Physics on the Light Front: A Novel Approach to Quark Confinement and QCD Phenomena

The Mexican School of Particles and Fields (MSPF)

The 2018 University of Sonora School of High Energy Physics (USHEP)

Stan Brodsky

Lecture I October 22, 2018

with Guy de Tèramond, Hans Günter Dosch, Marina Nielsen, Cedric Lorcè, and Alexandre Deur

Goal of Science: To understand the laws of physics and the fundamental composition of matter at the shortest possible distances.

Physics on the Light-Front Quark Confinement and Novel QCD Phenomena The Mexican School of Particles and Fields 2018 Sonora School of High Energy Physics

Discovery of the Quark Structure of Matter

SLAC Two-Míle Línear Accelerator

Pief

First Evidence for Nuclear, Composite Structure of Atoms

Scattering at Large Angles! "Point-like" Nucleus

Rutherford Scattering

SLAC 1967: First Evidence for Quark Structure of Matter

Deep Inelastic Electron-Proton Scattering

Deep inelastic electron-proton scattering

• Rutherford scattering using very high-energy electrons striking protons

Measure rate as a function of energy loss u and momentum transfer Q

Scaling at fixed
$$x_{Bjorken} = \frac{Q^2}{2M_{p\nu}} = \frac{1}{\omega}$$

 $\omega = 4 \rightarrow x_{bj} = 0.25$ (quark momentum fraction)
Discovery of Bjorken Scaling:
Electron scatters on point-like quarks!
 $Q^4 \times \frac{d\sigma}{dQ^2} = F(x_{Bj})$ independent of Q² Scale-free

1967 SLAC Experiment: Scatter 20 GeV/c Electrons on protons $ep \to e'X$ ín a Hydrogen Target Discovery of the Quark Structure of Matter Proton Electron DETECTOR SHIELDING (b) PIVOT 882 INCIDENT BEAM **Discovery of quarks!** ELEVATION VIEW 1.6 GeV FARADAY SPECTROMETER CUP S2 TOROIDS 70 m TO BEAM DUMP TARGETS 081 Q82 8 GeV SPECTROMETER **B**81 B82 083 ČERENKOV COUNTER Deep inelastic scattering: Experiments on the proton and the observation of scaling*

Friedman, Kendall, Taylor: 1990 Nobel Prize

Quarks + Scaling

Feynman: "Parton" model

Bjorken: Scaling

Quarks in the Proton

p = (u u d)

Zweig: "Aces, Deuces, Treys"

1fm $10^{-15}m = 10^{-13}cm$

Gell Mann:"Three Quarks for Mr. Mark" Why are there three colors of quarks?

Greenberg

Paulí Exclusion Principle!

spin-half quarks cannot be in same quantum state !

Three Colors (Parastatístics) Solves Paradox

3 Colors Combine : WHITE

Physics on the Light-Front Quark Confinement and Novel QCD Phenomena The Mexican School of Particles and Fields 2018 Sonora School of High Energy Physics

 $SU(N_C), N_C = 3$

First Evidence for Quark Structure of Matter

But why don't quark and gluons appear in the final state ? How are they confined within hadrons? How is the propagation of quarks and gluons affected by the nuclear environment? Causality: Information and correlations constrained by speed of light

The scattered electron measures the proton's structure at the speed of light — like a flash photograph

Frame Independent : Poíncarè Invariance

SPEAR Electron-Positron Collider SLAC 1972

Burt Richter Martin Perl

Electron-Positron Annihilation

Ratio of quark-pair production to muon pair production proportional to quark charge squared times the number of colors

$$R_{e^+e^-}(s) = \frac{\sigma(e^+e^- \to q\bar{q})}{\sigma(e^+e^- \to \mu^+\bar{\mu}^-)} = N_C \times \sum_q e_q^2$$

How to Count Quarks

Physics on the Light-Front

Phenomena

Stan Brodsky

The Mexican School of Particles and Fields **Quark Confinement and Novel QCD** 2018 Sonora School of High Energy Physics

