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Between 1930-1950, appear the first articles on
the description of high spin matter fields.

Publication date

1930 1950 1970 1990 2010

| | |
[ [ [

B Fierz and Pauli (FP)
B Rarita and Schiwinger (RS)
B Bargmann and Wigner (BW)




Since 1960, several authors have adressed
the inconsistencies of the high spin theories.

Publication date
1930 1950 1970 1990 2010

| | | |
[ [ [ [
B NKR.
W Johnson y Sudarshan. .
Acausality

Quantization problems

B Deser y Waldron. Acausality
B Velo y Zwanzinger. Acausality
B Kobayashi y Shamaly. Acausality

B Shay. Non physical solutions




There are mainly three difficulties
on classical high spin theories.

Difficulties:

B Acausality.

B Undesirable propagation Here | present a new approach

hich ids th bl .
of degrees of freedom. wilich avonds these probiems

B Non physical solutions.



Spins described by quantum fields are embedded in finite
representation of SL(2,C), which are labeled by two numbers.

Labels for the irreducible (J1,J2) o Integer

representations of SL(2,C) e Half-integer

Spin :
lj1 — Jal, lj1 — Jel + 1, ..., [j1 + J2l



Examples for single and multiple spins

Dirac spinors (1/2,0) @ (0,1/2) Irred. rep. Spin 1/2
Vo

Antisymmetric tensor (1,0) ® (0,1) Irred. rep. Spin 1
Fu
Symmetric tensor-spinor

’(/)ab

Column-vector

Four-vector (1/2,1/2) Irred. rep. Spin 0 and 1
Ay



The formalism that we developed puts all irreducible
representations into Lorentz and/or spinor tensor basis.

(i) Lorentz Tensors A, ... We obtain any field which

(ii) Spinor tensors U, . transforms according to
the irreducible representation

(j17j2) S2) (j27j1)

Lorentz projector Pﬁf"jﬂ —



The Lorentz projectors are constructed by one
of the Casimir operators of the Lorentz algebra.

Casimir operator

[

{ of the Lorentz algebra
Pgh]é) —

_ (F%M
‘ kli#j1e \ C(j12) — Clka) ] l

. Eigenvalues of F’
Lorentz projectors

(Momentum independent) FU=cU, U~ (ji,j2)
c=ji1(j1+1) +j20j2 + 1)




Example

U, ~(1/2,1/2) @ [(1/2,0) & (0,1/2)]
[(1/2,0) ® (0,1/2)] @ [(1,1/2) ® (1/2,1)]

The Lorentz projectors separate:
(1/2,0) & (0,1/2) from (1,1/2) & (1/2,1)
One pure spin Multiple spins
1/2 1/2,3/2

We see that we encounter either simple single spin or multiple spins sectors



We can isolate single spin only from two-spin irrep
by using the Poincaré projectors.

Poincaré projectors -
Casimir operator

of the Poincaré algebra

2 W2 — € o
(m,1/2) _Pp 3/2 [WQ] VP = e, U
PWZ 2 m? €1/2 — €3/2 ’

€s = —p?s(s+1), s=1/2,3/2

Napsuciale, Kirchbach and Rodriguez, 2006
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Applying this method to 1), allows to separately write
three equations, two for spin 1/2 and one for spin 3/2.

Equations for 1/2 in:

r hKes

. 18
(1/2.00® (0,1/2): [P/ |Pgst?] 0 =we

[e%

i Gl 18
(/2n®1,1/2): |Pp/Y] Pt et =ue

Equation for 3/2 in:

«

- ar 18
(1/2,1) @ (1,1/2):  |PL/2V| [plm3/2) =
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The two spin 1/2 equations lead to two particles
with different characteristics, as manifest upon gauging.

Spin 1/2 in Spin 1/2 in
(1/2,0)® (0,1/2) (1,1/2) & (1/2,1)

Equations minimally coupled
with the electromagnetic field

They rewrite as:

Generalized Feynman-Gell-Mann equation

|| 050 (§) (5w <] =1

-

g=-2/3




The two spin 1/2 equations lead to two particles
with different characteristics, as manifest upon gauging.

Spin 1/2in (1/2,0)® (0,1/2)  Spin 1/2in (1,1/2) ® (1/2,1)

Hg=2 mg=-2/3
B Its equation bi-linearize B |ts equation do not bi-linearize
to the Dirac equation to the Dirac equation

(New specie of 1/2 particle)
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The two spin 1/2 equations lead to two particles
with different characteristics, as manifest upon gauging.

Total Cross Section
1.0

0.8+

0.4r \‘-‘\ g=-2/3
0.2 \“‘-—.____ g=2
-—---_.______________-r
1 1 P S S e
0 2 4 6 8 10




For the general case of any single spin j
in (7,0) @ (0,7), we write the equation below.

Our free field equation Properties:
(G:0) _ . 2 (G.0) . -
0, 0"Pp: m wi-Y =0 B P picks up the corresponding
3 space to the representation
J (G,0) © (0,5).
Tensor field
(Lorentz/Spinor) M It guarantees the mass-shell
condition.

B U is a pure spin field, with
spin j.
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Our formalism has the advantage to avoid the
three main difficulties of classical high spin theories.

B We do not have non-physical solutions

The solutions correspond only to pure spin fields

16/32



Our formalism has the advantage to avoid the
three main difficulties of classical high spin theories.

