k2).
The analysis herein unifies two vastly different ap-

proaches to understanding the infrared behaviour of
QCD, one essentially phenomenological and the other de-
liberately computational, embedded within QCD. There
is no Landau pole in our predicted running coupling.
In fact, there is an inflection point at

√
k2 = 0.7GeV,

marking a transition wall at which, as momenta de-
creasing from the ultraviolet promote growth in the cou-
pling, that coupling turns away from the Landau pole,
the growth slows, and finally the coupling saturates:
α̂PI(k2 = 0) ≈ 0.9π [Fig. 2]. This unification identifies
the Bjorken sum rule as a near direct means by which to
gain empirical insight into a QCD analogue of the Gell-
Mann–Low effective charge.
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Process-independent strong running coupling
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We unify two widely different approaches to understanding the infrared behaviour of quantum
chromodynamics (QCD), one essentially phenomenological, based on data, and the other computa-
tional, realised via quantum field equations in the continuum theory. Using the latter, we explain
and calculate a process-independent running-coupling for QCD, a new type of effective charge that
is an analogue of the Gell-Mann–Low effective coupling in quantum electrodynamics. The result is
almost identical to the process-dependent effective charge defined via the Bjorken sum rule, which
provides one of the most basic constraints on our knowledge of nucleon spin structure. This re-
veals the Bjorken sum to be a near direct means by which to gain empirical insight into QCD’s
Gell-Mann–Low effective charge.

1: Introduction.— In quantum gauge field theories de-
fined in four spacetime dimensions, the Lagrangian cou-
plings and masses do not remain constant. Instead, ow-
ing to the need for ultraviolet (UV) renormalisation, they
come to depend on a mass scale, which can often be re-
lated to the energy or momentum at which a given pro-
cess occurs. The archetype is quantum electrodynamics
(QED), for which a sensible perturbation theory can be
defined [1]. Within this framework, owing to the Ward
identity [2], there is a single running coupling, measur-
ing the strength of the photon–charged-fermion vertex,
which can be obtained by summing the collection of vir-
tual processes that change the bare photon into a dressed
object, viz. by computing the photon vacuum polarisa-
tion. QED’s running coupling is known to great accuracy
[3] and the running has been observed directly [4, 5].

A new coupling appears when electromagnetism is
combined with weak interactions to produce the Stan-
dard Electroweak Model [6]. It may be characterised by
sin2 θW , where θW is a scale-dependent angle which spec-
ifies the particular mixing between the model’s defining
neutral gauge bosons that produces the observed photon
and Z0-boson. A perturbation theory can also be de-
fined for the electroweak theory [7] so that sin2 θW can
be computed and compared with precise experiments [3].

At first sight, the addition of quantum chromodynam-
ics (QCD) [8] to the Standard Model does not quali-
tatively change anything, despite the presence of four
possibly distinct strong-interaction vertices (gluon-ghost,
three-gluon, four-gluon and gluon-quark) in the renor-
malised theory. An array of Slavnov-Taylor identities
(STIs) [9, 10], implementing BRST symmetry [11, 12]
(a generalisation of non-Abelian gauge invariance for the
quantised theory) ensures that a single running coupling
characterises all four interactions on the domain within
which perturbation theory is valid. The difference here
is that whilst QCD is asymptotically free and extant ev-

idence suggests that perturbation theory is valid at large
momentum scales, all dynamics is nonperturbative at
those scales typical of everyday strong-interaction phe-
nomena, e.g. ζ ! mp, where mp is the proton’s mass.

The questions that arise are how many distinct run-
ning couplings exist in nonperturbative QCD, and how
can they be computed? Given that there are four individ-
ual, apparently UV-divergent interaction vertices in the
perturbative treatment of QCD, there could be as many
as four distinct couplings at infrared (IR) momenta. (Of
course, if nonperturbatively there are two or more cou-
plings, they must all become equivalent on the perturba-
tive domain.) In our view, nonperturbatively, too, QCD
possesses a unique running coupling. The alternative ad-
mits the possibility of a different renormalisation-group-
invariant (RGI) intrinsic mass-scale for each coupling and
no guarantee of a connection between them. In such cir-
cumstances, BRST symmetry would likely be irreparably
broken by nonperturbative dynamics and one would be
pressed to conclude that QCD was non-renormalisable
owing to IR dynamics. There is no empirical evidence
to support such a conclusion: QCD does seem to be a
well-defined theory at all momentum scales, owing to the
dynamical generation of gluon [13–18] and quark masses
[19–21], which are large at IR momenta.

2: Process-independent running coupling.—Poincaré co-
variance is of enormous importance in modern physics,
e.g. it places severe limitations on the nature and number
of those independent amplitudes that are required to fully
specify any one of a gauge theory’s n-point Schwinger
functions (Euclidean Green functions). Analyses and
quantisation procedures that violate Poincaré covariance
lead to a rapid proliferation in the number of such func-
tions. For example, the gluon 2-point function (propaga-
tor, Dµν) is completely specified by one scalar function
in the class of linear covariant gauges; but, in the class of
axial gauges, two unconnected functions are required and

Holographic  
Model 
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Model 



we find qτðxÞ ∼ ð1 − xÞ2τ−3, which is precisely the Drell-
Yan inclusive counting rule at x → 1 [63–65], correspond-
ing to the form factor behavior at large Q2 (3).
From Eq. (10), it follows that the conditions (13) are

equivalent to f0ð1Þ ¼ 0 and f00ð1Þ ≠ 0. Since logðxÞ∼
1 − x for x ∼ 1, a simple ansatz for fðxÞ consistent with
(7), (11), and (13) is

fðxÞ ¼ 1

4λ

!
ð1 − xÞ log

"
1

x

#
þ að1 − xÞ2

$
; ð14Þ

with a being a flavor-independent parameter. From (10),

wðxÞ ¼ x1−xe−að1−xÞ
2
; ð15Þ

an expression that incorporates Regge behavior at small x
and inclusive counting rules at large x.
Nucleon GPDs.—The nucleon GPDs are extracted from

nucleon FF data [66–70] choosing specific x and t depend-
ences of the GPDs for each flavor. One then finds the best
fit reproducing the measured FFs and the valence PDFs. In
our analysis of nucleon FFs [56], three free parameters are
required: these are r, interpreted as an SU(6) breaking
effect for the Dirac neutron FF, and γp and γn, which
account for the probabilities of higher Fock components
(meson cloud) and are significant only for the Pauli FFs.
The hadronic scale λ is fixed by the ρ-Regge trajectory [28],
whereas the Pauli FFs are normalized to the experimental
values of the anomalous magnetic moments.
Helicity nonflip distributions: Using the results from [56]

for the Dirac flavor FFs, we write the spin nonflip valence
GPDs Hqðx; tÞ ¼ qðxÞ exp ½tfðxÞ&with

uvðxÞ ¼
"
2 −

r
3

#
qτ¼3ðxÞ þ

r
3
qτ¼4ðxÞ; ð16Þ

dvðxÞ ¼
"
1 −

2r
3

#
qτ¼3ðxÞ þ

2r
3
qτ¼4ðxÞ; ð17Þ

for the u and d PDFs normalized to the valence content of
the proton:

R
1
0 dxuvðxÞ ¼ 2 and

R
1
0 dxdvðxÞ ¼ 1. The PDF

qτðxÞ and the profile function fðxÞ are given by (9) and
(10), and wðxÞ is given by (15). Positivity of the PDFs
implies that r ≤ 3=2, which is smaller than the value r ¼
2.08 found in [56]. We shall use the maximum value
r ¼ 3=2, which does not change significantly our results
in [56].
The PDFs (16) and (17) are evolved to a higher

scale μ with the Dokshitzer-Gribov-Lipatov-Altarelli-
Parisi (DGLAP) equation [71–73] in the M̄S scheme using
the HOPPET toolkit [74]. The initial scale is chosen at the
matching scale between LFHQCD and perturbative QCD
(pQCD) as μ0 ¼ 1.06'0.15 GeV [75] in the M̄S scheme at
next-to-next-to-leading order (NNLO). The strong cou-
pling constant αs at the scale of the Z-boson mass is set to

0.1182 [76], and the heavy quark thresholds are set with
M̄S quark masses as mc¼ 1.28 GeV and mb¼ 4.18 GeV
[76]. The PDFs are evolved to μ2 ¼ 10 GeV2 at NNLO to
compare with the global fits by the MMHT [5], CT [6], and
NNPDF [77] collaborations as shown in Fig. 1. The value
a¼ 0.531' 0.037 is determined from the first moment of
the GPD,

R
1
0 dxxH

q
vðx; t ¼ 0Þ ¼ Aq

vð0Þ from the global data
fits with average values Au

vð0Þ ¼ 0.261' 0.005 and
Ad
vð0Þ ¼ 0.109' 0.005. The model uncertainty (red band)

includes the uncertainties in a and μ0 [78]. We also indicate
the difference between our results and global fits in Fig. 2.
The t dependence of Hq

vðx; tÞ is illustrated in Fig. 3.
Since our PDFs scale as qðxÞ ∼ x−1=2 for small x, the
Kuti-Weisskopf behavior for the nonsinglet structure
functions F2pðxÞ − F2nðxÞ ∼ x½uvðxÞ − dvðxÞ&∼ x1=2 is
satisfied [79,80].
Helicity-flip distributions: The spin-flip GPDsEq

vðx; tÞ ¼
eqvðxÞ exp ½tfðxÞ&follow from the flavor Pauli FFs in [56]
given in terms of twist-4 and twist-6 contributions

eqvðxÞ ¼ χq½ð1 − γqÞqτ¼4ðxÞ þ γqqτ¼6ðxÞ&; ð18Þ

normalized to the flavor anomalous magnetic momentR
1
0 dxeqvðxÞ ¼ χq, with χu ¼ 2χp þ χn¼ 1.673 and
χd ¼ 2χnþ χp ¼ −2.033. The factors γu and γd are

FIG. 1. Comparison for xqðxÞ in the proton from LFHQCD (red
bands) and global fits: MMHT2014 (blue bands) [5], CT14 [6]
(cyan bands), and NNPDF3.0 (gray bands) [77]. LFHQCD
results are evolved from the initial scale μ0 ¼ 1.06'0.15 GeV.

FIG. 2. Difference between our PDF results and global fits.
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The structure of generalized parton distributions is determined from light-front holographic QCD up to a
universal reparametrization function wðxÞ which incorporates Regge behavior at small x and inclusive
counting rules at x → 1. A simple ansatz for wðxÞ that fulfills these physics constraints with a single-
parameter results in precise descriptions of both the nucleon and the pion quark distribution functions in
comparison with global fits. The analytic structure of the amplitudes leads to a connection with the
Veneziano model and hence to a nontrivial connection with Regge theory and the hadron spectrum.
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Introduction.—Generalized parton distributions (GPDs)
[1–3] have emerged as a comprehensive tool to describe the
nucleon structure as probed in hard scattering processes.
GPDs link nucleon form factors (FFs) to longitudinal parton
distributions (PDFs), and their first moment provides the
angular momentum contribution of the nucleon constituents
to its total spin through Ji’s sum rule [2]. The GPDs also
encode information of the three-dimensional spatial structure
of the hadrons: the Fourier transform of the GPDs gives the
transverse spatial distribution of partons in correlation with
their longitudinal momentum fraction x [4].
Since a precise knowledge of PDFs is required for the

analysis and interpretation of the scattering experiments in
the LHC era, considerable efforts have been made to
determine PDFs and their uncertainties by global fitting
collaborations such as MMHT [5], CT [6], NNPDF [7], and
HERAPDF [8]. Lattice QCD calculations are using differ-
ent methods, such as path-integral formulation of the deep-
inelastic scattering hadronic tensor [9–11], the inversion
method [12,13], quasi-PDFs [14–18], pseudo-PDFs
[19,20], and lattice cross sections [21], to obtain the
x dependence of the PDFs. The current status and chal-
lenges for a meaningful comparison of lattice calculations
with the global fits of PDFs can be found in [22].

There has been recent interest in the study of parton
distributions using the framework of light-front holo-
graphic QCD (LFHQCD), an approach to hadron structure
based on the holographic embedding of light-front dynam-
ics in a higher dimensional gravity theory, with the
constraints imposed by the underlying superconformal
algebraic structure [23–29]. This effective semiclassical
approach to relativistic bound-state equations in QCD
captures essential aspects of the confinement dynamics
that are not apparent from the QCD Lagrangian, such as the
emergence of a mass scale λ ¼ κ2, a unique form of the
confinement potential, and a zero mass state in the chiral
limit: the pion and universal Regge trajectories for mesons
and baryons.
Various models of parton distributions based on

LFHQCD [30–51] use as a starting point the analytic form
of GPDs found in Ref. [52]. This simple analytic form
incorporates the correct high-energy counting rules of FFs
[53,54] and the GPD’s t-momentum transfer dependence.
One can also obtain effective light-front wave functions
(LFWFs) [28,55] that are relevant for the computation of
FFs and PDFs, including polarization-dependent distribu-
tions [43,44,47]. LFWFs are also used to study the skew-
ness ξ dependence of the GPDs [41,45,48,50,51] and other
parton distributions such as the Wigner distribution func-
tions [38,43]. The downside of the above phenomenologi-
cal extensions of the holographic model is the large number
of parameters required to describe simultaneously PDFs
and FFs for each flavor.
Motivated by our recent analysis of the nucleon FFs in

LFHQCD [56], we extend here our previous results for
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with ↵ an arbitrary parameter constrained by the conditions s(x) � 0 and s̄(x) � 0. Since the

twist-5 term dominates at large-x we require ↵ � 0 and � � 0. For positive Ns, the positivity

constraints lead to ↵ � Ns. At small-x we have the behavior

lim
x!0

q⌧=5(x)

q⌧=6(x)
=

N⌧=6

N⌧=5
⌘ R, (73)

with N⌧ defined in (40). In the conformal limit, �M
2 = 0, we have R = 8

9 . Incorporating

quark masses, �M
2
� = 1.96�, we have R = 0.80. This small-x behavior leads to the condition

Is � (1 � R)↵ from Eq. (68). Together with ↵ � Ns we have the condition

Ns  ↵  1

1 � R
Is. (74)

Because the ratio q⌧=5(x)/q⌧=6(x) is monotonically increasing, the condition (74) ensures s(x) � 0

and s̄(x) � 0 over the full range of x.
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FIG. 6. The distributions s(x) and s̄(x) correspond to the minimum intrinsic strange probability Is = 0.2Ns

with Ns = 0.047,
p
� = 0.534GeV, and M

2
� = 1.96�. The results with massless quarks are included for

comparison.

