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Between 1930-1950, appear the first articles on
the description of high spin matter fields.

Publication date

1930 1950 1970 1990 2010

� Fierz and Pauli (FP)
� Rarita and Schiwinger (RS)
� Bargmann and Wigner (BW)
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Since 1960, several authors have adressed
the inconsistencies of the high spin theories.

Publication date

1930 1950 1970 1990 2010

� Johnson y Sudarshan.
� Quantization problems

� Velo y Zwanzinger. Acausality
� Shay. Non physical solutions � Kobayashi y Shamaly. Acausality

� Deser y Waldron. Acausality

� NKR.
� Acausality
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There are mainly three difficulties
on classical high spin theories.

Difficulties:

� Acausality.
� Undesirable propagation
� of degrees of freedom.
� Non physical solutions.

Here I present a new approach
which avoids these problems.
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Spins described by quantum fields are embedded in finite
representation of SL(2,C), which are labeled by two numbers.

Labels for the irreducible
representations of SL(2,C)

(j1, j2) • Integer

• Half-integer

Spin :
|j1 − j2|, |j1 − j2|+ 1, . . . , |j1 + j2|
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Examples for single and multiple spins

Dirac spinors (1/2, 0)⊕ (0, 1/2) Irred. rep. Spin 1/2
Ψa

Antisymmetric tensor (1, 0)⊕ (0, 1) Irred. rep. Spin 1
F[µν]
Symmetric tensor-spinor
ψab
Column-vector

Four-vector (1/2, 1/2) Irred. rep. Spin 0 and 1
Aµ
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The formalism that we developed puts all irreducible
representations into Lorentz and/or spinor tensor basis.

(i) Lorentz Tensors Aµν...
(ii) Spinor tensors Ψab...

Lorentz projector P(j1,j2)
F

We obtain any field which
transforms according to
the irreducible representation
(j1, j2)⊕ (j2, j1)
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The Lorentz projectors are constructed by one
of the Casimir operators of the Lorentz algebra.

P(j1,j2)
F =

∏
kl 6=j1j2

(
F − c(jkjl)

c(j1j2) − c(jkjl)

)

Lorentz projectors
(Momentum independent)

Casimir operator
of the Lorentz algebra

Eigenvalues of F

FΨ = cΨ, Ψ ∼ (j1, j2)
c = j1(j1 + 1) + j2(j2 + 1)
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Example

Ψµ ∼ (1/2, 1/2)⊗ [(1/2, 0)⊕ (0, 1/2)]
[(1/2, 0)⊕ (0, 1/2)] ⊕ [(1, 1/2)⊕ (1/2, 1)]

The Lorentz projectors separate:
(1/2, 0)⊕ (0, 1/2) from (1, 1/2)⊕ (1/2, 1)

One pure spin
1/2

Multiple spins
1/2, 3/2

We see that we encounter either simple single spin or multiple spins sectors
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We can isolate single spin only from two-spin irrep
by using the Poincaré projectors.

Poincaré projectors

P(m,1/2)
W 2 (p) = p2

m2
W 2 − ε3/2
ε1/2 − ε3/2

Casimir operator
of the Poincaré algebra[
W 2]α

β
Ψβ = εsΨα

εs = −p2s(s+ 1), s = 1/2, 3/2

Napsuciale, Kirchbach and Rodriguez, 2006
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Applying this method to ψµ allows to separately write
three equations, two for spin 1/2 and one for spin 3/2.

Equations for 1/2 in:

(1/2, 0)⊕ (0, 1/2) :
[
P(1/2,0)
F

]α
β

[
P(m,1/2)
W 2

]β
δ

Ψδ = Ψα

(1/2, 1)⊕ (1, 1/2) :
[
P(1/2,1)
F

]α
β

[
P(m,1/2)
W 2

]β
δ

Ψδ = Ψα

Equation for 3/2 in:

(1/2, 1)⊕ (1, 1/2) :
[
P(1/2,1)
F

]α
β

[
P(m,3/2)
W 2

]β
δ

Ψδ = Ψα
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The two spin 1/2 equations lead to two particles
with different characteristics, as manifest upon gauging.