Bl It propagates the correct number of degrees of freedom

Our equation coupled with the electromagnetic field

(T DFDY +m2) W =0

W, 0r0" = Ppd? Prl =0
l
B Prl, =T U~ (7,0)®(0,7)
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Our formalism has the advantage to avoid the
three main difficulties of classical high spin theories.

B Causal propagation of the solutions of the coupled equations

Can be shown using the Courant-Hilbert criterion

E. G. Delgado Acosta, V. M. Banda Guzman and M. Kirchbach, 2015
V. M. Banda Guzman and M. Kirchbach, 2016
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Applying our formalism to the field ¥,,;, we predict
a new spin 3/2 particle whose g = 2/3.

Our spin-3/2 equation coupled with the electromagnetic field

&

[S1[)

DFDY [\1:( 0) (g;)] B} _ 2 {\I,(g,o) (x)} [79]

} [aB][d]
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Besides applying our formalism to Lorentz tensors,
we can equally apply it to spinor-Dirac tensors.

Example: Spin 1in ¥, 4,

Vara, ~ [(1/2,0) @ (0,1/2)] @ [(1/2,0) & (0,1/2)]
=[(1,0) @ (0,1)] & 2(0:0) © 2(1/2:1/2)]

731(?1’0) picks up only the degrees of freedom of (1,0) & (0,1)
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Comparing our formalism with the Bargmann-Wigner (BW),
we observe that solutions of BW do not transform irreducibly.

BW method

B Simmetric Dirac tensors ¥y, 5,
B Particles with spin j =n/2
B Field equations

(i7,0" — m)“ " Ty, b, =0
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Comparing our formalism with the Bargmann-Wigner (BW),
we observe that solutions of BW do not transform irreducibly.

Espin 1

Our formalism BW formalism: 7?%1/2’1/2)111 #0
~ (1,0) & (0,1) W~ (1,0) 8 (0,1) & (1/2,1/2)
Correct number of d.o.f Correct number of d.o.f,

+ irreducibility but not irreducibles

(Implies unphysical properties
and high spin problems)
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The mixture of irreducible representations
can be avoided by using Weyl spinor fields.

Symmetric Weyl spinor tensor

fields: By means of these fields we can
describe any spin.

(Laporte  and  Uhlenbeck,1931.
Friedrich Cap and Hermann Donnert,
1954)

XagB... ™~ (]a O)

7%~ (0, 7)
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So far | have presented a new approach at the level of
classical field theory. Now, we would like to move at the
quantum level.

Goal: Construction of a suitable Lagrangian as the starting point

to elaborate high spin quantum field theories

Conditions:
O Scalar action O Quadratic Lagrangian

in the fields and its derivatives
(] Hermitian Lagrangian [J Diagonal Hamiltonian

without negative terms
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Idea: Formulate the theory in Weyl-spinor tensor basis

Advantages B Just by indices simmetrization we can obtain the
irreducible representations (j,0) @ (0, j), which
we use in our fomalism at the classical level.

B Possibility of constructing a family of kinetic terms

in such a way to obtain a positive definite diagonal
Hamiltonian.

25/32



Example: Spin 1 in (1,0) & (0, 1) with Weyl-spinor tensors.

L= a0 0np + ad"s] 0,01
+b0, 1] 7T O, b + bO] .a”daaﬂﬂﬁaywag
+e0, 07708, b + O] 5ol By
meaﬁwaﬁ -m wdﬁ_wTa

a, b and c are real parameters

Work in progess...
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Conclusions

B Our second order formalism in the momenta avoid
the three main problems of classical high spin theories.

Acausality
Undesired propagation of degrees of freedom

Non-physical solutions
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Conclusions

B Combining the projectorsPl(;jl’jQ) and 731(4]}’;”) on the field ¥,
we obtain two equations that describe particles with spin 1/2.

Dirac particle g = 2 New particle g = —2/3
(1/2,0) & (0,1/2) representation (1,1/2) & (1/2,1) representation

Finite Compton cross sections in ultraviolet according to unitarity
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Conclusions

M Aplying our formalism to the field ¥[,,;, we describe a spin 3/2 particle
with g=2/3, and thereby distinct from 3/2 in ¥, with g = 2.

Therefore, particles with equal spin described by fields in distinct

Lorentz irreducible reprsentations have different physical properties.
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Conclusions

B We verify that the method of Bargmann-Wigner, although it predicts
the right number of degrees of freedom for a spin j, they do not
transform irreducibly.

Our formalism Bargmann-Wigner formalism

Spin 1in (1,0) 6 (0,1) Spin 1in (1,0) @ (0,1) & (1/2,1/2)
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Conclusions

B We initiate the analysis to elaborate high spin quantum fields from
the consrtuction of a Lagrangian based on four conditions.

1. Scalar action
2. Hermitian Lagrangian
3. Quadratic Lagrangian

4. Diagonal Hamiltonian without negative terms

Bl In addition to the four conditions, we use symmetric Weyl tensor fields
to construct the Lagrangian.
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Conclusions

B We make progress in constructing the Lagrangian for spin 1 particles
using second rank symmetric Weyl tensor fields which could possibly
guarantee the previous four conditions. We hope we can generalize it
to any spin j.
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