The solution which minimizes the strange sea probability corresponds to ↵ = Ns and Is =
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Abstract
We demonstrate that a nonzero strangeness contribution to the spacelike electromagnetic form factor

of the nucleon is evidence for a strange-antistrange asymmetry in the nucleon’s light-front wave function,

thus implying di↵erent nonperturbative contributions to the strange and antistrange quark distribution

functions. A recent lattice QCD calculation of the nucleon strange quark form factor predicts that the

strange quark distribution is more centralized in coordinate space than the antistrange quark distribution,

and thus the strange quark distribution is more spread out in light-front momentum space. We show that

the lattice prediction implies that the di↵erence between the strange and antistrange parton distribution

functions, s(x)� s̄(x), is negative at small-x and positive at large-x. We also evaluate the strange quark form

factor and s(x)� s̄(x) using a baryon-meson fluctuation model and a novel nonperturbative model based on

light-front holographic QCD. This procedure leads to a Veneziano-like expression of the form factor, which

depends exclusively on the twist of the hadron and the properties of the Regge trajectory of the vector

meson which couples to the quark current in the hadron. The holographic structure of the model allows

us to introduce unambiguously quark masses in the form factors and quark distributions preserving the

hard scattering counting rule at large-Q2 and the inclusive counting rule at large-x. Quark masses modify

the Regge intercept which governs the small-x behavior of quark distributions, therefore modifying their

small-x singular behavior. Both nonperturbative approaches provide descriptions of the strange-antistrange

asymmetry and intrinsic strangeness in the nucleon consistent with the lattice QCD result.

⇤ liutb@jlab.org
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�Discovery� 

!  Ridge: Distinct long range correlation in η collimated around ΔΦ≈ 0 
                  for two hadrons in the intermediate 1 < pT, qT < 3 GeV   
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Possible origin of same-side CMS ridge in p p Collisions

Bjorken, Goldhaber, sjbThe key point is that a multi-particle correlation should give a much more conspicuous signal

than the two-particle correlation used so far in the experimental analysis, but of course only

in that small fraction of the events where the prerequisite conditions of coincidence of narrow

strings in the projectile and target are in fact obtained. To be specific, we suggest looking at

the following vector ~V , computing its magnitude for each event. If the number of events with

large magnitude are greater than expected from chance, one would have powerful evidence

for the proposed colliding flux tube mechanism. Define

~V =
NX

i=1

[cos 2�ix̂+ sin 2�iŷ] , (1)

and obtain the distribution of ~V 2. If the particles were distributed randomly in �, then the

expectation value of ~V
2 would be N , where N is the number of particles in the event in

the given region of transverse momentum. The probability of getting a value N
2 may be

estimated by introducing quadrants in the variable 2�: Assume each vector can take only

the values ±x̂ or ±ŷ, with each having a probability 1/4. Suppose the first vector is +x̂.

Then the chance that the remainder would all be in the same direction would be (1/4)N�1.

For N = 5, this would yield a probability 1/256. If, among events in which the ridge was

seen, with more than 110 particles per event, and 5 particles separated from each other by

about one unit in �⌘ in an interval of p? between 1 and 2 GeV/c, as many as 2% of the

events should show ~V
2 ⇡ 25, that could be evidence for the kind of correlation we suggest.

This exercise is equivalent to asking the probability – assuming complete randomness in � –

that all 5 particles are in either of two opposite octants of �. If they were more collimated

than that, the probability would be even smaller.

It is likely that insistence on rapidity separation of emerging particles by one unit is

unnecessary: If there were only short-range correlations, then the value of ~V
2 inevitably

would lie far below its allowed maximum. Thus counting all particles in each event in the

specified range of transverse momentum, regardless of rapidity separation, should give a

reliable measure of the correlation. Technically, ~V is just the square of the usual ellipticity

variable. An advantage of squaring is that maximal ellipticity events are easy to pick out.

Also, it is easier to think about such a scalar variable rather than a vector variable.

At this point let us take a step back to gain perspective on what could cause such

phenomena. Obviously projectile and target must overlap in impact parameter to some

extent. Dynamics, in the form of conservation of momentum or of attraction of outgoing

6
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We suggest that this “ridge”-like correlation may be a 
reflection of the rare events generated by the collision of 
aligned flux tubes connecting the valence quarks in the wave 
functions of the colliding protons. 

The “spray” of particles resulting from the approximate line 
source produced in such inelastic collisions then gives rise to 
events with a strong correlation between particles produced 
over a large range of both positive and negative rapidity. 

Possible multiparticle ridge-like 
correlations in very high multiplicity 
proton-proton collisions

Bjorken, Goldhaber, sjb
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I. INTRODUCTION

High-energy collisions of charged particles such as pp ultra-peripheral collisions (UPC) p1p2 ! p01p
0
2X at LHC

proceed through a collision of photons [1]. The photons are capable of turning into quark-anti-quark pairs. A quark
and an anti-quark in a pair are connected by a string of gluons. The collision picture we have in mind is illustrated in
Fig. 1, where the photons �1 and �2, emitted elastically by protons p1 and p2, produce the pairs of quarks q1q̄1 and

FIG. 1: Elastic emission of virtual photons in the proton-proton ultra-peripheral collision p1p2 ! p10p20X proceeds through a
collision of two gluon strings S1 and S2. The parts of strings that collide with each other produce the final multi-particle state
X.

q2q̄2. The pairs span the gluon strings S1 and S2. The final state X emerges as a result of the collision of strings S1

and S2, analogous to a collision of strings between a quark and a diquark in central collisions of protons [2]. Figure 2
illustrates the kind of estimates made here for string collisions in terms of the multiplicity N(�)/N(0) and elliptic
flow v2(�)/v2(0) in the final state X as functions of the angle � between the planes (p1, p01) and (p2, p02) defined by the
direction of the proton beam and the directions of the two final proton three-momenta ~p 0

1 and ~p 0
2 in laboratory. The

figure shows an example of estimate obtained using Eqs. (6) and (7). Examples like this suggest that the azimuthal
variation of multiplicity and elliptic flow in pp UPC can be used to study properties of gluonic strings in LHC.

Our method for calculating curves of the type shown in Fig. 2 uses Hamiltonian dynamics in quantum field theory
in approximation of very large beam momentum and a geometrical picture for a collision of strings. The strings seen
along the proton beam form certain shapes, see Fig. 3, on the plane transverse to the beam. This plane is called below
the transverse plane (TP). The string shape in the TP corresponds to the string stretched in space along the vector ~r
that extends from the anti-quark to quark in the string rest frame (SRF). When the string moves very fast along the
proton beam, its shape in the TP is seen in the laboratory as built around a two-dimensional vector ~rT that forms
the transverse part of ~r = (rx,~rT ). The component rx corresponds to the beam direction in the frame of reference
that we work with; its x-axis is chosen along the beam. The collision of strings S1 and S2 proceeds via interaction of
partons in the region of overlap of the string shapes on the TP, illustrated in Fig. 4.

Concerning the length and width of gluonic strings or flux tubes, we assume that the typical time needed by a
string to reach its full width is longer than the time of stretching a string by quarks. This is in agreement with
the flux-tube knot model assumption [3, 4] that the relaxation of a topologically non-trivial string configuration to
a tight-knot state configuration is faster than the configuration decay rate. In the same spirit, we assume that the

Ridges correlate with scattering plane of proton!

Collisions of Aligned Flux Tubes produce high multiplicity events 

Brown, Glazek, Goldhaber, sjb
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 DY                 correlation at leading twist from double ISI

the differential cross section is written as

1

!

d!

d"
!
3

4#

1

$"3

#! 1"$ cos2%"& sin2% cos'"
(

2
sin2% cos 2' " .

)1*

These angular dependencies1 can all be generated by pertur-

bative QCD corrections where, for instance, initial quarks

radiate off high energy gluons into the final state. Such a

perturbative QCD calculation at next-to-leading order leads

to $+1,&+0,(+0 at a very small transverse momentum of

the lepton pair. More generally, the Lam-Tung relation 1

$$$2(!0 ,17- is expected to hold at order .s and the

relation is hardly modified by next-to-leading order (.s
2) per-

turbative QCD corrections ,18-. However, this relation is not
satisfied by the experimental data ,13,14-. The Drell-Yan
data show remarkably large values of ( , reaching values of
about 30% at transverse momenta of the lepton pair between

2 and 3 GeV )for Q2!m/*
2 !(4$12 GeV)2 and extracted in

the Collins-Soper frame ,19- to be discussed below*. These
large values of ( are not compatible with $+1 as also seen
in the data.

A number of explanations have been put forward, such as

a higher twist effect ,20,21-, following the ideas of Berger
and Brodsky ,22-. In Ref. ,20- the higher twist effect is mod-
eled using an asymptotic pion distribution amplitude, and it

appears to fall short in explaining the large values of ( .
In Ref. ,18- factorization-breaking correlations between

the incoming quarks are assumed and modeled in order to

account for the large cos 2' dependence. Here the correla-

tions are both in the transverse momentum and the spin of

the quarks. In Ref. ,6- this idea was applied in a factorized
approach ,23- involving the chiral-odd partner of the Sivers
effect, which is the transverse momentum dependent distri-

bution function called h1
! . From this point of view, the large

cos 2' azimuthal dependence can arise at leading order, i.e.

it is unsuppressed, from a product of two such distribution

functions. It offers a natural explanation for the large cos 2'
azimuthal dependence, but at the same time also for the

small cos' dependence, since chiral-odd functions can only

occur in pairs. The function h1
! is a quark helicity-flip matrix

element and must therefore occur accompanied by another

helicity flip. In the unpolarized Drell-Yan process this can

only be a product of two h1
! functions. Since this implies a

change by two units of angular momentum, it does not con-

tribute to a cos' asymmetry. In the present paper we will

discuss this scenario in terms of initial-state interactions,

which can generate a nonzero function h1
! .

We would also like to point out the experimental obser-

vation that the cos 2' dependence as observed by the NA10

Collaboration does not seem to show a strong dependence on

A, i.e. there was no significant difference between the deute-

rium and tungsten targets. Hence, it is unlikely that the asym-

metry originates from nuclear effects, and we shall assume it

to be associated purely with hadronic effects. We refer to

Ref. ,24- for investigations of nuclear enhancements.
We compute the function h1

!(x ,p!
2 ) and the resulting

cos 2' asymmetry explicitly in a quark-scalar diquark model
for the proton with an initial-state gluon interaction. In this

model h1
!(x ,p!

2 ) equals the T-odd )chiral-even*Sivers effect
function f 1T

! (x ,p!
2 ). Hence, assuming the cos 2' asymmetry

of the unpolarized Drell-Yan process does arise from non-

zero, large h1
! , this asymmetry is expected to be closely

related to the single-spin asymmetries in the SIDIS and the

Drell-Yan process, since each of these effects can arise from

the same underlying mechanism.

The Fermilab Tevatron and BNL Relativistic Heavy Ion

Collider )RHIC*should both be able to investigate azimuthal
asymmetries such as the cos 2' dependence. Since polarized
proton beams are available, RHIC will be able to measure

single-spin asymmetries as well. Unfortunately, one might

expect that the cos 2' dependence in pp→!!̄X )measurable
at RHIC* is smaller than for the process #$N→&"&$X ,

since in the former process there are no valence antiquarks

present. In this sense, the cleanest extraction of h1
! would be

from pp̄→!!̄X .

III. CROSS SECTION CALCULATION

In this section we will assume nonzero h1
! and discuss the

calculation of the leading order unpolarized Drell-Yan cross

section )given in Ref. ,6- with slightly different notation*

d!)h1h2→!!̄X*

d"dx1dx2d
2q!

!
.2

3Q2 0
a , ā

ea
2# A)y*F,f 1 f̄ 1-

"B)y*cos)2'*F $)2ĥ•p!ĥ•k!

$p!•k!*
h1

!h̄1
!

M 1M 2
% & . )2*

This is expressed in the so-called Collins-Soper frame ,19-,
for which one chooses the following set of normalized vec-

tors )for details see, e.g. ,25-*:

t̂1q/Q , )3*

ẑ1
x1

Q
P̃1$

x2

Q
P̃2, )4*

ĥ1q! /Q!!)q$x1P1$x2P2*/Q! , )5*

where P̃ i1Pi$q/(2xi), Pi are the momenta of the two in-

coming hadrons and q is the four momentum of the virtual

photon or, equivalently, of the lepton pair. This can be related

to standard Sudakov decompositions of these momenta

1We neglect sin' and sin 2' dependencies, since these are of

higher order in .s ,15,16- and are expected to be small.
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We show that initial-state interactions contribute to the cos 2# distribution in unpolarized Drell-Yan lepton

pair production pp and pp̄→!!!"X , without suppression. The asymmetry is expressed as a product of

chiral-odd distributions h1
!(x1 ,p!

2 )# h̄1
!(x2 ,k!

2 ), where the quark-transversity function h1
!(x ,p!

2 ) is the trans-

verse momentum dependent, light-cone momentum distribution of transversely polarized quarks in an unpo-

larized proton. We compute this !naive" T-odd and chiral-odd distribution function and the resulting cos 2#
asymmetry explicitly in a quark-scalar diquark model for the proton with initial-state gluon interaction. In this

model the function h1
!(x ,p!

2 ) equals the T-odd !chiral-even" Sivers effect function f 1T
! (x ,p!

2 ). This suggests

that the single-spin asymmetries in the semi-inclusive deep inelastic scattering and the Drell-Yan process are

closely related to the cos 2# asymmetry of the unpolarized Drell-Yan process, since all can arise from the same
underlying mechanism. This provides new insight regarding the role of the quark and gluon orbital angular

momentum as well as that of initial- and final-state gluon exchange interactions in hard QCD processes.

DOI: 10.1103/PhysRevD.67.054003 PACS number!s": 12.38.Bx, 13.85.Qk, 13.88.!e

I. INTRODUCTION

Single-spin asymmetries in hadronic reactions have been

among the most challenging phenomena to understand from

basic principles in QCD. Several such asymmetries have

been observed experimentally, and a number of theoretical

mechanisms have been suggested $1–6%. Recently, a new
way of producing single-spin asymmetries in semi-inclusive

deep inelastic scattering !SIDIS" and the Drell-Yan process
has been put forward $7,8%. It was shown that the exchange
of a gluon, viewed as initial- or final-state interactions, could

produce the necessary phase leading to a single transverse

spin asymmetry. The main new feature is that, despite the

presence of an additional gluon, this asymmetry occurs with-

out suppression by a large energy scale appearing in the pro-

cess under consideration. It has been recognized since then

$9%that this mechanism can be viewed as the so-called Sivers
effect $1,10%, which was thought to be forbidden by time-
reversal invariance $4%. Apart from generating Sivers effect

asymmetries, the mechanism offers new insight regarding the
role of orbital angular momentum of quarks in a hadron and

their spin-orbit couplings; in fact, the same S•! L! matrix ele-
ments enter the anomalous magnetic moment of the proton
$7%. The new mechanism for single target-spin asymmetries
in SIDIS necessarily requires noncollinear quarks and glu-
ons, and in the Sivers asymmetry the quarks carry no polar-
ization on average. As such it is very different from mecha-

nisms involving transversity !often denoted by h1 or &q),
which correlates the spin of the transversely polarized hadron
with the transverse polarization of its quarks.
In further contrast, the exchange of a gluon can also lead

to transversity of quarks inside an unpolarized hadron. This
chiral-odd partner of the Sivers effect has been discussed in
Refs. $6,11%, and in this paper we will show explicitly how
initial-state interactions generate this effect. Goldstein and

Gamberg reported recently that h1
!(x ,p!