"Counting Rule" Farrar and sjb; Muradyan, Matveev, Tavkelidze

$$\frac{d\sigma}{dt}(A+B\to C+D) = \frac{F(t/s)}{s^{n_{tot}-2}}$$

$$n_{tot} = n_A + n_B + n_C + n_D$$

e.g. $n_{tot} - 2 = n_A + n_B + n_C + n_D - 2 = 10$ for $pp \to pp$

Predict: $\frac{d\sigma}{dt}(p+p \rightarrow p+p) = \frac{F(\theta_{CM})}{s^{10}}$

Counting Rules: N=9

 $\frac{d\sigma}{dt}(\gamma p \to MB) = \frac{F(\theta_{cm})}{s^7}$

implies QCD is a strongly coupled conformal theory at moderate but not asymptotic energies Farrar and sjb (1973); Matveev *et al.* (1973).

 Derivation of counting rules for gauge theories with mass gap dual to string theories in warped space (hard behavior instead of soft behavior characteristic of strings) Polchinski and Strassler (2001).

Reflect underlying conformal, scale-free interactions

Evídence for Quarks

- Scale-Invariant Electron-Proton Inelastic Scattering: $ep \rightarrow e'X$
- Electron scatters on pointlike constituents with fractional charge; final-state jets
- Electron-Positron Annihilation: $e^+e^- \rightarrow X$ Production of pointlike pairs with fractional charges
- 3 colors; quark, antiquark, gluon jets
- Exclusive hard scattering reactions: $pp \rightarrow pp$, $\gamma p \rightarrow \pi^+ n$, $ep \rightarrow ep$
- Probability that hadron stays intact counts number of its pointlike constituents:
 Quark Counting Rules

Quark interchange describes angular distributions

Farrar and sjb; Matveev et al; Lepage, sjb; Blankenbecler, Gunion, sjb

Physics on the Light-Front Quark Confinement and Novel QCD Phenomena The Mexican School of Particles and Fields 2018 Sonora School of High Energy Physics

Quantum Chromodynamics

Yang Mills Gauge Principle: Color Rotation and Phase Invariance at Every Point of Space and Time Scale-Invariant Coupling Renormalizable Nearly-Conformal Asymptotic Freedom Color Confinement

Fundamental Couplings of QCD and QED

$$\mathcal{L}_{QCD} = -\frac{1}{4} Tr(G^{\mu\nu}G_{\mu\nu}) + \sum_{f=1}^{n_f} i\bar{\Psi}_f D_{\mu}\gamma^{\mu}\Psi_f + \sum_{f=1}^{n_f} m_f\bar{\Psi}_f\Psi_f$$

Je contraction of the contractio

$$G^{\mu\nu} = \partial^{\mu}A^{\mu} - \partial^{\nu}A^{\mu} - g[A^{\mu}, A^{\nu}]$$

QCD

 $G^{\mu\nu}G_{\mu\nu}$

Gluon vertices

gluon self couplings

In QCD and the Standard Model $\alpha_s = \frac{g^2}{4\pi}$ the beta function is indeed negative! $=\frac{-g^{2}}{16\pi^{2}}\left(\frac{11}{3}N\right)$ B(g) $\beta \equiv \frac{d\alpha_s(Q^2)}{d\log Q^2} <$ logarithmic derivative of the QCD coupling is negative Coupling becomes weaker at short distances = high momentum transfer

Verification of Asymptotic Freedom

Ratio of rate for $e^+e^- \rightarrow q\bar{q}g$ to $e^+e^- \rightarrow q\bar{q}$ at $Q = E_{CM} = E_{e^-} + E_{e^+}$

Physics on the Light-Front Quark Confinement and Novel QCD Phenomena The Mexican School of Particles and Fields 2018 Sonora School of High Energy Physics

Running Coupling from Light-Front Holography and AdS/QCD Analytic, defined at all scales, IR Fixed Point

AdS/QCD dilaton captures the confinement corrections to effective charges for Q < 1 GeV

$$e^{\varphi} = e^{+\kappa^2 z^2}$$

Deur, de Téramond, sjb

Running Coupling from Light-Front Holography and AdS/QCD

$$C_F = \frac{N_C^2 - 1}{2N_C}$$

Huet, sjb

$\lim N_C \to 0 \text{ at fixed } \alpha = C_F \alpha_s, n_\ell = n_F / C_F$

$QCD \rightarrow Abelian Gauge Theory$

Analytic Feature of SU(Nc) Gauge Theory

All analyses for Quantum Chromodynamics must be applicable to Quantum Electrodynamics

Must Use Same Scale Setting Procedure! BLM/PMC

In QED the β-function is positive

logaríthmic derivative of the QED coupling is positive Coupling becomes stronger at short distances = high momentum transfer

 $\beta(g) = \frac{-g^2}{16\pi^2} \left(\frac{1}{3}\right)$

 $= \frac{d\alpha_{QED}(Q^2)}{d\ln Q^2}$

Landau Pole!