Spin 1/2 in
(1/2, 0)⊕ (0, 1/2)

Spin 1/2 in
(1, 1/2)⊕ (1/2, 1)

Equations minimally coupled
with the electromagnetic field

They rewrite as:

[
DµDµ +

(g
2

)(e
2

)
σµνF

µν +m2
]

Ψ = 0

Generalized Feynman-Gell-Mann equation
g = 2 g = −2/3
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The two spin 1/2 equations lead to two particles
with different characteristics, as manifest upon gauging.

Spin 1/2 in (1/2, 0)⊕ (0, 1/2)

� g = 2

� Its equation bi-linearize
� to the Dirac equation

Spin 1/2 in (1, 1/2)⊕ (1/2, 1)

� g = −2/3

� Its equation do not bi-linearize
� to the Dirac equation
(New specie of 1/2 particle)
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The two spin 1/2 equations lead to two particles
with different characteristics, as manifest upon gauging.
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For the general case of any single spin j
in (j,0) ⊕ (0, j), we write the equation below.

Our free field equation(
∂µ∂

µP(j,0)
F −m2

)
{... }Ψ

{... } = 0

Tensor field
(Lorentz/Spinor)

Properties:

� P(j,0)
F picks up the corresponding

� space to the representation
� (j, 0)⊕ (0, j).

� It guarantees the mass-shell
� condition.

� Ψ is a pure spin field, with
� spin j.
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Our formalism has the advantage to avoid the
three main difficulties of classical high spin theories.

� We do not have non-physical solutions
� The solutions correspond only to pure spin fields
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Our formalism has the advantage to avoid the
three main difficulties of classical high spin theories.

� It propagates the correct number of degrees of freedom

Our equation coupled with the electromagnetic field

(
ΓµνDµDν +m2)Ψ = 0

� Γµν∂µ∂ν = PF∂2

� PFΓµν = Γµν

PFΨ = Ψ

Ψ ∼ (j, 0)⊕ (0, j)
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Our formalism has the advantage to avoid the
three main difficulties of classical high spin theories.

� Causal propagation of the solutions of the coupled equations
� Can be shown using the Courant-Hilbert criterion

E. G. Delgado Acosta, V. M. Banda Guzman and M. Kirchbach, 2015
V. M. Banda Guzman and M. Kirchbach, 2016
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Applying our formalism to the field Ψ[µν], we predict
a new spin 3/2 particle whose g = 2/3.

Our spin-3/2 equation coupled with the electromagnetic field

[
Γ( 3

2 ,0)
µν

]
[αβ][γδ]

DµDν
[
Ψ( 3

2 ,0)(x)
][αβ]

= −m2
[
Ψ( 3

2 ,0)(x)
][γδ]

[
Γ( 3

2 ,0)µ
ν

][αβ]
[γδ] = 4

[
P( 3

2 ,0)
F

][αβ][σµ] [
P( 3

2 ,0)
F

]
[σν][γδ]
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Besides applying our formalism to Lorentz tensors,
we can equally apply it to spinor-Dirac tensors.

Example: Spin 1 in Ψa1a2

Ψa1a2 ∼ [(1/2, 0)⊕ (0, 1/2)]⊗ [(1/2, 0)⊕ (0, 1/2)]
= [(1, 0)⊕ (0, 1)]⊕ 2(0, 0)⊕ 2(1/2, 1/2)]

P(1,0)
F picks up only the degrees of freedom of (1, 0)⊕ (0, 1)
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Comparing our formalism with the Bargmann-Wigner (BW),
we observe that solutions of BW do not transform irreducibly.

BW method

� Simmetric Dirac tensors Ψb1...bn

� Particles with spin j = n/2

� Field equations

(iγµ∂µ −m)aibi Ψb1...bi...bn = 0
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Comparing our formalism with the Bargmann-Wigner (BW),
we observe that solutions of BW do not transform irreducibly.