2 ) is proportional to

f 1T
! (x ,p!

2 ) in the quark-scalar diquark model $12%. We con-
firm this and find that these two distribution functions are in
fact equal in this model. Although this property is not ex-
pected to be satisfied in general, nevertheless, one may ex-
pect these functions to be comparable in magnitude, since
both functions can be generated by the same mechanism. We
investigate the consequences of the present model result for
the unpolarized Drell-Yan process. We obtain an expression
for the cos 2# asymmetry in the lepton pair angular distribu-
tion. Here # is the angle between the lepton plane and the
plane of the incident hadrons in the lepton pair center of
mass. This asymmetry was measured a long time ago $13,14%
and was found to be large. Several theoretical explanations
!some of which will be briefly discussed below" have been
put forward, but we will show that a natural explanation can
come from initial-state interactions which are unsuppressed
by the invariant mass of the lepton pair.

II. THE UNPOLARIZED DRELL-YAN PROCESS

The unpolarized Drell-Yan process cross section has been
measured in pion-nucleon scattering: '"N→(!("X , with
N deuterium or tungsten and a '" beam with energy of 140,
194, 286 GeV $13% and 252 GeV $14%. Conventionally

*Email address: dboer@nat.vu.nl
†Email address: sjbth@slac.stanford.edu
‡Email address: dshwang@sejong.ac.kr
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ANOMALOUS DRELL-YAN ASYMMETRY FROM

HADRONIC OR QCD VACUUM EFFECTS ∗

DANIËL BOER
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Vrije Universiteit Amsterdam,

De Boelelaan 1081, 1081 HV Amsterdam,

The Netherlands
E-mail: D.Boer@few.vu.nl

The anomalously large cos(2φ) asymmetry measured in the Drell-Yan process is
discussed. Possible origins of this large deviation from the Lam-Tung relation are
considered with emphasis on the comparison of two particular proposals: one that
suggests it arises from a QCD vacuum effect and one that suggests it is a hadronic
effect. Experimental signatures distinguishing these effects are discussed.

1. Introduction

Azimuthal asymmetries in the unpolarized Drell-Yan (DY) process differ-
ential cross section arise only in the following way

1

σ

dσ

dΩ
∝

(

1 + λ cos2 θ + µ sin 2θ cosφ +
ν

2
sin2 θ cos 2φ

)

, (1)

where φ is the angle between the lepton and hadron planes in the lepton
center of mass frame (see Fig. 3 of Ref.1). In the parton model (order α0

s)
quark-antiquark annihilation yields λ = 1, µ = ν = 0. The leading order
(LO) perturbative QCD corrections (order α1

s) lead to µ ≠ 0, ν ≠ 0 and
λ ≠ 1, such that the so-called Lam-Tung relation 1 − λ − 2ν = 0 holds.
Beyond LO, small deviations from the Lam-Tung relation will arise. If one
defines the quantity κ ≡ − 1

4 (1 − λ − 2ν) as a measure of the deviation

from the Lam-Tung relation, it has been calculated2,3 that at order α2
s κ

is small and negative: −κ <
∼ 0.01, for values of the muon pair’s transverse

momentum QT of up to 3 GeV/c.
Surprisingly, the data is incompatible with the Lam-Tung relation and

with its small order-α2
s modification as well3. These data from CERN’s

NA10 Collaboration4,5 and Fermilab’s E615 Collaboration6 are for π−N →
µ+µ−X , with N = D and W . The π−-beam energies range from 140 GeV

∗Talk presented at the International Workshop on Transverse Polarization Phenomena
in Hard Processes (Transversity 2005), Villa Olmo, Como, Italy, September 7-10, 2005
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Nachtmann & Mirkes3 demonstrated that the diagonal elements H11 and
H22 can give rise to a deviation from the Lam-Tung relation:

κ ≡ −
1

4
(1 − λ − 2ν) ≈

〈

H22 − H11

1 + H33

〉

. (5)

A simple assumption for the transverse momentum dependence of (H22 −
H11)/(1 + H33) produced a good fit to the data:

κ = κ0
Q4

T

Q4
T + m4

T

, with κ0 = 0.17 and mT = 1.5 GeV. (6)

Note that for this Ansatz κ approaches a constant value (κ0) for large QT .
In other words, the vacuum effect could persist out to large values of QT .
The Q2 dependence of the vacuum effect is not known, but there is also no
reason to assume that the spin correlation due to the QCD vacuum effect
has to decrease with increasing Q2.

3. Explanation as a hadronic effect

Usually if one assumes that factorization of soft and hard energy scales in
a hard scattering process occurs, one implicitly also assumes factorization
of the spin density matrix. In the present section this will indeed be as-
sumed, but another common assumption will be dropped, namely that of
collinear factorization. It will be investigated what happens if one allows for
transverse momentum dependent parton distributions (TMDs). The spin
density matrix of a noncollinear quark inside an unpolarized hadron can
be nontrivial. In other words, the transverse polarization of a noncollinear
quark inside an unpolarized hadron in principle can have a preferred direc-
tion and the TMD describing that situation is called h⊥

1
10. As pointed out

in Ref.1 nonzero h⊥
1 leads to a deviation from Lam-Tung relation. It offers

a parton model explanation of the DY data (i.e. with λ = 1 and µ = 0):
κ = ν

2 ∝ h⊥
1 (π)h⊥

1 (N) . In this way a good fit to data was obtained
by assuming Gaussian transverse momentum dependence. The reason for
this choice of transverse momentum dependence is that in order to be con-
sistent with the factorization of the cross section in terms of TMDs, the
transverse momentum of partons should not introduce another large scale.
Therefore, explaining the Lam-Tung relation within this framework neces-
sarily implies that κ = ν

2 → 0 for large QT . This offers a possible way to
distinguish between the hadronic effect and the QCD vacuum effect.

It may be good to mention that not only a fit of h⊥
1 to data has been

made (under certain assumptions), also several model calculations of h⊥
1

5

and some of its resulting asymmetries have been performed11,12,13, based
on the recent insight that T-odd TMDs like h⊥

1 arise from the gauge link.
In order to see the parton model expectation κ = ν

2 → 0 at large QT in
the data, one has to keep in mind that the pQCD contributions (that grow
as QT increases) will have to be subtracted. For κ perturbative corrections
arise at order α2

s, but for ν already at order αs. To be specific, at large QT

hard gluon radiation (to first order in αs) gives rise to14

ν(QT ) =
Q2

T

Q2 + 3
2Q2

T

. (7)

Due to this growing large-QT perturbative contribution the fall-off of the
h⊥

1 contribution will not be visible directly from the behavior of ν at large
QT . Therefore, in order to use ν as function of QT to differentiate between
effects, it is necessary to subtract the calculable pQCD contributions. In
Fig. 3 an illustration of this point is given. The dashed curve corresponds

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 1 2 3 4 5 6 7 8
QT

Figure 3. Impression of possible contributions to ν as function of QT compared to DY
data of NA10 (for Q = 8 GeV). Dashed curve: contribution from perturbative one-gluon
radiation. Dotted curve: contribution from a nonzero h⊥

1 . Solid curve: their sum.

to the contribution of Eq. (7) at Q = 8 GeV. The dotted line is a pos-
sible, parton model level, contribution from h⊥

1 with Gaussian transverse
momentum dependence. Together these contributions yield the solid curve
(although strictly speaking it is not the case that one can simply add them,
since one is a noncollinear parton model contribution expected to be valid
for small QT and the other is an order-αs result within collinear factor-
ization expected to be valid at large QT ). The data are from the NA10
Collaboration for a pion beam energy of 194 GeV/c 5.

The Q2 dependence of the h⊥
1 contribution is not known to date. Only

the effect of resummation of soft gluon radiation on the h⊥
1 contribution to

function. Here we do not intend to give a full demonstration

of this in the Drell-Yan process; a generalized factorization

theorem which includes transverse momentum dependent

functions and initial- or final-state interactions remains to be

proven !27". Instead we present how to arrive at an effective
# from initial- and/or final-state interactions and use this

effective # in Fig. 2. Also, for simplicity we will perform

the explicit calculation in QED. Our analysis can be gener-

alized to the corresponding calculation in QCD. The final-

state interaction from gluon exchange has the strength

!e1e2!/4$→CF%s(&
2), where ei are the photon couplings to

the quark and diquark.

The diagram in Fig. 3 coincides with Fig. 6'a(of Ref. !28"
used for the evaluation of a twist-4 contribution ()1/Q2) to

the unpolarized Drell-Yan cross section. The differences

compared to Ref. !28" are that in the present case there is
nonzero transverse momentum of the partons, and the as-

sumption that the matrix elements are nonvanishing in case

the gluon has a vanishing light-cone momentum fraction 'but
nonzero transverse momentum(. This results in an unsup-
pressed asymmetry which is a function of the transverse mo-

mentum Q! of the lepton pair with respect to the initial

hadrons. If this transverse momentum is integrated over, then

the unsuppressed asymmetry will average to zero and the

diagrams will only contribute at order 1/Q2 as in Ref. !28".

First we will calculate the # matrix to lowest order

'called #L
%*) in the quark-scalar diquark model which was

used in Ref. !7". 'Although the model is based on a point-like
coupling of a scalar diquark to elementary fermions, it can be

softened to simulate a hadronic bound state by differentiating

the wave function formally with respect to a parameter such

as the proton mass.(As indicated earlier, no nonzero f 1T
! and

h1
! will arise from #L

%* . Next we will include an additional

gluon exchange to model the initial- and/or final-state inter-

actions 'relevant for timelike or spacelike processes(to cal-
culate # I/F

%* and do obtain nonzero values for f 1T
! and h1

! .

Our results agree with those recently obtained in the same

model by Goldstein and Gamberg !12". We can then obtain
an expression for the cos 2+ asymmetry from Eq. '16(and
perform a numerical estimation of the asymmetry.

A. ! matrix in the lowest order „!
L

"#…
As indicated in Fig. 4 the initial proton has its momentum

given by P&!(P",P#,P!)!(P
",M 2/P" ,0!), and the fi-

nal diquark P!&!(P!",P!#,P!! )!„P"(1#,),(-2

"r!
2 )/P"(1#,),r!…. We use the convention a$!a0$a3,

a•b!1/2 (a"b#"a#b")#a!•b! .
We will first calculate the # matrix to lowest order (#L

%*)

in the quark-scalar diquark model used in Ref. !7". By cal-
culation of Fig. 4 one readily obtains

#L
%*!ag2" ū'P ,S(

r”"m

r2#m2#*" r”"m

r2#m2
u'P ,S(#%

1

P"'1#,(

!ag2! ū'P ,S('r”"m("*!'r”"m(u'P ,S("%
1

P"'1#,(

%$ 1

,$M 2#
m2"r!

2

,
#

-2"r!
2

1#, % % 2

, '17(

with a constant a!1/!2(2$)3" . The normalization is fixed
by the condition

& d,d2r! f 1', ,r!(!1. '18(

In Eq. '17(we used the relation

FIG. 2. The leading-order contribution to the Drell-Yan process.

FIG. 3. The initial-state interaction contribution to the Drell-Yan

process.

FIG. 4. Diagram which gives the lowest order # 'called #L
%*).
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Double Initial-State Interactions  
generate anomalous  

the differential cross section is written as

1

!

d!

d"
!
3

4#

1

$"3

#! 1"$ cos2%"& sin2% cos'"
(

2
sin2% cos 2' " .

)1*

These angular dependencies1 can all be generated by pertur-

bative QCD corrections where, for instance, initial quarks

radiate off high energy gluons into the final state. Such a

perturbative QCD calculation at next-to-leading order leads

to $+1,&+0,(+0 at a very small transverse momentum of

the lepton pair. More generally, the Lam-Tung relation 1

$$$2(!0 ,17- is expected to hold at order .s and the

relation is hardly modified by next-to-leading order (.s
2) per-

turbative QCD corrections ,18-. However, this relation is not
satisfied by the experimental data ,13,14-. The Drell-Yan
data show remarkably large values of ( , reaching values of
about 30% at transverse momenta of the lepton pair between

2 and 3 GeV )for Q2!m/*
2 !(4$12 GeV)2 and extracted in

the Collins-Soper frame ,19- to be discussed below*. These
large values of ( are not compatible with $+1 as also seen
in the data.

A number of explanations have been put forward, such as

a higher twist effect ,20,21-, following the ideas of Berger
and Brodsky ,22-. In Ref. ,20- the higher twist effect is mod-
eled using an asymptotic pion distribution amplitude, and it

appears to fall short in explaining the large values of ( .
In Ref. ,18- factorization-breaking correlations between

the incoming quarks are assumed and modeled in order to

account for the large cos 2' dependence. Here the correla-

tions are both in the transverse momentum and the spin of

the quarks. In Ref. ,6- this idea was applied in a factorized
approach ,23- involving the chiral-odd partner of the Sivers
effect, which is the transverse momentum dependent distri-

bution function called h1
! . From this point of view, the large

cos 2' azimuthal dependence can arise at leading order, i.e.

it is unsuppressed, from a product of two such distribution

functions. It offers a natural explanation for the large cos 2'
azimuthal dependence, but at the same time also for the

small cos' dependence, since chiral-odd functions can only

occur in pairs. The function h1
! is a quark helicity-flip matrix

element and must therefore occur accompanied by another

helicity flip. In the unpolarized Drell-Yan process this can

only be a product of two h1
! functions. Since this implies a

change by two units of angular momentum, it does not con-

tribute to a cos' asymmetry. In the present paper we will

discuss this scenario in terms of initial-state interactions,

which can generate a nonzero function h1
! .

We would also like to point out the experimental obser-

vation that the cos 2' dependence as observed by the NA10

Collaboration does not seem to show a strong dependence on

A, i.e. there was no significant difference between the deute-

rium and tungsten targets. Hence, it is unlikely that the asym-

metry originates from nuclear effects, and we shall assume it

to be associated purely with hadronic effects. We refer to

Ref. ,24- for investigations of nuclear enhancements.
We compute the function h1

!(x ,p!
2 ) and the resulting

cos 2' asymmetry explicitly in a quark-scalar diquark model
for the proton with an initial-state gluon interaction. In this

model h1
!(x ,p!

2 ) equals the T-odd )chiral-even*Sivers effect
function f 1T

! (x ,p!
2 ). Hence, assuming the cos 2' asymmetry

of the unpolarized Drell-Yan process does arise from non-

zero, large h1
! , this asymmetry is expected to be closely

related to the single-spin asymmetries in the SIDIS and the

Drell-Yan process, since each of these effects can arise from

the same underlying mechanism.