QED One-Loop Vacuum Polarization

Must Use Same Scale-Setting Procedure! BLM/PMC

Profound Questions for Hadron Physics

- Origin of the QCD Mass Scale
- Color Confinement
- Spectroscopy: Tetraquarks, Pentaquarks, Gluonium, Exotic States
- Universal Regge Slopes: n, L, both Mesons and Baryons
- Massless Pion: Bound State
- Dynamics and Spectroscopy
- QCD Coupling at all Scales
- QCD Vacuum Do QCD Condensates Exist?
Applications of AdS/CFT to QCD

Changes in physical length scale mapped to evolution in the 5th dimension z

Features of LF Holographic QCD

- Color Confinement, Analytic form of confinement potential
- Massless pion bound state in chiral limit
- QCD coupling at all scales
- Connection of perturbative and nonperturbative mass scales
- Poincare' Invariant
- Hadron Spectroscopy-Regge Trajectories with universal slopes in n, L
- Supersymmetric 4-Plet: Meson-Baryon Tetraquark Symmetry
- Light-Front Wavefunctions
- Form Factors, Structure Functions, Hadronic Observables
- •OPE: Constituent Counting Rules
- Hadronization at the Amplitude Level

•Analytic First Approximation to QCD

Many phenomenological tests

• Systematically improvable: Basis LF Quantization (BLFQ)

Physics on the Light-Front Quark Confinement and Novel QCD Phenomena

The leading Regge trajectory: Δ resonances with maximal J in a given mass range. Also shown is the Regge trajectory for mesons with J = L+S.

E. Klempt and B. Ch. Metsch 2012

Light meson orbital (a) and radial (b) spectrum for $\kappa=0.6$ GeV.

Predict Hadron Properties from First Principles!

Frame Independent : Poíncarè Invaríant

Light-Front Time

Each element of flash photograph illuminated at same LF time

 $\tau = t + z/c$

Causal, frame-independent $P^{\pm} = P^0 + P^z$ Evolve in LF time $P^- = i \frac{d}{d\tau}$ Eigenstate -- independent of TEigenvalue $P^- = \frac{\mathcal{M}^2 + \vec{P}_{\perp}^2}{P^+}$ $H_{LF} = P^+ P^- - \vec{P}_{\perp}^2$ $H_{LF}^{QCD}|\Psi_h\rangle = \mathcal{M}_h^2|\Psi_h\rangle$

P.A.M Dirac, Rev. Mod. Phys. 21, Dírac's Amazing Idea: 392 (1949) The "Front Form" **Evolve** in **Evolve in** ordinary time light-front time! $\tau = t + z/c$ $\sigma = ct - z$ ct ct Ζ Ζ y y **Front Form Instant Form** No dependence on observer's frame

• Boosts are kinematical

P.A.M. Dirac (1977)

"Working with a front is a process that is unfamiliar to physicists. But still I feel that the mathematical simplification that it introduces is all-important.

I consider the method to be promising and have recently been making an extensive study of it.

It offers new opportunities, while the familiar instant form seems to be played out " - P.A.M. Dirac (1977)

Invariant under boosts! Independent of P^{μ}

Causal, Frame-independent. Creation Operators on Simple Vacuum, Current Matrix Elements are Overlaps of LFWFS

Must include vacuum-induced currents to compute form factors and other current matrix elements!