The Fermilab Tevatron and BNL Relativistic Heavy Ion

Collider )RHIC*should both be able to investigate azimuthal
asymmetries such as the cos 2' dependence. Since polarized
proton beams are available, RHIC will be able to measure

single-spin asymmetries as well. Unfortunately, one might

expect that the cos 2' dependence in pp→!!̄X )measurable
at RHIC* is smaller than for the process #$N→&"&$X ,

since in the former process there are no valence antiquarks

present. In this sense, the cleanest extraction of h1
! would be

from pp̄→!!̄X .

III. CROSS SECTION CALCULATION

In this section we will assume nonzero h1
! and discuss the

calculation of the leading order unpolarized Drell-Yan cross

section )given in Ref. ,6- with slightly different notation*

d!)h1h2→!!̄X*

d"dx1dx2d
2q!

!
.2

3Q2 0
a , ā

ea
2# A)y*F,f 1 f̄ 1-

"B)y*cos)2'*F $)2ĥ•p!ĥ•k!

$p!•k!*
h1

!h̄1
!

M 1M 2
% & . )2*

This is expressed in the so-called Collins-Soper frame ,19-,
for which one chooses the following set of normalized vec-

tors )for details see, e.g. ,25-*:

t̂1q/Q , )3*

ẑ1
x1

Q
P̃1$

x2

Q
P̃2, )4*

ĥ1q! /Q!!)q$x1P1$x2P2*/Q! , )5*

where P̃ i1Pi$q/(2xi), Pi are the momenta of the two in-

coming hadrons and q is the four momentum of the virtual

photon or, equivalently, of the lepton pair. This can be related

to standard Sudakov decompositions of these momenta

1We neglect sin' and sin 2' dependencies, since these are of

higher order in .s ,15,16- and are expected to be small.
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Drell-Yan planar correlations 

Double ISI

Hard gluon radiation

⇥(QT )

Q = 8GeV

Conformal behavior: Q4F1(Q2)⇥ const

Conformal behavior: Q2F⇤(Q2)⇥ const

�s(Q2) ⇤ constant at small Q2.

Q4F1(Q2) ⇤ constant

If �s(Q�2) ⇤ constant

⇥(QT )

Q = 8GeV

Conformal behavior: Q4F1(Q2)⇥ const

Conformal behavior: Q2F⇤(Q2)⇥ const

�s(Q2) ⇤ constant at small Q2.

Q4F1(Q2) ⇤ constant

If �s(Q�2) ⇤ constant

⇤(QT )

Q = 8GeV

⌅N ⇥ µ+µ�X NA10

Conformal behavior: Q4F1(Q2)⇥ const

Conformal behavior: Q2F⌅(Q2)⇥ const

�s(Q2) ⇤ constant at small Q2.

Q4F1(Q2) ⇤ constant

Violates Lam-Tung relation!
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ANOMALOUS DRELL-YAN ASYMMETRY FROM

HADRONIC OR QCD VACUUM EFFECTS ∗

DANIËL BOER

Dept. of Physics and Astronomy,
Vrije Universiteit Amsterdam,

De Boelelaan 1081, 1081 HV Amsterdam,

The Netherlands
E-mail: D.Boer@few.vu.nl

The anomalously large cos(2φ) asymmetry measured in the Drell-Yan process is
discussed. Possible origins of this large deviation from the Lam-Tung relation are
considered with emphasis on the comparison of two particular proposals: one that
suggests it arises from a QCD vacuum effect and one that suggests it is a hadronic
effect. Experimental signatures distinguishing these effects are discussed.

1. Introduction

Azimuthal asymmetries in the unpolarized Drell-Yan (DY) process differ-
ential cross section arise only in the following way

1

σ

dσ

dΩ
∝

(

1 + λ cos2 θ + µ sin 2θ cosφ +
ν

2
sin2 θ cos 2φ

)

, (1)

where φ is the angle between the lepton and hadron planes in the lepton
center of mass frame (see Fig. 3 of Ref.1). In the parton model (order α0

s)
quark-antiquark annihilation yields λ = 1, µ = ν = 0. The leading order
(LO) perturbative QCD corrections (order α1

s) lead to µ ≠ 0, ν ≠ 0 and
λ ≠ 1, such that the so-called Lam-Tung relation 1 − λ − 2ν = 0 holds.
Beyond LO, small deviations from the Lam-Tung relation will arise. If one
defines the quantity κ ≡ − 1

4 (1 − λ − 2ν) as a measure of the deviation

from the Lam-Tung relation, it has been calculated2,3 that at order α2
s κ

is small and negative: −κ <
∼ 0.01, for values of the muon pair’s transverse

momentum QT of up to 3 GeV/c.
Surprisingly, the data is incompatible with the Lam-Tung relation and

with its small order-α2
s modification as well3. These data from CERN’s

NA10 Collaboration4,5 and Fermilab’s E615 Collaboration6 are for π−N →
µ+µ−X , with N = D and W . The π−-beam energies range from 140 GeV

∗Talk presented at the International Workshop on Transverse Polarization Phenomena
in Hard Processes (Transversity 2005), Villa Olmo, Como, Italy, September 7-10, 2005

1

PQCD Factorization (Lam Tung):

Model: Boer,
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Problem for factorization when both ISI and FSI occur

g

See also: Collins and Qiu



Figure 1: Nuclear correction factor R according to Eq. 1
for the differential cross section d2σ/dx dQ2 in charged
current neutrino-Fe scattering at Q2 = 5 GeV2. Results
are shown for the charged current neutrino (solid lines)
and anti-neutrino (dashed lines) scattering from iron.
The upper (lower) pair of curves shows the result of our
analysis with the Base-2 (Base-1) free-proton PDFs.

Figure 2: Predictions (solid and dashed line) for the
structure function ratio F F e

2 /F D
2 using the iron PDFs

extracted from fits to NuTeV neutrino and anti-neutrino
data. The SLAC/NMC parameterization is shown with
the dot-dashed line. The structure function F D

2 in the
denominator has been computed using either the Base-2
(solid line) or the Base-1 (dashed line) PDFs.

(significant) dependence on the energy scale Q, the atomic number A, or the specific observable.
The increasing precision of both the experimental data and the extracted PDFs demand that the
applied nuclear correction factors be equally precise as these contributions play a crucial role in
determining the PDFs. In this study we reexamine the source and size of the nuclear corrections
that enter the PDF global analysis, and quantify the associated uncertainty. Additionally, we
provide the foundation for including the nuclear correction factors as a dynamic component of
the global analysis so that the full correlations between the heavy and light target data can be
exploited.

A recent study 1 analyzed the impact of new data sets from the NuTeV 3, Chorus, and E-
866 Collaborations on the PDFs. This study found that the NuTeV data set (together with the
model used for the nuclear corrections) pulled against several of the other data sets, notably the
E-866, BCDMS and NMC sets. Reducing the nuclear corrections at large values of x reduced
the severity of this pull and resulted in improved χ2 values. These results suggest on a purely
phenomenological level that the appropriate nuclear corrections for ν-DIS may well be smaller
than assumed.

To investigate this question further, we use the high-statistics ν-DIS experiments to perform
a dedicated PDF fit to neutrino–iron data.2 Our methodology for this fit is parallel to that of
the previous global analysis,1 but with the difference we use only Fe data and that no nuclear
corrections are applied to the analyzed data; hence, the resulting PDFs are for a bound proton
in an iron nucleus. Specifically, we determine iron PDFs using the recent NuTeV differential
neutrino (1371 data points) and anti-neutrino (1146 data points) DIS cross section data,3 and
we include NuTeV/CCFR dimuon data (174 points) which are sensitive to the strange quark
content of the nucleon. We impose kinematic cuts of Q2 > 2 GeV and W > 3.5 GeV, and obtain
a good fit with a χ2 of 1.35 per data point.2

2 Nuclear Correction Factors

We now compare our iron PDFs with the free-proton PDFs (appropriately scaled) to infer the
proper heavy target correction which should be applied to relate these quantities. Within the

Extrapolations from  NuTeV

electron scattering data

Q2 = 5 GeV2

Scheinbein, Yu, Keppel, Morfin, Olness, Owens

No anti-shadowing in deep inelastic neutrino scattering !

Non-Universal -- Quark Specific?
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Ninterior

Two-Step Process in the  q+=0 Parton Model Frame

Front-Face Nucleon remains intact

q+ = 0

Q2 q2
? = Q2 = �q2

Illustrates the LF time sequence

Nfront�face
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q+ = 0 q2
? = Q2 = �q2

A-1

One-Step / Two-Step Interference

Front-Face Nucleon N1 not struckFront-Face Nucleon N1 struck

�⇤

Q2
�⇤

Study Double Virtual Compton Scattering �⇤A! �⇤A

Illustrates the
LF time sequence

Cannot reduce to real phase matrix element of local 
operator!  No Sum Rules!

N1
N2 N2

N1

A

Q2

OPE matrix elements & LFWFs are real for stable hadrons, nuclei

No OPE!!

DVCS: Complex phase



Shadowing and Antishadowing in Lepton-Nucleus Scattering

• Shadowing: Destructive Interference
of Two-Step and One-Step Processes
Pomeron Exchange

• Antishadowing: Constructive Interference
of Two-Step and One-Step Processes!
Reggeon and Odderon Exchange

• Antishadowing is Not Universal!
Electromagnetic and weak currents:
di�erent nuclear e�ects !
Potentially significant for NuTeV Anomaly}

Jian-Jun Yang 
Ivan Schmidt
Hung Jung Lu

sjb

Crucial  JLAB & EIC Tests





We present a high-quality description of the deuteron electromagnetic 
form factors in a soft-wall AdS/QCD approach. We first propose an 

effective action describing the dynamics of the deuteron in the presence 
of an external vector field. Based on this action the deuteron 

electromagnetic form factors are calculated, displaying the correct 1/Q10 

power scaling for large Q2 values. This finding is consistent with quark 
counting rules and the earlier observation that this result holds in 

confining gauge/gravity duals. The Q2 dependence of the deuteron form 
factors is defined by a single and universal scale parameter κ, which is 

fixed from data.

Thomas Gutsche, Valery E. Lyubovitskij, Ivan Schmidt, Alfredo Vega

Nuclear physics in soft-wall AdS/QCD: Deuteron 
electromagnetic form factors

arXiv:1501.02738 [hep-ph]



 Stan Brodsky Physics on the Light-Front
 Quark Confinement and Novel QCD 

Phenomena

The Mexican School 
of Particles and Fields 

2018 Sonora School 
of High Energy Physics

Underlying Principles

• Poincarè Invariance: Independent of the observer’s Lorentz 
frame:  Quantization at Fixed Light-Front Time τ 

• Causality: Information within causal horizon:  Light-Front 

• Light-Front Holography: AdS5 = LF (3+1) 

• Introduce Mass Scale κ while retaining the Conformal 
Invariance of the Action (dAFF) 

• Unique Dilaton in AdS5:   

• Unique color-confining LF Potential 

• Superconformal Algebra:  Mass Degenerate 4-Plet:

U(⇣2) = 4⇣2

e+2z2

Meson qq̄ $ Baryon q[qq] $ Tetraquark [qq][q̄q̄]

z $ ⇣ where ⇣2 = b2?x(1� x)
Exploring QCD, Cambridge, August 20-24, 2007 Page 9



 Stan Brodsky Physics on the Light-Front
 Quark Confinement and Novel QCD 

Phenomena

The Mexican School 
of Particles and Fields 

2018 Sonora School 
of High Energy Physics

Features of LF Holographic QCD
• Color Confinement, Analytic form of confinement potential 

• Massless pion bound state in chiral limit 

• QCD coupling at all scales 

• Connection of perturbative and nonperturbative mass scales 

• Poincare’ Invariant 

•Hadron Spectroscopy-Regge Trajectories with universal slopes in n, L 

•Supersymmetric 4-Plet:  Meson-Baryon  Tetraquark Symmetry 

•Light-Front Wavefunctions 

•Form Factors, Structure Functions, Hadronic Observables 

•OPE: Constituent Counting Rules 

•Hadronization at the Amplitude Level 

•Analytic First Approximation to QCD 

•Systematically improvable:  Basis LF Quantization (BLFQ)

Many phenomenological tests
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 Stan Brodsky Physics on the Light-Front
 Quark Confinement and Novel QCD 

Phenomena

The Mexican School 
of Particles and Fields 

2018 Sonora School 
of High Energy Physics

Invariance Principles of Quantum Field Theory

• Polncarè Invariance:  Physical predictions must be 
independent of the observer’s Lorentz frame:  Front Form 

• Causality: Information within causal horizon:  Front Form 

• Gauge Invariance: Physical predictions of gauge theories 
must be independent of the choice of gauge 

• Scheme-Independence: Physical predictions of 
renormalizable theories must be independent of the 
choice of the renormalization scheme —               
Principle of Maximum Conformality (PMC) 

• Mass-Scale Invariance:                                     
Conformal Invariance of the Action (DAFF) 

https://indico.cern.ch/event/628450/
https://indico.cern.ch/event/628450/


The Renormalization Scale Ambiguity for Top-Pair Production 
Eliminated Using the ‘Principle of Maximum Conformality’ (PMC)

Xing-Gang Wu  
 SJB

Conventional guess for renormalization scale and range

Measured 
asymmetry

PMC Prediction

Top quark forward-backward asymmetry predicted by pQCD NNLO 
within 1 σ of CDF/D0 measurements using PMC/BLM scale setting 

BLM/PMC:  Scheme-Independent, same as Gell-Mann-Low in pQED

Conventional Prediction



Extending the Predictive Power of Perturbative QCD

Bo-Lun Du,⇤ Xing-Gang Wu,† and Jian-Ming Shen‡

Department of Physics, Chongqing University, Chongqing 401331, P.R. China

Stanley J. Brodsky§

SLAC National Accelerator Laboratory, Stanford University, Stanford, California 94039, USA

The predictive power of perturbative QCD (pQCD) depends on two important issues: (1) how

to eliminate the renormalization scheme-and-scale ambiguities at fixed order, and (2) how to reli-

ably estimate the contributions of unknown higher-order terms using information from the known

pQCD series. The Principle of Maximum Conformality (PMC) satisfies all of the principles of the

renormalization group and eliminates the scheme-and-scale ambiguities by the recursive use of the

renormalization group equation to determine the scale of the QCD running coupling ↵s at each or-

der. Moreover, the resulting PMC predictions are independent of the choice of the renormalization

scheme, satisfying the key principle of renormalization group invariance. In this letter, we show that

by using the conformal series derived using the PMC single-scale procedure, in combination with

the Padé Approximation Approach (PAA), one can achieve quantitatively useful estimates for the

unknown higher-order terms from the known perturbative series. We illustrate this procedure for

three hadronic observables Re+e� , R⌧ , and �(H ! bb̄) which are each known to 4 loops in pQCD.

We show that if the PMC prediction for the conformal series for an observable (of leading order ↵
p

s)

has been determined at order ↵
n

s , then the [N/M ] = [0/n � p] Padé series provides quantitatively

useful predictions for the higher-order terms. We also show that the PMC + PAA predictions agree

at all orders with the fundamental, scheme-independent Generalized Crewther relations which con-

nect observables, such as deep inelastic neutrino-nucleon scattering, to hadronic e
+
e
�

annihilation.

Thus, by using the combination of the PMC series and the Padé method, the predictive power of

pQCD theory can be greatly improved.

PACS numbers: 12.38.Bx, 11.15.Bt, 12.38.Aw, 11.10.Gh

Quantum chromodynamics (QCD) is believed to be
the fundamental field theory of the hadronic strong in-
teractions. Due to asymptotic freedom [? ? ], the QCD
running coupling becomes numerically small at short dis-
tances, allowing perturbative calculations of observables
for physical processes at large momentum transfer. The
fundamental principle of renormalization group invari-
ance requires that the prediction for a physical observ-
able must be independent of both the choice of renormal-
ization scheme and the choice of initial renormalization
scale. However, due to the mismatch of the QCD running
coupling (↵s) and the pQCD coe�cients at each order,
a truncated pQCD series will not automatically satisfy
this requirement, leading to well-known ambiguities. The
predictive power of pQCD theory thus depends heavily
on how to eliminate both the renormalization scheme-
and-scale ambiguities and how to predict contributions
from unknown higher-order terms.

It has become conventional to choose the renormaliza-
tion scale µr as the typical momentum flow of the process.
The resulting prediction at any fixed order will then in-
evitably also depend on the choice of the renormalization
scheme. The hope is to achieve a nearly scheme-and-

⇤Electronic address: dblcqu@cqu.edu.cn
†Electronic address: wuxg@cqu.edu.cn
‡Electronic address: cqusjm@cqu.edu.cn
§Electronic address: sjbth@slac.stanford.edu

scale independent prediction by systematically comput-
ing higher-and-higher order QCD corrections; however,
this hope is in direct conflict with the presence of the
divergent n!↵n

s
�
n

0 “renormalon” series [? ]. It is also of-
ten argued that by varying the renormalization scale, one
will obtain information on the uncalculated higher-order
terms. However, the variation of the renormalization
scale can only provide information on the �-dependent
terms which control the running of ↵s; the variation of
µr gives no information on the contribution to the ob-
servable coming from the �-independent terms. We will
refer to the �-independent contributions as “conformal”
terms – since they match the contributions of a corre-
sponding conformal theory with � = 0.
Obviously, the naive procedure of guessing and vary-

ing the renormalization scale can lead to a misleading
pQCD prediction, especially if the conformal terms in
the higher-order series are more important than the �-
dependent terms. For example, the large K-factors for
certain processes are caused by large conformal contribu-
tions, as observed in the recent analysis of the ��

⇤ ! ⌘c

transition form factor [? ]. Even if a nearly scale-
independent prediction is attained for a global quantity
such as a total cross-section or a total decay width, the
scale independence could be due to accidental cancella-
tions among di↵erent orders, even though the scale de-
pendence at each order could be very large. Worse, even
if a prediction with a guessed scale agrees with the data,
one cannot explain why it is reliable prediction, thus
greatly depressing the predictive power of pQCD.

Extending the Predictive Power of pCAD

BL-Dun, X-G. Wu, J.M, Shen, sjb
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Example of Multiple BLM/PMC Scales

 Angular distributions of massive quarks close to threshold.

Hoang, Kuhn, Teubner, sjb

 QCD coupling at small scales at low relative 
velocity v

F1 + F2 =
⇥
1� 2

↵s(se3/4/4)
⇡

⇤
⇥

⇥
1 +

⇡↵s(sv2)
4v

⇤



Electron-Electron Scattering in QED

t u

This is very important!

This is very important!

This is very important!

This is very important!

↵(t) = ↵(0)
1�⇧(t)

↵(t) = ↵(t0)
1�⇧(t,t0)

Gell-Mann--Low Effective Charge
• Dressed Photon Propagator sums all β (vacuum polarization) contributions, 

proper and improper 

⇧(t, t0) =
⇧(t)�⇧(to)

1�⇧(t0)↵(t) =
↵(t0)

1�⇧(t, t0)
• Initial Scale Choice t0 is Arbitrary! 

• Any renormalization scheme can be used ↵(t)! ↵MS(e�
5
3 t)



9th Summer School in Theoretical Physics, Chongqing, Matin Mojaza

The Running Coupling in QED 

- Vertex- and wavefunction renormalization cancel exactly in QED due to the 
Ward-Takahashi identity - the running coupling is physical!

- Independent of the initial renormalization scale

- Obeys renormalization group properties;
renormalization scheme- and scale-invariance, transitivity, etc...

- The argument of the running coupling is the ‘final scale’ that resums all non-
conformal terms; a function of scheme and renormalization scale

{ci}

a(τ, {ci})

τ

A

B

C

D

E F

- Resummed perturbative QED = dressed 
skeleton expansion; 

- the perturbative coefficients are those of the 
would-be conformal theory

- Let’s give this lesson a name so we don’t forget:
The Principal of Maximum Conformality

S.J. Brodsky, X.-G. Wu; Phys.Rev. D86 (2012) 054018, [arxiv:1208.0700]

PHYSICAL REVIEW D VOLUME 28, NUMBER 1 1 JULY 1983

On the elimination of scale ambiguities in perturbative quantum chromodynamics

Stanley J. Brodsky
Institute for Advanced Study, Princeton, New Jersey 08540

and Stanford Linear Accelerator Center, Stanford Unioersity, Stanford, California 94305*

G. Peter Lepage
Institute for Aduanced Study, Princeton, New Jersey 08540

and Laboratory ofNuclear Studies, Cornell Unioersity, Ithaca, New York I4853*

Paul B.Mackenzie
Fermilab, Batavia, Illinois 6D51D
(Received 23 November 1982)

We present a new method for resolving the scheme-scale ambiguity that has plagued perturbative
analyses in quantum chromodynamics (QCD) and other gauge theories. For aphelian theories the
method reduces to the standard criterion that only vacuum-polarization insertions contribute to the
effective coupling constant. Given a scheme, our procedure automatically determines the coupling-
constant scale appropriate to a particular process. This leads to a new criterion for the convergence
of perturbative expansions in QCD. We examine a number of well known reactions in QCD, and
find that perturbation theory converges well for all processes other than the gluonic width of the Y.
Our analysis calls into question recent determinations of the QCD coupling constant based upon Y
decay.

I. INTRODUCTION the for orthopositronium is much

Physics Letters B 279 (1992) 352-358 
North-Holland PHYSICS LETTERS B 

On some possible extensions 
of the Brodsky-Lepage-Mackenzie approach 
beyond the next-to-leading order 
G. Grunberg  
Centre de Physique Theorique, Ecole Polytechnique, F-91128 Palaiseau, France 

and 

A.L. Kataev 1 
Randall Laboratory of Physics, University of Michigan. Ann Arbor, M148109-1120, USA 

Received 20 May 1991; revised manuscript received 20 January 1992 

Noting that the choice of  renormalization point advocated by Brodsky, Lepage and Mackenzie ( BLM ) is the flavor independent 
prescription which removes all f-dependence from the next-to-leading order coefficients, we consider the possible generalization 
which requires all higher order coefficients ri to be f-independent constants r,*. We point out that in QCD, setting ri= r,* is always 
possible, but leaves us with an ambiguous prescription. We consider an alternative possibility within the framework of  the BLM 
approach and apply the corresponding prescription to the next-to-next-to-leading approximation of trtot(e+e - ~hadrons)  in QCD. 
The analogous questions and the special features of the BLM and effective charge approaches in QED are also discussed. 

PHYSICAL REVIEW D VOLUME 51, NUMBER 7 1 APRIL 1995

Commensurate scale relations in quantum chromodynamics

Stanley J. Brodsky
Stanford Linear Accelerator Center, Stanford University, Stanford, California 9)909

Hung Jung Lu*
Department of Physics, University of Maryland, College Park, Maryland 20742

(Received 4 May 1994)

We use the BLM method to relate perturbatively calculable observables in +CD, including the
annihilation ratio R +, , the heavy quark potential, and radiative corrections to structure function
sum rules. The commensurate scale relations connecting the effective charges for observables A and
B have the forin cry(Qq) = nor(Qg) (1+regis —P + ), where the coefficient rqg~ is independent
of the number of ffavors f contributing to coupling constant renormalization. The ratio of scales
Qz/Qir is unique at leading order and guarantees that the observables A and B pass through new
quark thresholds at the same physical scale. We also show that the commensurate scales satisfy the
renormalization group transitivity rule which ensures that predictions in PQCD are independent of
the choice of an intermediate renormalization scheme C. In particular, scale-Axed predictions can
be made without reference to theoretically constructed renormalization schemes such as MS. +CD
can thus be tested in a new and precise way by checking that the observables track both in their
relative normalization and in their commensurate scale dependence. The generalization of the BLM
procedure to higher order assigns a different renormalization scale for each order in the perturbative
series. The scales are determined by a systematic resummation of running coupling constant effects.
The application of this procedure to relate known physical observables in +CD gives rather simple
results. In particular, we find that up to light-by-light-type corrections all terms involving (s,
and m in the relation between the annihilation ratio R + and the Bjorken sum rule for polarized
electroproduction are automatically absorbed into the renormalization scales. The final series has

Scale setting using the extended renormalization group and the principle of maximum
conformality: The QCD coupling constant at four loops

Stanley J. Brodsky1,* and Xing-Gang Wu1,2,†

1SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
2Department of Physics, Chongqing University, Chongqing 401331, China

(Received 30 November 2011; published 22 February 2012)

A key problem in making precise perturbative QCD predictions is to set the proper renormalization

scale of the running coupling. The extended renormalization group equations, which express the

invariance of the physical observables under both the renormalization scale- and scheme-parameter

transformations, provide a convenient way for estimating the scale- and scheme-dependence of the

physical process. In this paper, we present a solution for the scale equation of the extended renormal-

ization group equations at the four-loop level. Using the principle of maximum conformality (PMC)/

Brodsky-Lepage-Mackenzie (BLM) scale-setting method, all nonconformal f!ig terms in the perturbative

expansion series can be summed into the running coupling, and the resulting scale-fixed predictions are

independent of the renormalization scheme. The PMC/BLM scales can be fixed order-by-order. As a

useful reference, we present a systematic and scheme-independent procedure for setting PMC/BLM scales

up to next-to-next-to-leading order. An explicit application for determining the scale setting of Reþe"ðQÞ
up to four loops is presented. By using the world average "MS

s ðMZÞ ¼ 0:1184 & 0:0007, we obtain the

asymptotic scale for the ’t Hooft scheme associated with the MS scheme, !0tH
MS

¼ 245þ9
"10 MeV, and the

asymptotic scale for the conventional MS scheme, !MS ¼ 213þ19
"8 MeV.

DOI: 10.1103/PhysRevD.85.034038 PACS numbers: 12.38.Aw, 11.10.Gh, 11.15.Bt

PHYSICAL REVIEW D 85, 034038 (2012)

Progress in Particle and Nuclear Physics 72 (2013) 44–98
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Review

The renormalization scale-setting problem in QCD
Xing-Gang Wua,⇤, Stanley J. Brodskyb, Matin Mojazab,c

a Department of Physics, Chongqing University, Chongqing 401331, PR China
b SLAC National Accelerator Laboratory, Stanford University, CA 94039, USA
c CP3-Origins, Danish Institute for Advanced Studies, University of Southern Denmark, DK-5230, Denmark

a r t i c l e i n f o

Keywords:
Renormalization group
Renormalization scale
BLM/PMC
QCD

a b s t r a c t

A key problem in making precise perturbative QCD predictions is to set the proper renor-
malization scale of the running coupling. The conventional scale-setting procedure assigns
an arbitrary range and an arbitrary systematic error to fixed-order pQCD predictions. In
fact, this ad hoc procedure gives results which depend on the choice of the renormaliza-
tion scheme, and it is in conflict with the standard scale-setting procedure used in QED.
Predictions for physical results should be independent of the choice of the scheme or other
theoretical conventions. We review current ideas and points of view on how to deal with
the renormalization scale ambiguity and show how to obtain renormalization scheme-
and scale-independent estimates.We begin by introducing the renormalization group (RG)
equation and an extended version, which expresses the invariance of physical observ-
ables under both the renormalization scheme and scale-parameter transformations. The
RG equation provides a convenient way for estimating the scheme- and scale-dependence

Review of past
30 years development

Systematic All-Orders Method to Eliminate Renormalization-Scale and
Scheme Ambiguities in Perturbative QCD

Matin Mojaza*

CP3-Origins, Danish Institute for Advanced Studies, University of Southern Denmark, DK-5230 Odense, Denmark
and SLAC National Accelerator Laboratory, Stanford University, Stanford, California 94039, USA

Stanley J. Brodsky†

SLAC National Accelerator Laboratory, Stanford University, Stanford, California 94039, USA

Xing-Gang Wu‡

Department of Physics, Chongqing University, Chongqing 401331, People’s Republic of China
(Received 13 January 2013; published 10 May 2013)

We introduce a generalization of the conventional renormalization schemes used in dimensional

regularization, which illuminates the renormalization scheme and scale ambiguities of perturbative

QCD predictions, exposes the general pattern of nonconformal f!ig terms, and reveals a special

degeneracy of the terms in the perturbative coefficients. It allows us to systematically determine the

argument of the running coupling order by order in perturbative QCD in a form which can be readily

automatized. The new method satisfies all of the principles of the renormalization group and eliminates an

unnecessary source of systematic error.

DOI: 10.1103/PhysRevLett.110.192001 PACS numbers: 12.38.Bx, 11.10.Gh, 11.15.Bt, 12.38.Aw

PRL 110, 192001 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending
10 MAY 2013

Recent Breakthrough!Principle of Maximum Conformality (PMC)
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Figure 11. Predictions for the mtt̄ cumulative asymmetry: pure QCD at NLO and NNLO (as
derived in this work), NLO prediction of Ref. [11] including EW corrections, as well as the PMC
scale-setting prediction of Ref. [11].

range of mtt̄ used for the calculation of the NNLO result, fixed and dynamic scales would lead

to consistent predictions within scale errors (see also recent discussion for the LHC [92]).

We conclude that the two scale-setting approaches produce very di↵erent predictions for

the mtt̄ cumulative ÂFB and it should be easy to distinguish between the two with data,

especially in the region around mtt̄ ⇠ 500GeV. We would also like to point out that the

NNLO prediction based on conventional scale-setting with µR = mt exhibits the “increasing-

decreasing” behaviour pointed out in Ref. [11], albeit much less pronounced than in the PMC

scale-setting approach.

5 Comparisons between di↵erent pdf sets

An alternative way of assessing the pdf dependence in theory predictions is to compare calcu-

lations with di↵erent pdf sets. In this section we compare NNLO QCD predictions based on
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9

draw definite conclusion on the SM predictions. For the
ATLAS data at 8TeV, which is relatively of less experi-
mental uncertainty, it is found that the PMC prediction
show a much better agreement with the data.