Boosts are dynamical in instant form

- Need to boost proton wavefunction: p to p+q. Extremely complicated dynamical problem; particle number changes
- Need to couple to all currents arising from vacuum!! Remain even after normal-ordering
- Instant-form WFs insufficient to calculate form factors
- Each time-ordered contribution is frame-dependent
- Divide by disconnected vacuum diagrams

Physics on the Light-Front Quark Confinement and Novel QCD Phenomena

 $= 2p^+F(q^2)$

Front Form

Drell, sjb

Exact LF Formula for Paulí Form Factor

$$\frac{F_{2}(q^{2})}{2M} = \sum_{a} \int [dx][d^{2}\mathbf{k}_{\perp}] \sum_{j} e_{j} \frac{1}{2} \times Drell, sjb$$

$$\begin{bmatrix} -\frac{1}{q^{L}}\psi_{a}^{\uparrow *}(x_{i}, \mathbf{k}'_{\perp i}, \lambda_{i}) \psi_{a}^{\downarrow}(x_{i}, \mathbf{k}_{\perp i}, \lambda_{i}) + \frac{1}{q^{R}}\psi_{a}^{\downarrow *}(x_{i}, \mathbf{k}'_{\perp i}, \lambda_{i}) \psi_{a}^{\uparrow}(x_{i}, \mathbf{k}_{\perp i}, \lambda_{i}) \end{bmatrix}$$

$$\mathbf{k}'_{\perp i} = \mathbf{k}_{\perp i} - x_{i}\mathbf{q}_{\perp} \qquad \mathbf{k}'_{\perp j} = \mathbf{k}_{\perp j} + (1 - x_{j})\mathbf{q}_{\perp}$$

$$\mathbf{q}_{R,L} = q^{x} \pm iq^{y}$$

$$\mathbf{p}, \mathbf{S}_{z} = -1/2 \qquad \mathbf{p} + \mathbf{q}, \mathbf{S}_{z} = 1/2$$

Must have $\Delta \ell_z = \pm 1$ to have nonzero $F_2(q^2)$

Nonzero Proton Anomalous Moment --> Nonzero orbítal quark angular momentum

Low Energy Forward Compton Scattering

Low energy theorem: Spin-1/2 Target

$$S_{fi} = -2\pi i \delta(E_f - E_i) M_{fi}$$

$$M_{fi} = \frac{1}{2\omega} (2\pi)^3 \,\delta^3 (P_f - P_i) \left[\frac{Z_T^2 e^2}{\mathscr{M}} \,\hat{\mathbf{e}}' \cdot \hat{\mathbf{e}} \delta_{fi} + 2i\omega \left(\mu - \frac{Z_T e}{2\mathscr{M}} \right)^2 \,\sigma_{fi} \cdot \hat{\mathbf{e}}' \times \hat{\mathbf{e}} + O(\omega^2) \right]$$

Amplitude determined by static properties of target

 $k \cdot p = \omega \mathcal{M}$ Photon lab energy $\omega \to 0, \theta \to 0$

Erroneous claim (Barton & Dombey): LET and DHG Sum Rule Wrong!

Single particle wave-packet

Primack, sjb

$$\phi(x) = \int \frac{d^3p}{(2\pi)^{3/2}} \sqrt{\frac{m}{p^0}} u(p) \phi(p) e^{-ip.x}$$
$$u(p) = \sqrt{\frac{p^0 + m}{2m}} \left(\frac{1}{\frac{\sigma \cdot p}{p^0 + m}}\right) x.$$

Instant Form Wavefunction of moving bound state:

$$\begin{split} \varphi_{EP}(\mathbf{x}_{a} \ \mathbf{x}_{b}, X^{0})_{SM} & \qquad \text{Not product of} \\ &= \frac{E + \mathcal{M}}{2\mathcal{M}} \int \frac{d^{3}p}{(2\pi)^{3/2}} \left(\frac{p_{a}^{0} + m_{a}}{2p_{a}^{0}} \frac{p_{b}^{0} + m_{b}}{2p_{b}^{0}} \right)^{1/2} & \qquad \text{boosts!} \\ &\times \left(\begin{array}{c} 1 + \frac{\sigma_{a} \cdot \mathbf{P}}{\mathcal{M} + E} \frac{\sigma_{a} \cdot \mathbf{p}}{2m_{a} + k_{a}} \\ \sigma_{a} \cdot \left(\frac{\mathbf{P}}{\mathcal{M} + E} + \frac{\mathbf{p}}{2m_{a} + k_{a}} \right) \right) \otimes \left(\begin{array}{c} 1 - \frac{\sigma_{b} \cdot \mathbf{P}}{\mathcal{M} + E} \frac{\sigma_{b} \cdot \mathbf{p}}{2m_{b} + k_{b}} \\ \sigma_{b} \cdot \left(\frac{\mathbf{P}}{\mathcal{M} + E} - \frac{\mathbf{p}}{2m_{b} + k_{b}} \right) \right) \\ &\times \phi_{\mathcal{M}}(\mathbf{p}) \chi_{SM} \exp[i\mathbf{p} \cdot \tilde{\mathbf{x}} + i\mathbf{P} \cdot \mathbf{X}] \exp[-iEX^{0}]. \\ \tilde{\mathbf{x}} &= \mathbf{x} + (\gamma - 1) \hat{\mathbf{V}} \hat{\mathbf{V}} \cdot \mathbf{x} : p_{a,b}^{0} = \sqrt{\mathbf{p}^{2}} + m_{a,b}^{2}, \quad k_{a,b} = -\tau_{b,a}(U + W). \\ &\text{Correct Boosted Wavefunction needed for LET, DGH } \end{split}$$

Gravitational Form Factors

$$\langle P'|T^{\mu\nu}(0)|P\rangle = \overline{u}(P') \left[A(q^2)\gamma^{(\mu}\overline{P}^{\nu)} + B(q^2)\frac{i}{2M}\overline{P}^{(\mu}\sigma^{\nu)\alpha}q_{\alpha} + C(q^2)\frac{1}{M}(q^{\mu}q^{\nu} - g^{\mu\nu}q^2) \right] u(P) ,$$

where
$$q^{\mu} = (P' - P)^{\mu}, \ \overline{P}^{\mu} = \frac{1}{2}(P' + P)^{\mu}, \ a^{(\mu}b^{\nu)} = \frac{1}{2}(a^{\mu}b^{\nu} + a^{\nu}b^{\mu})$$

$$\begin{split} \left\langle P+q,\uparrow \left|\frac{T^{++}(0)}{2(P^+)^2}\right|P,\uparrow \right\rangle &= A(q^2) \ , \\ \left\langle P+q,\uparrow \left|\frac{T^{++}(0)}{2(P^+)^2}\right|P,\downarrow \right\rangle &= -(q^1-\mathrm{i}q^2)\frac{B(q^2)}{2M} \ . \end{split}$$

Stan Brodsky SLACELERATOR LABORATORY

Physics on the Light-Front Quark Confinement and Novel QCD Phenomena

Vanishing Anomalous gravitomagnetic moment B(0)

Terayev, Okun, et al: B(0) Must vanish because of Equivalence Theorem

Unique Features of Light-Front Quantization

- Boosts are Kinematical
- LF wavefunctions independent of bound-state four-momentum P^µ
- Current Matrix Elements and Form Factors are overlaps of LFWFs
- Measurements made at fixed light-front time $\tau = t + z/c$
- States defined at fixed τ within causal horizon
- Normal-ordering built in
- Jz conservation, J^z = S^z + L^z
- Cluster Decomposition
- LF Vacuum Trivial up to Zero-Modes (Higgs)
- Zero Cosmological Constant (No Vacuum Loops)

 $\psi_n(x_i, \vec{k}_{\perp i}, \lambda_i)$

Light-Front vs. Instant Form

- Light-Front Wavefunctions are frame-independent
- Boosting an instant-form wavefunctions is a dynamical problem -- extremely complicated even in QED
- Vacuum state is lowest mass eigenstate of Hamiltonian
- Light-Front Vacuum same as vacuum of the free Hamiltonian
- Zero anomalous gravitomagnetic moment
- Instant-Form Vacuum infinitely complex even in QED
- n! time-ordered diagrams in Instant Form
- Causal commutators using LF time; simple cluster decomposition

Physics on the Light-Front Quark Confinement and Novel QCD Phenomena

Advantages of the Dírac's Front Form for Hadron Physics

- \bullet Measurements are made at fixed τ
- Causality is automatic

- Structure Functions are squares of LFWFs
- Form Factors are overlap of LFWFs
- LFWFs are frame-independent -- no boosts!
- No dependence on observer's frame
- LF Holography: Dual to AdS space
- LF Vacuum trivial up to zero modes
- Profound implications for Cosmological Constant

R. Shrock, sjb

Stan Brodsky SLACELERATOR LABORATORY

Physics on the Light-Front Quark Confinement and Novel QCD Phenomena

QCD and the LF Hadron Wavefunctions

Violates Conventional Wisdom!