F. An estimation of the fiducial cross section
σfid(pp → H → γγ)

With the integrated luminosity 4.5fb−1 for
√
S = 7

TeV, 20.3fb−1 for
√
S = 8 TeV, and 3.2fb−1 for

√
S =

13 TeV, the ATLAS group gives their prediction for the
fiducial cross sections (σfid) for the process pp → H →
γγ at different collision energies [48]. The fiducial cross-
section σfid can be written as

σfid(pp → H → γγ) = σInclBH→γγA, (20)

where A is the acceptance factor, whose values for dif-
ferent collision energies are [48], A|7TeV = 0.620± 0.007,
A|8TeV = 0.611±0.012 and A|13TeV = 0.570±0.006. The
BH→γγ is the branching ratio of H → γγ. By using the
Γ(H → γγ) under conventional scale-setting, the LHC-
XS group predicts BH→γγ = 0.00228 ± 0.00011 [3]. A
detailed PMC analysis for Γ(H → γγ) up to three-loop
levels have been given in Ref.[49]. Using the formulas
given there, we obtain Γ(H → γγ)|PMC = 9.34 × 10−3

MeV for MH = 125 GeV. Using this value together with
Higgs total decay width ΓTotal = (4.07 ± 0.16) × 10−3

GeV [3], we get BH→γγ |PMC = 0.00229± 0.00009. Thus
the main differences for the fiducial cross-section σfid is
from the differences of inclusive cross-section σIncl men-
tioned in the last subsection.

σfid(pp → H → γγ) 7 TeV 8 TeV 13 TeV

ATLAS data [48] 49± 18 42.5+10.3
−10.2 52+40

−37

LHC-XS [3] 24.7± 2.6 31.0± 3.2 66.1+6.8
−6.6

PMC prediction 30.1+2.3
−2.2 38.4+2.9

−2.8 85.8+5.7
−5.3

TABLE V: The fiducial cross section σfid(pp → H → γγ) (in
unit: fb) at the LHC with the collision energies

√
S =7, 8 and

13 TeV, respectively.

We put the PMC predictions for the fiducial cross sec-
tion σfid(pp → H → γγ) at the LHC with the collision
energies

√
S =7 TeV, 8 TeV and 13 TeV in Table V,

where the ATLAS measurements [48] and the LHC-XS
predictions [3] are presented. The PMC fiducial cross-
sections are larger than the LHC-XS ones by ∼ 22%,
∼ 24% and ∼ 30% for

√
S =7 TeV, 8 TeV and 13 TeV,

respectively. Table V shows no significant differences be-
tween the measured fiducial cross sections and the SM
predictions are observed within the current experimental
uncertainties. However, a better agreement of PMC pre-
dictions with the measurements at

√
S = 7 TeV and 8

TeV are observed. This performance can be more clearly
shown by Fig.(6), which presents the comparison of PMC
predictions for σfid(pp → H → γγ) with the ATLAS mea-
surements at various collision energies.
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FIG. 6: Comparison of the PMC predictions for the fiducial
cross section σfid(pp → H → γγ) with the ATLAS measure-
ments at various collision energies [48]. The LHC-XS predic-
tions [3] are presented as a comparison.

IV. SUMMARY

We have studied the Higgs boson hadroproduction
cross-sections by using the PMC scale-setting. The PMC
provides a systematic way to set the renormalization scale
of high-energy process, which has a solid theoretical foun-
dation and satisfies renormalization group invariance.
After applying the PMC scale-setting, the large renor-
malization scale uncertainties for the Higgs total and sep-
arate production cross-sections are eliminated simultane-
ously, and the scheme-and-scale ambiguities under con-
ventional scale-setting are cured. Taking the dominant
gluon-fusion channel as an example, Table II shows un-

der the conventional scale-setting, σ(gg)
Total = 18.76+12.69%

−11.41%

pb for [mH/2, 2mH ] and σ(gg)
Total = 21.14+11.45%

−11.26% pb for
[mH/4,mH ]. While, after applying the PMC, we get the

NNLO prediction σ(gg)
Total

∼= 23.61 pb for µr[mH/4, 2mH ].
Such renormalization scale-independence is reasonable,
since the αs running behavior, or equivalently the renor-
malization scale, at each perturbative order are precisely
fixed by using the RG-equation.

By combining relevant Higgs boson production modes
and the electroweak corrections into consideration, a
more precise predictions for inclusive pp → H produc-
tion cross-sections are obtained by using the PMC. The
inclusive cross-section increases with the increment of
the hadron collision energy. To compare with the LHC-
XS predictions with a guessing scale µr = mH , our
PMC predictions are increased by about 21%, 23% and
29% for

√
S =7 TeV, 8 TeV and 13 TeV, respectively,

which shows a better agreement with the latest LHC
ATLAS measurements, especially for the measurements
at

√
S =7 TeV and 8 TeV. A comparison with fidu-

cial cross sections has been presented in Table V, which
shows no significant differences between the measured

S-Q Wang, X-G Wu, sjb �(pp! HX ! ��X)

PMC
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A key problem in making precise perturbative QCD predictions is the uncertainty in determining
the renormalization scale µ of the running coupling αs(µ

2). The purpose of the running coupling in
any gauge theory is to sum all terms involving the β function; in fact, when the renormalization scale
is set properly, all non-conformal β ̸= 0 terms in a perturbative expansion arising from renormaliza-
tion are summed into the running coupling. The remaining terms in the perturbative series are then
identical to that of a conformal theory; i.e., the corresponding theory with β = 0. The resulting
scale-fixed predictions using the “principle of maximum conformality” (PMC) are independent of
the choice of renormalization scheme – a key requirement of renormalization group invariance. The
results avoid renormalon resummation and agree with QED scale-setting in the Abelian limit. The
PMC is also the theoretical principle underlying the BLM procedure, commensurate scale relations
between observables, and the scale-setting method used in lattice gauge theory. The number of
active flavors nf in the QCD β function is also correctly determined. We discuss several methods
for determining the PMC scale for QCD processes. We show that a single global PMC scale, valid
at leading order, can be derived from basic properties of the perturbative QCD cross section. The
elimination of the renormalization scale ambiguity and the scheme dependence using the PMC will
not only increase the precision of QCD tests, but it will also increase the sensitivity of collider
experiments to new physics beyond the Standard Model.

PACS numbers: 11.15.Bt, 12.20.Ds

I. INTRODUCTION

A key difficulty in making precise perturbative QCD predictions is the uncertainty in determining the renormaliza-
tion scale µ of the running coupling αs(µ2). It is common practice to simply guess a physical scale µ = Q of order
of a typical momentum transfer Q in the process, and then vary the scale over a range Q/2 and 2Q. This procedure
is clearly problematic since the resulting fixed-order pQCD prediction will depend on the choice of renormalization
scheme; it can even predict negative QCD cross sections at next-to-leading-order [1].
The purpose of the running coupling in any gauge theory is to sum all terms involving the β function; in fact,

when the renormalization scale µ is set properly, all non-conformal β ̸= 0 terms in a perturbative expansion arising
from renormalization are summed into the running coupling. The remaining terms in the perturbative series are
then identical to that of a conformal theory; i.e., the theory with β = 0. The divergent “renormalon” series of order
αn
s β

nn! does not appear in the conformal series. Thus as in quantum electrodynamics, the renormalization scale µ is
determined unambiguously by the “Principle of Maximal Conformality (PMC)”. This is also the principle underlying
BLM scale setting [2]
It should be recalled that there is no ambiguity in setting the renormalization scale in QED. In the standard Gell-

Mann–Low scheme for QED, the renormalization scale is simply the virtuality of the virtual photon [3]. For example,
in electron-muon elastic scattering, the renormalization scale is the virtuality of the exchanged photon, spacelike
momentum transfer squared µ2 = q2 = t. Thus

α(t) =
α(t0)

1−Π(t, t0)
(1)

where

Π(t, t0) =
Π(t)−Π(t0)

1−Π(t0)
(2)
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BLM scale setting [2]
It should be recalled that there is no ambiguity in setting the renormalization scale in QED. In the standard Gell-

Mann–Low scheme for QED, the renormalization scale is simply the virtuality of the virtual photon [3]. For example,
in electron-muon elastic scattering, the renormalization scale is the virtuality of the exchanged photon, spacelike
momentum transfer squared µ2 = q2 = t. Thus

α(t) =
α(t0)

1−Π(t, t0)
(1)

where

Π(t, t0) =
Π(t)−Π(t0)

1−Π(t0)
(2)

In the (physical) Gell Mann-Low scheme, the momentum scale of the running 
coupling is the virtuality of the exchanged photon; independent of initial scale.

For any other scale choice an infinite set of diagrams must be taken into 
account to obtain the correct result!

In any other scheme, the correct scale displacement must be used

2

sums all vacuum polarization contributions to the dressed photon propagator, both proper and improper. (Here
Π(t) = Π(t, 0) is the sum of proper vacuum polarization insertions, subtracted at t = 0). Formally, one can choose
any initial renormalization scale µ2

0 = t0, since the final result when summed to all orders will be independent
of t0. This is the invariance principle used to derive renormalization group results such as the Callan-Symanzik
equations [4, 5]. However, the formal invariance of physical results under changes in t0 does not imply that there is no
optimal scale. In fact, as seen in QED, the scale choice µ2 = q2, the photon virtuality, immediately sums all vacuum
polarization contributions to all orders exactly in the conventional Gell-Mann-Low scheme. With any other choice of
scale, one will recover the same result, but only after summing an infinite number of vacuum polarization corrections.
Thus, although the initial choice of renormalization scale t0 is arbitrary, the final scale t which sums the vacuum

polarization corrections is unique and unambiguous. The resulting perturbative series is identical to the conformal
series with zero β-function. In the case of muonic atoms, the modified muon-nucleus Coulomb potential is precisely
−Zα(−q⃗ 2)/q⃗ 2; i.e., µ2 = −q⃗2. Again, the renormalization scale is unique.
One can employ other renormalization schemes in QED, such as the MS scheme, but the physical result will be

the same once one allows for the relative displacement of the scales of each scheme. For example, one can start with
the result in the MS scheme for spacelike argument q2 = −Q2, for the standard one-loop charged lepton pair vacuum
polarization contribution to the photon propagator using dimensional regularization:

log
µ2
MS

m2
ℓ

= 6

∫ 1

0
dxx(1 − x) log

m2
ℓ +Q2x(1− x)

m2
ℓ

, (3)

which becomes at large Q2

log
µ2
MS

m2
ℓ

= log
Q2

m2
ℓ

− 5/3; (4)

i.e., µ2
MS

= Q2e−5/3. Thus if Q2 >> 4m2
ℓ , we can identify

αMS(e
−5/3q2) = αGM−L(q

2). (5)

The e−5/3 displacement of renormalization scales between the MS and Gell-Mann–Low schemes is a result of the
convention [6] which was chosen to define the minimal dimensional regularization scheme. One can use another
definition of the renormalization scheme, but the final physical prediction cannot depend on the convention. This
invariance under choice of scheme is a consequence of the transitivity property of the renormalization group [3, 7–9].
The same principle underlying renormalization scale-setting in QED must also hold in QCD since the nf terms

in the QCD β function have the same role as the lepton Nℓ vacuum polarization contributions in QED. QCD and
QED share the same Yang-Mills Lagrangian. In fact, one can show [10] that QCD analytically continues as a

function of NC to Abelian theory when NC → 0 at fixed α = CFαs with CF = N2
C−1
2NC

. For example, at lowest order

βQCD
0 = 1

4π

(

11
3 NC − 2

3nf

)

→ − 1
4π

2
3nf at NC = 0. Thus the same scale-setting procedure must be applicable to all

renormalizable gauge theories.
Thus there is a close correspondence between the QCD renormalization scale and that of the analogous QED process.

For example, in the case of e+e− annihilation to three jets, the PMC/BLM scale is set by the gluon jet virtuality, just
as in the corresponding QED reaction. The specific argument of the running coupling depends on the renormalization
scheme because of their intrinsic definitions; however, the actual numerical prediction is scheme-independent.
The basic procedure for PMC/BLM scale setting is to shift the renormalization scale so that all terms involving

the β function are absorbed into the running coupling. The remaining series is then identical with a conformal theory
with β = 0. Thus, an important feature of the PMC is that its QCD predictions are independent of the choice of
renormalization scheme. The PMC procedure also agrees with QED in the NC → 0 limit.
The determination of the PMC-scale for exclusive processes is often straightforward. For example, consider the

process e+e− → cc̄ → cc̄g∗ → cc̄bb̄, where all the flavors and momenta of the final-state quarks are identified. The nf

terms at NLO come from the quark loop in the gluon propagator. Thus the PMC scale for the differential cross section
in the MS scheme is given simply by the MS scheme displacement of the gluon virtuality: µ2

PMC = e−5/3(pb + pb̄)
2.

In practice, one can identify the PMC/BLM scale for QCD by varying the initial renormalization scale µ2
0 to identify

all of the β-dependent nonconformal contributions. At lowest order β0 = 1
4π (11/3NC − 2/3nf). Thus at NLO one can

simply use the dependence on the number of flavors nf which arises from the quark loops associated with ultraviolet
renormalization as a marker for β0.
In QCD, the nf terms also arise from the renormalization of the three-gluon and four-gluon vertices as well as from

gluon wavefunction renormalization.

Q2�m2
`�! log

Q2

m2
`

� 5

3
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ℓ , we can identify

αMS(e
−5/3q2) = αGM−L(q

2). (5)

The e−5/3 displacement of renormalization scales between the MS and Gell-Mann–Low schemes is a result of the
convention [6] which was chosen to define the minimal dimensional regularization scheme. One can use another
definition of the renormalization scheme, but the final physical prediction cannot depend on the convention. This
invariance under choice of scheme is a consequence of the transitivity property of the renormalization group [3, 7–9].
The same principle underlying renormalization scale-setting in QED must also hold in QCD since the nf terms

in the QCD β function have the same role as the lepton Nℓ vacuum polarization contributions in QED. QCD and
QED share the same Yang-Mills Lagrangian. In fact, one can show [10] that QCD analytically continues as a

function of NC to Abelian theory when NC → 0 at fixed α = CFαs with CF = N2
C−1
2NC

. For example, at lowest order

βQCD
0 = 1

4π

(

11
3 NC − 2

3nf

)

→ − 1
4π

2
3nf at NC = 0. Thus the same scale-setting procedure must be applicable to all

renormalizable gauge theories.
Thus there is a close correspondence between the QCD renormalization scale and that of the analogous QED process.

For example, in the case of e+e− annihilation to three jets, the PMC/BLM scale is set by the gluon jet virtuality, just
as in the corresponding QED reaction. The specific argument of the running coupling depends on the renormalization
scheme because of their intrinsic definitions; however, the actual numerical prediction is scheme-independent.
The basic procedure for PMC/BLM scale setting is to shift the renormalization scale so that all terms involving

the β function are absorbed into the running coupling. The remaining series is then identical with a conformal theory
with β = 0. Thus, an important feature of the PMC is that its QCD predictions are independent of the choice of
renormalization scheme. The PMC procedure also agrees with QED in the NC → 0 limit.
The determination of the PMC-scale for exclusive processes is often straightforward. For example, consider the

process e+e− → cc̄ → cc̄g∗ → cc̄bb̄, where all the flavors and momenta of the final-state quarks are identified. The nf

terms at NLO come from the quark loop in the gluon propagator. Thus the PMC scale for the differential cross section
in the MS scheme is given simply by the MS scheme displacement of the gluon virtuality: µ2

PMC = e−5/3(pb + pb̄)
2.

In practice, one can identify the PMC/BLM scale for QCD by varying the initial renormalization scale µ2
0 to identify

all of the β-dependent nonconformal contributions. At lowest order β0 = 1
4π (11/3NC − 2/3nf). Thus at NLO one can

simply use the dependence on the number of flavors nf which arises from the quark loops associated with ultraviolet
renormalization as a marker for β0.
In QCD, the nf terms also arise from the renormalization of the three-gluon and four-gluon vertices as well as from

gluon wavefunction renormalization.

Mee!ee =
8⇡s

t
↵(t) +

8⇡s

u
↵(u) �q2 = u�q2 = t

Two separate scales; 
one for each skeleton graph.

Example: ee-scattering



• No renormalization scale ambiguity!   

• Gauge Invariant.  Dressed photon propagator 

• Sums all vacuum polarization, non-zero beta terms into running 
coupling.   This is the purpose of the running coupling! 

• Two separate physical scales: t, u = photon virtuality 

• If one chooses a different initial scale, one must sum an infinite number 
of graphs -- but always recover same result!   

• Number of active leptons correctly set  

• Analytic: reproduces correct behavior at lepton mass thresholds 

• No renormalization scale ambiguity!    

Electron-Electron Scattering in QED

t u



New renormalization scale at each order of pQED

Electron-Electron Scattering in QED

Renormalization scheme independent at each order

Independent of initial scale μ0

Abelian theory is the analytic limit QCD at Nc = 0 

Each “skeleton” graph has its own renormalization scale



• No renormalization scale ambiguity in QED  

• No guessing of renormalization scale or range! 

• Physical predictions cannot depend on renormalization scheme 

• Gell Mann-Low QED Coupling defined from physical observable  

• Running Coupling sums all Vacuum Polarization Contributions, all β 
terms 

• Recover conformal series 

• Renormalization Scale in QED scheme: Identical to Photon Virtuality 

• Analytic: Reproduces lepton-pair thresholds -- number of active leptons 
set 

• Examples:  muonic atoms, g-2, Lamb Shift 

• Time-like and Space-like QED Coupling related by analyticity 

• Dressed Skeleton Expansion



BLM Scale Setting

Use skeleton expansion:
Gardi, Grunberg, Rathsman, sjb

nf  dependent 
coefficient identifies 

quark loop VP 
contribution 

Conformal coefficient - independent of  � = d
d logQ2g(Q2) < 0

� = d
d logQ2g(Q2) > 0

� = d
d logQ2g(Q2) < 0

� = d
d logQ2g(Q2) > 0

This is very important!

This is very important!

�0 = 11� 2
3nf



36 

BLM/PMC: Set Scales

How do we identify the β terms?

BLM: Use nf dependence of β0 and β1

a(Q) ⌘ ↵s(Q)
⇡



Principle of Maximum Conformality (PMC)

• Subtract extra constant δ in dimensional regularization. 
Defines new scheme Rδ

• Coefficients of δ identify β terms !

• Shift β terms to argument of running coupling              at 
each order n (analogous to all-orders vacuum polarization 
summation in QED)

• Resulting PQCD series matches β= 0 conformal series 

• scheme-independent predictions at each computed order 

• almost independent of initial scale μ0

log 4⇡ � �E � � MS : � = 0

↵s(Q2
n)

M. Mojaza, L. di Giustino, Xing-Gang Wu, sjb

(δ: Arbitrary constant!)
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X-GW: As I have discussed before, this conclusion must
be demonstrated, which can be derived by applying the LO
BLM/PMC procedure. A simple demonstration by using the
e↵ective coupling has been done by Stan and Hungjung al-
ready.

MM: As I have also discussed, this is not LO and it has
nothing to do with commensurate scale relations! It is a re-
definition of the µ scale in Eq.(1) and is per definition exact.
Please also see my previous comments that I have provide a
couple of times now and also do recall how the MS and MS
schemes are defined.

i.e.

µ�2 = µ�1e
�1��2

2 . (9)

In particular:

µMS = µMS e(ln 4⇡��E)/2, (10)

µ� = µMS e��/2 . (11)

Since all R�’s are connected by scale-displacements,
the �-functions of aR� defined in Eq. (3) are the same in
any R�. The index � on aR� is thus redundant and we
denote it instead as aR. In this work we are only con-
cerned with R� and will therefore simply denote aR ⌘ a,
unless it appears in an ambiguous context.

We can find a power series solution in 1/ ln(µ/⇤) for
a by solving the renormalization group equation per-
turbatively. It is simplest to use the extended renor-
malization group prescription where one works with the
rescaled coupling â = �1

�0
a and rescaled logarithm L� =

�
2
0

�1
ln(µ�/⇤). The solution up to O(1/L5

�
) reads:

â(µ�) =
1

L�

+
1

L2
�

(C � lnL�) +
1

L3
�

⇥
C
2 + C + c2 � (2C � lnL� + 1) lnL� � 1

⇤
+

1

L4
�

⇢
C

✓
C
2 +

5

2
C + 3c2 � 2

◆

�
1� c3

2
�


3C2 + 5C + 3c2 � 2�

✓
3C � lnL� +

5

2

◆
lnL�

�
lnL�

�
+O

✓
1

L5
�

◆
, (12)

where C is an arbitrary integration constant which in R�

is set to C = ln�2
0/�1 to reproduce the standard ⇤MS

scale. Note that we take the asymptotic scale ⇤ = ⇤MS
to be the same for any R�. Alternatively, one can take
the scale µ to be the same for any R�, while instead
having di↵erent asymptotic scales ⇤�.

II. OBSERVABLES IN R�

Consider an observable computed using perturbation
theory and in a scheme which we put as the references
scheme R0 (this will be the MS for most computed quan-
tities) with the following expansion:

⇢0(Q
2) =

1X

i=0

ri(Q
2/µ2

0)a(µ0)
i , (13)

where µ0 stands for some initial renormalization scale
and Q is the scale at which the observable is measured.
The most general expansion with an extra factor an in
front of the sum for any n (i.e. the tree level ↵s powers)
can readily be derived and does not change the following
conclusions.

Since results in any R� are related by scale displace-
ments, we can derive the general expression for ⇢ in R�

by using the displacement relation:

a(µ0) = a(µ�) +
1X

n=0

1

n!

dna(µ)

(d lnµ2)n
|µ=µ� �n , (14)

where we used that � = lnµ2
0/µ

2
�
. The expression for ⇢ is

straightforwardly computed to any order, and in partic-
ular to order a4 it reads:

⇢�(Q
2) =r0 + r1a(µ�) + [r2 � �0r1�]a(µ�)

2

+ [r3 + �2
0�

2r1 � � (2�0r2 + �1r1)]a(µ�)
3

+ [r4 � � (3�0r3 + 2�1r2 + �2r1)� �3
0�

3r1

+ �2(3�2
0r2 +

5

2
�1�0r1)]a(µ�)

4 +O(a5) , (15)

where ri are generally functions of lnQ2/µ2
�
and �, since

lnQ2/µ2
0 = lnQ2/µ2

�
� �.

Since ⇢ is a physical observable, it must be independent
of the arbitrary renormalization scheme and scale. That
is,

@⇢�
@µ�

= 0 ,
@⇢�
@�

= 0 , (16)

for any �. However, the argument does no longer hold
when the infinite perturbative series has been truncated
to any finite order. This is known as the renormalization
scale ambiguity and the renormalon problem of pertur-
bative QCD. Note that the ambiguity resides in choosing

3

a value for the arbitrary initial scale µ�, or correspond-
ingly fixing the arbitrary scheme, R�. The � dependency
of the coe�cients is not small and since this is an implicit
µ� dependency it is simply wrong to state that the coef-
ficients only depend logarithmically on the scale. This is
intimately connected to the renormalon problem.

X-GW: Here, I have cut o↵ unimportant discussions.

MM: Ok.

Now, it is obvious that in a conformal theory, where
{�i} = {0}, the � dependency vanishes in Eq.(15). That
is, the result is the same in anyR�. Therefore, by absorb-
ing all {�i} dependency into a redefinition of the scales
at each order, we obtain a final result independent of the
initial choice of scale and scheme. Using R� we can make
this statement even more rigorous. From the explicit ex-
pression in Eq. (15) it is easy to confirm that

d⇢�(s)

d�
= �(a)

d⇢�
da

. (17)

We see that to obtain a scheme-invariant and confor-
mal result, we must set the scales such that all {�i}-
functions equal to zero, which further leads to

�(a) = 0 . (18)

Notice that this holds at any order in perturbation the-
ory and is a theoretical requirement, di↵erent from the
physical fact that the all-orders expression for ⇢ must be
renormalization scale and scheme invariant. It should be
emphasized that this is not a fixed point expression for
a but is a fully conformal requirement, that is, the beta
function vanishes identically. This proves the principle
of maximal conformality (PMC) at any order.

X-GW: I think the above demonstration is not complete
or misleading. It is right that if the right side of Eq.(17) is
satisfied by a proper PMC procedure, then the left side can be
satisfied naturally.

MM: This is all I had in mind, in other words Eq.(18) is
the ’proof-of-concept’ of the PMC scale setting - as you say, it
demonstrates that if one sets the scale such that all {�i} are
absorbed, the final result is renormalization scheme invariant
and this is the principal of maximal conformality.

X-GW: However if the left side of Eq.(18) is satisfied we
can only obtain �(a) = 0, but we can not obtain the conclusion
that all the terms involving {�i}-functions are equal to zero,
that is we can not eliminate all {�i}-series. It only happens
when all {�i}-terms are combined into functions of �(a) that
is only a lottery.

MM: There are two ways of obtaining �(a) = 0: either
{�i} = 0 or a(µ) = a⇤, where a⇤ is a constant - the fixed point
value, �(a⇤) = 0. As I emphasize above, the latter is not what
we are considering. Let me elaborate. The fixed point theory
is a conformal field theory (CFT) - the coupling does not run.
In a CFT it does not make sense to set the scale, since the
theory is scale-invariant (a = a⇤ on all scales). Moreover, the
CFT is not asymptotically free, so we cannot even consider
observables computed in perturbation theory - it has no well-
defined perturbative limit. So, to me it does not make sense
to consider nor discuss this case in the context of the scale

setting problem. Therefore, �(a) = 0 can only mean {�i} = 0
in the context we are considering.

In fact, by setting � = 0 directly, we must demonstrate the
{�i}-terms in the coe�cient functions ri are eliminated simul-
taneously. This point has also been discussed in my previous
letters, but it has not been discussed so far.

MM: I do not understand this last comment?

III. SETTING THE PMC SCALES

The expression in Eq. (15) explicitly shows the pattern
of �i terms appearing in the coe�cients at each order.
That is, if we forget about any reference scheme, the
expression for ⇢ in any scheme will take the form:

⇢(Q2) =r0,0 + r1,0a(Q) + [r2,0 + �0r2,1]a(Q)2

+ [r3,0 + �1r2,1 + 2�0r3,1 + �2
0r3,2]a(Q)3

+ [r4,0 + �2r2,1 + 2�1r3,1 +
5

2
�1�0r3,2 + 3�0r4,1

+ 3�2
0r4,2 + �3

0r4,3]a(Q)4 +O(a5) (19)

where ri,0 are the conformal part of the coe�cients.
MM: Note that I in this expression have assumed/inferred

some relations between the coe�cients e.g. the �0a(Q)2 co-
e�cient and the �1a(Q)3 are equal etc... It follows from Eq.
(15) and I have checked that it is indeed correct for Re+e�!h.
I think this holds for any observable?
We have as before for simplicity of the expression set

µ = Q, but this is not the final expression. We must
set the scale at each order in such a way to absorb all �i

dependencies into the running coupling. The problem is
now to understand which terms should be absorbed into
which scales. We can use R� to provide the solution. In
deriving Eq. (15) we made an equal scale displacement
of each running coupling. To see from where each � ap-
peared, we put a dummy index on the displacement of
each coupling to track its origin. The result is:

⇢�(Q
2) =r0 + r1a1(Q) + (r2 � �0r1�1)a2(Q)2

+ [r3 � �1r1�1 � 2�0r2�2 + �2
0r1�

2
1 ]a3(Q)3

+ [r4 � �2r1�1 � 2�1r2�2 � 3�0r3�3 + 3�2
0r2�

2
2

� �3
0r1�

3
1 +

5

2
�1�0r1�

2
1 ]a(Q)4 +O(a5) (20)

This immediately shows us which terms should be ab-
sorbed into which running coupling, e.g. we must resum
all �1 dependency into a1 etc.. In the end one can remove
the dummy index on the couplings since they were put
only to display the correct resummation pattern.

MM: I must emphasize here that the BLM procedure is
only and approximation to PMC as can be seen above, i.e.
besides the fact that ri,0 depend explicitly on Nf one can also
now observe that e.g. there is an N2

f term coming from �1�0

at order a4 which must be absorbed into a1 - If I have un-
derstood BLM correctly, at this order you absorb only all N3

f

dependency into a1, right?

Shows the general way nonconformal terms  
enter an observable and the scheme dependence

Generalization: use �n at n-loops.

initial



Shift scale of αs to µPMC
R to eliminate {βR

i }− terms

Conformal Series

Choose renormalization scheme; e.g. αR
s (µ

init
R )

Choose µinit
R ; arbitrary initial renormalization scale

Identify {βR
i }− terms using nf − terms

through the PMC −BLM correspondence principle

Result is independent of µinit
R and scheme at fixed order

Xing-Gang Wu, Matin Mojaza 
Leonardo  di Giustino, SJB

No renormalization scale ambiguity! 

Result is independent of  
Renormalization scheme  

and initial scale! 

QED Scale Setting at NC=0 

Eliminates unnecessary  
systematic uncertainty

PMC/BLM

Set multiple renormalization scales -- 
Lensing, DGLAP, ERBL Evolution ...

δ-Scheme automatically             
identifies β-terms!

Scale fixed at each order

Principle of Maximum Conformality

δ

order by order

A robot can compute the PMC scales



PMC + PadèRe+e−(s) Computed

Padè

B-L Dun,  X-G. Wu,  J.M, Shen, sjb

Extending the Predictive Power of pQCD

Scale Ambiguity, Scheme Dependence,                
Renormalons Eliminated

αn
s βn

0 , n!