Violates Conventional Wisdom!

DIS

Attractive, opposite-sign rescattering potential

Repulsíve, same-sígn scattering potential

DY

Dae Sung Hwang, Yuri V. Kovchegov, Ivan Schmidt, Matthew D. Sievert, sjb Final-State Interactions Produce Pseudo T-Odd (Sivers Effect)

Hwang, Schmidt, sjb Collins

- Leading-Twist Bjorken Scaling!
- Requires nonzero orbital angular momentum of quark
- Arises from the interference of Final-State QCD Coulomb phases in S- and Pwaves;
- Wilson line effect -- Ic gauge prescription
- Relate to the quark contribution to the target proton anomalous magnetic moment and final-state QCD phases
- QCD phase at soft scale!
- New window to QCD coupling and running gluon mass in the IR
- **QED S and P Coulomb phases infinite -- difference of phases finite!**
- Alternate: Retarded and Advanced Gauge: Augmented LFWFs

Dae Sung Hwang, Yuri V. Kovchegov, Ivan Schmidt, Matthew D. Sievert, sjb

Mulders, Boer Qiu, Sterman Pasquini, Xiao, Yuan, sjb

Hoyer, Marchal, Peigne, Sannino, sjb

QCD Mechanism for Rapidity Gaps

Static

- Square of Target LFWFs
- No Wilson Line
- Probability Distributions
- Process-Independent
- T-even Observables
- No Shadowing, Anti-Shadowing
- Sum Rules: Momentum and J^z
- DGLAP Evolution; mod. at large x
- No Diffractive DIS

Dynamic

Modified by Rescattering: ISI & FSI Contains Wilson Line, Phases No Probabilistic Interpretation Process-Dependent - From Collision T-Odd (Sivers, Boer-Mulders, etc.) Shadowing, Anti-Shadowing, Saturation Sum Rules Not Proven

DGLAP Evolution

Hard Pomeron and Odderon Diffractive DIS

Hwang, Schmidt, sjb,

Mulders, Boer

Qiu, Sterman

Collins, Qiu

Pasquini, Xiao, Yuan, sjb

Physics on the Light-Front Quark Confinement and Novel QCD Phenomena

Hadron Dístríbutíon Amplítudes

- Fundamental gauge invariant non-perturbative input to hard exclusive processes, heavy hadron decays. Defined for Mesons, Baryons
- Evolution Equations from PQCD, OPE
- Conformal Expansions
- Compute from valence light-front wavefunction

Efremov, Radyushkin

Sachrajda, Frishman Lepage, sjb

Physics on the Light-Front Quark Confinement and Novel QCD Phenomena

Prediction from AdS/QCD: Meson LFWF

• Light Front Wavefunctions: $\Psi_n(x_i, \vec{k}_{\perp i}, \lambda_i)$ off-shell in P^- and invariant mass $\mathcal{M}^2_{q\bar{q}}$

Boost-invariant LFWF connects confined quarks and gluons to hadrons

week ending 24 AUGUST 2012

AdS/QCD Holographic Wave Function for the ρ Meson and Diffractive ρ Meson Electroproduction

Representation of Ion-Ion Collisions at RHIC, LHC

A large nucleus before and after an ultra-relativistic boost.

Is this really true? Will an electron-proton collider see different results than a fixed target experiment such as SLAC because the nucleus is squashed to a pancake?

No length contraction — no pancakes!

Penrose Terrell Weiskopf

We do not observe the nucleus at one time t!
Physics on the Light Front: A Novel Approach to Quark Confinement and QCD Phenomena

The Mexican School of Particles and Fields (MSPF)

The 2018 University of Sonora School of High Energy Physics (USHEP)

Stan Brodsky

Lecture I October 22, 2018

with Guy de Tèramond, Hans Günter Dosch, Marina Nielsen, Cedric Lorcè, and Alexandre Deur