Features of BLM/PMC

• Predictions are scheme-independent at every order

• Matches conformal series

• No n! Renormalon growth of pQCD series

• New scale appears at each order; nF determined at each order - matches virtuality of 
quark loops

• Multiple Physical Scales Incorporated (Hoang, Kuhn, Tuebner, sjb)

• Rigorous: Satisfies all Renormalization Group Principles

• Realistic Estimate of Higher-Order Terms

• Reduces to standard QED scale

• GUT: Must use the same scale setting procedure for QED, QCD

• Eliminates unnecessary theory error

• Maximal sensitivity to new physics

• Commensurate Scale Relations between observables: Generalized Crewther Relation   
(Kataev, Lu, Rathsman, sjb)

• PMC Reduces to BLM at NLO:  Example: BFKL intercept (Fadin, Kim, Lipatov, Pivovarov, sjb)

NC ! 0
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DARK ENERGY AND
THE COSMOLOGICAL CONSTANT PARADOX

A. ZEE

Department of Physics, University of California, Santa Barbara, CA 93106, USA
Kavil Institute for Theoretical Physics, University of California,

Santa Barbara, CA 93106, USA
zee@kitp.ucsb.edu

I give a brief and idiosyncratic overview of the cosmological constant paradox.

1.

Gravity knows about everything, whatever its origin, luminous or dark, even the
energy contained in fluctuating quantum fields.

As is well known, this leads us to one of the gravest puzzles of theoretical
physics. Consider the Feynman diagram with the graviton coupling to a matter
field (for example an electron field) loop. If we claim to understand the physics
of the electron field up to an energy scale of M, then the graviton sees an energy
density given schematically by Λ ∼ M 4 + M2m2

elog( M
me

) + m4
elog( M

me
) + · · · . Just

about any reasonable choice of M leads to a humongous energy density!!! In fact,
even if the first two terms were to be mysteriously deleted, there is still an energy
density of order m4

e, that is, an energy density corresponding to one electron mass
in a volume the size of the Compton wavelength of the electron, filling all of space,
which is clearly unacceptable.

Apparently, this disastrous prediction of quantum field theory has nothing to
do with quantum gravity. Indeed, the quantum field theory we need for the matter
field is merely free field theory: we are just adding up zero point energy of harmonic
oscillators.

The cosmological constant paradox may be summarized as follows. In some
suitable units, the cosmological constant was expected to have the value ∼ 10123.
This was so huge that it was decreed to be equal to = 0 identically, while the
measured value turned out to be ∼ 1. I have argued elsewhere that the proton
decay rate might offer an instructive lesson here.

I am presuming that the observed dark energy is the fabled cosmological con-
stant. The evidence seems increasingly to favor this simplest of hypotheses. Even
if this were not the case, much of the paradox still remains.

I define Λ by writing the Einstein-Hilbert action as
∫

d4x
√

g( 1
GR+Λ). It is useful

1336

“One of the gravest puzzles of 
theoretical physics”

Elements of the solution: 
(A) Light-Front Quantization: causal, frame-independent vacuum 

(B) New understanding of QCD “Condensates” 
(C) Higgs Light-Front Zero Mode 

Extraordinary conflict between the conventional definition of the vacuum in 
quantum field theory and cosmology



Two Definitions of Vacuum State

Instant Form: Lowest Energy Eigenstate of Instant-
Form Hamiltonian

Front Form: Lowest Invariant Mass Eigenstate of Light-Front 
Hamiltonian

Frame-independent eigenstate at fixed LF time τ = t+z/c 
within  causal horizon

Eigenstate defined at one time t over all space; 
Acausal! Frame-Dependent

Frame-independent description of the causal physical universe!



k+ = k0 + k3 � 0 since |~k|  k0

zero !!

All LF propagators have positive k+

P+ Momentum Conserved

< 0|Tµ⌫ |0 >= 0

Graviton does not couple to LF vacuum!

Vanishing gravitational coupling even in presence of zero modes

zero !!

g 

Front-Form Vacuum 
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Light-Front vacuum can simulate empty universe

• Independent of observer frame 

• Causal 

• Lowest invariant mass state M= 0. 

• Trivial up to k+=0 zero modes-- already normal-ordering 

• Higgs theory consistent with trivial LF vacuum (Srivastava, 
sjb) 

• QCD and AdS/QCD: “In-hadron”condensates (Maris, Tandy 
Roberts)  -- GMOR satisfied. 

• QED vacuum; no loops 

• Zero cosmological constant from QED, QCD, EW

Shrock, Tandy, Roberts, sjb
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-

ū

⇡� d

+

-⇡� d

+
-

ū

< ⇡|�̄µq�5q|0 >

Lz = +1, Sz = �1

Lz = 0, Sz = 0

Running constituent mass at vertex

-

Couples to

Angular 
Momentum 

Conservation

⇠ f⇡

< ⇡|q̄�5q|0 > ⇠ ⇢⇡

Jz =
nX

i

Sz
i +

n�1X

i

Lz
i

Light-Front Pion Valence Wavefunctions
Sz

ū + Sz
d = +1/2� 1/2 = 0

Sz
ū + Sz

d = �1/2� 1/2 = �1

Couples to



Ward-Takahashi Identity for axial current

Pµ�5µ(k, P ) + 2im�5(k, P ) = S�1(k + P/2)i�5 + i�5S
�1(k � P/2)

S�1(`) = i� · `A(`2) + B(`2) m(`2) =
B(`2)
A(`2)

Pµ �5�
µ

=
2im�5

Pµ < 0|q̄�5�
µq|⇡ >= 2m < 0|q̄i�5q|⇡ >

Identify pion pole at P 2 = m2
⇡

f⇡m2
⇡ = �(mu + md)⇢⇡

plus non-pole
�5µ

�5

GMOR satisfied, no VEV

Maris, Roberts, Shrock, Tandy, sjb



Revised Gell Mann-Oakes-Renner Formula in QCD

current algebra:  
effective pion field

QCD: composite  pion 
Bethe-Salpeter Eq.

vacuum condensate actually is an “in-hadron condensate”

Maris, Roberts, Tandy⇡� < 0|q̄�5q|⇡ >

m2
⇡ = � (mu + md)

f⇡
< 0|iq̄�5q|⇡ >

m2
⇡ = � (mu + md)

f2
⇡

< 0|q̄q|0 >

No VEV!
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RAPID COMMUNICATIONS

PHYSICAL REVIEW C 82, 022201(R) (2010)

New perspectives on the quark condensate

Stanley J. Brodsky,1,2 Craig D. Roberts,3,4 Robert Shrock,5 and Peter C. Tandy6
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We show that the chiral-limit vacuum quark condensate is qualitatively equivalent to the pseudoscalar meson
leptonic decay constant in the sense that they are both obtained as the chiral-limit value of well-defined gauge-
invariant hadron-to-vacuum transition amplitudes that possess a spectral representation in terms of the current-
quark mass. Thus, whereas it might sometimes be convenient to imagine otherwise, neither is essentially a constant
mass-scale that fills all spacetime. This means, in particular, that the quark condensate can be understood as a
property of hadrons themselves, which is expressed, for example, in their Bethe-Salpeter or light-front wave
functions.

DOI: 10.1103/PhysRevC.82.022201 PACS number(s): 11.30.Rd, 14.40.Be, 24.85.+p, 11.15.Tk

Nonzero vacuum expectation values of local operators,
i.e., condensates, are introduced as parameters in QCD sum
rules, which are used to estimate essentially nonperturbative
strong-interaction matrix elements. They are also basic to
current algebra analyses. It is widely held that such quark
and gluon condensates have a physical existence, which is
independent of the hadrons that express QCD’s asymptotically
realizable degrees-of-freedom; namely, that these condensates
are not merely mass-dimensioned parameters in a theoretical
truncation scheme, but in fact describe measurable spacetime-
independent configurations of QCD’s elementary degrees-of-
freedom in a hadronless ground state.

We share the view that these condensates are fundamental
dynamically-generated mass-scales in QCD. However, we
shall argue that their measurable impact is entirely expressed
in the properties of QCD’s asymptotically realizable states;
namely hadrons. In taking this position we have assumed
confinement, from which follows quark-hadron duality and
hence that all observable consequences of QCD can, in
principle, be computed using a hadronic basis. Here, the term
“hadron” means any one of the states or resonances in the
complete spectrum of color-singlet bound states generated by
the theory.

We focus herein on ⟨0|q̄q|0⟩, where |0⟩ is viewed as
some hadronless ground state of QCD. This is the vacuum
quark condensate. Its nonzero value is usually held to signal
dynamical chiral symmetry breaking (DCSB), a concept
of critical importance in QCD, whose connection with the
dressed-quark propagator was anticipated [1–5] (see also
references therein). As reviewed elsewhere (most recently,
e.g., Refs. [6–8]), DCSB is a remarkably efficient mass-
generating mechanism, the origin of constituent-quark masses
and intimately connected with confinement. It is also the basis
for the successful application of chiral-effective field theories
(see, e.g., Refs. [9,10] for contemporary perspectives). On the
face of it, this seems far more than can be understood simply
in terms of a nonzero vacuum expectation value ⟨0|q̄q|0⟩.

The notion that nonzero vacuum condensates exist and
possess a measurable reality has long been recognized as
posing a conundrum for the light-front formulation of QCD.
This formulation follows from Dirac’s front form of relativistic
dynamics [11], and is widely and efficaciously employed
in perturbative and nonperturbative QCD [12,13]. In the
light-front formulation, the ground state is a structureless Fock
space vacuum, in which case it would seem to follow that
DCSB is impossible. In response, it was argued by Casher
and Susskind [14] that, in the light-front framework, DCSB
must be a property of hadron wave functions, not of the
vacuum. This thesis has also been explored in a series of recent
articles [15–17].

A nonzero spacetime-independent QCD vacuum conden-
sate also poses a critical dilemma for gravitational interactions
because it would lead to a cosmological constant some
45 orders of magnitude larger than observation. As noted
elsewhere [15], this conflict is avoided if strong interaction
condensates are properties of rigorously well-defined wave
functions of the hadrons, rather than the hadronless ground
state of QCD.

Given the importance of DCSB and the longstanding
puzzles described above, we will focus our attention on
the vacuum quark condensate. The essential issues become
particularly clear in the context of the Gell-Mann–Oakes–
Renner relation [18,19], which is usually understood as the
statement

f 2
π m2

π = −
(
mu

ζ + md
ζ

)
⟨q̄q⟩0

ζ , (1)

wherein mπ is the pion’s mass; fπ is its leptonic decay
constant; m

q
ζ , with q = u, d , is the current-quark mass at a

renormalization scale ζ ; and ⟨q̄q⟩0
ζ is the chiral-limit vacuum

quark condensate, with a precise definition of the chiral limit
given below in Eqs. (8), (9). In arriving at Eq. (1) using
standard methods, one makes truncations; namely, soft-pion
techniques [20] have been used to relate an in-pion matrix
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I give a brief and idiosyncratic overview of the cosmological constant paradox.

1.

Gravity knows about everything, whatever its origin, luminous or dark, even the
energy contained in fluctuating quantum fields.

As is well known, this leads us to one of the gravest puzzles of theoretical
physics. Consider the Feynman diagram with the graviton coupling to a matter
field (for example an electron field) loop. If we claim to understand the physics
of the electron field up to an energy scale of M, then the graviton sees an energy
density given schematically by Λ ∼ M 4 + M2m2

elog( M
me

) + m4
elog( M

me
) + · · · . Just

about any reasonable choice of M leads to a humongous energy density!!! In fact,
even if the first two terms were to be mysteriously deleted, there is still an energy
density of order m4

e, that is, an energy density corresponding to one electron mass
in a volume the size of the Compton wavelength of the electron, filling all of space,
which is clearly unacceptable.

Apparently, this disastrous prediction of quantum field theory has nothing to
do with quantum gravity. Indeed, the quantum field theory we need for the matter
field is merely free field theory: we are just adding up zero point energy of harmonic
oscillators.

The cosmological constant paradox may be summarized as follows. In some
suitable units, the cosmological constant was expected to have the value ∼ 10123.
This was so huge that it was decreed to be equal to = 0 identically, while the
measured value turned out to be ∼ 1. I have argued elsewhere that the proton
decay rate might offer an instructive lesson here.

I am presuming that the observed dark energy is the fabled cosmological con-
stant. The evidence seems increasingly to favor this simplest of hypotheses. Even
if this were not the case, much of the paradox still remains.

I define Λ by writing the Einstein-Hilbert action as
∫

d4x
√

g( 1
GR+Λ). It is useful
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“One of the gravest puzzles of 
theoretical physics”

Elements of the solution: 
(A) Light-Front Quantization: causal, frame-independent vacuum 

(B) New understanding of QCD “Condensates” 
(C) Higgs Light-Front Zero Mode 

Extraordinary conflict between the conventional definition of the vacuum in 
quantum field theory and cosmology
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Central Question: What is the source of Dark Energy?

(⌦⇤)EW = 0(⌦⇤)QCD = 0

Higgs Zero-Mode Curvature?�� = 0.76(expt)



Some References for Light-Front Holography
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Physics on the Light Front:
A Novel Approach to Quark Confinement and QCD Phenomena
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The Mexican School of Particles and Fields (MSPF) is organized every two years by the Division of
Particles and Fields (DPyC) of the Mexican Physical Society. The MSPF is designed to complement the
education of advanced graduate students and young postdocs working in High Energy Physics (HEP) in
Mexico and abroad.

The 2018 University of Sonora School of High Energy Physics(USHEP)  is a school designed to
attract new graduate students to the newly created HEP program at the University of Sonora.

This joint school has been organized with programs that complement each other and will take place in
the colonial city of Hermosillo, Sonora, from the 21st to the 27th of October 2018. The format of the
joint school will consist of several courses devoted to advanced topics in elementary particle physics,
taught from a modern perspective, to be delivered by well known specialists in different areas of high
energy physics. The program will include theoretical and experimental review seminars on the latest
developments in the field. Poster sessions will be included too, aimed to allow the participants to show
their research, and to enhance the interaction of the students with the speakers. An excursion to a
beautiful beach is planned as well as a special dinner and a public lecture at the University of Sonora.

The program of the joint school includes the following topics and speakers :

Electroweak and Higgs Physics
Joseph Incandela (UCSB, U.S.A.) 
From the Higgs to the unknown: In Search of the genetic code of our universe (public
lecture) 
Usha Mallik (Uni. of Iowa, U.S.A.) 
Some Highlights of the Higgs boson measurements at the LHC (review talk)
Ian Lewis (Uni. of Kansas, U.S.A.) 
Theory of Higgs Physics at Colliders (course)

Mayda Velasco (Northwestern Uni., U.S.A.)  
Top, Electroweak and QCD at the LHC (course)

Physics Beyond the Standard Model
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Some Key QCD Issues in Electroproduction

• Intrinsic Heavy Quarks at high x;  

• Role of Color Confinement in DIS 

• Hadronization at the Amplitude Level 

• Leading-Twist Lensing: Sivers Effect 

• Diffractive DIS 

• Static versus Dynamic Structure Functions 

• Origin of Shadowing and Anti-Shadowing 

• Is Anti-Shadowing Non-Universal: Flavor Specific? 

• Nuclear Correlations and Effects 

• 1  < x  <  A 

• Is Momentum Sum Rule Correct? 

s(x) 6= s̄(x)