Espín 1

Our formalism
Ψ ∼ (1, 0)⊕ (0, 1)

Correct number of d.o.f
+ irreducibility

BW formalism: P(1/2,1/2)
F Ψ 6= 0

Ψ ∼ (1, 0)⊕ (0, 1)⊕ (1/2, 1/2)

Correct number of d.o.f,
but not irreducibles
(Implies unphysical properties
and high spin problems)
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The mixture of irreducible representations
can be avoided by using Weyl spinor fields.

Symmetric Weyl spinor tensor
fields:

χαβ... ∼ (j, 0)

η̄α̇β̇... ∼ (0, j)

By means of these fields we can
describe any spin.
(Laporte and Uhlenbeck,1931.
Friedrich Cap and Hermann Donnert,
1954)
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So far I have presented a new approach at the level of
classical field theory. Now, we would like to move at the
quantum level.

Goal: Construction of a suitable Lagrangian as the starting point
to elaborate high spin quantum field theories

Conditions:

� Scalar action

� Hermitian Lagrangian

� Quadratic Lagrangian
� in the fields and its derivatives

� Diagonal Hamiltonian
� without negative terms
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Idea: Formulate the theory in Weyl-spinor tensor basis

Advantages � Just by indices simmetrization we can obtain the
� irreducible representations (j, 0)⊕ (0, j), which
� we use in our fomalism at the classical level.

� Possibility of constructing a family of kinetic terms
� in such a way to obtain a positive definite diagonal
� Hamiltonian.
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Example: Spin 1 in (1,0) ⊕ (0,1) with Weyl-spinor tensors.

L = a∂µψαβ∂µψαβ + a∂µψ†
α̇β̇
∂µψ

†α̇β̇

+b∂νψ†
α̇β̇
σνα̇ασµβ̇β∂µψαβ + b∂µψ

†
α̇β̇
σνα̇ασµβ̇β∂νψαβ

+c∂νψγβσνγα̇σµα̇α∂µψαβ + c∂νψ
†
α̇β̇
σνα̇ασµαγ̇∂µψ

†γ̇β̇

−m2ψαβψαβ −m2ψ†
α̇β̇
ψ†α̇̇

a, b and c are real parameters

Work in progess...
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Conclusions

� Our second order formalism in the momenta avoid
� the three main problems of classical high spin theories.

Acausality
Undesired propagation of degrees of freedom
Non-physical solutions
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Conclusions

� Combining the projectorsP(j1,j2)
F and P(j,m)

W 2 on the field Ψµ,
� we obtain two equations that describe particles with spin 1/2.

Dirac particle g = 2
(1/2,0) ⊕ (0,1/2) representation

New particle g = −2/3
(1,1/2) ⊕ (1/2,1) representation

Finite Compton cross sections in ultraviolet according to unitarity
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Conclusions

� Aplying our formalism to the field Ψ[µν], we describe a spin 3/2 particle
� with g=2/3, and thereby distinct from 3/2 in Ψµ with g = 2.

Therefore, particles with equal spin described by fields in distinct
Lorentz irreducible reprsentations have different physical properties.

29/32



Conclusions

� We verify that the method of Bargmann-Wigner, although it predicts
� the right number of degrees of freedom for a spin j, they do not
� transform irreducibly.

Our formalism

Spin 1 in (1,0) ⊕ (0,1)

Bargmann-Wigner formalism

Spin 1 in (1,0) ⊕ (0,1) ⊕ (1/2,1/2)
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Conclusions

� We initiate the analysis to elaborate high spin quantum fields from
� the consrtuction of a Lagrangian based on four conditions.

1. Scalar action

2. Hermitian Lagrangian

3. Quadratic Lagrangian

4. Diagonal Hamiltonian without negative terms

� In addition to the four conditions, we use symmetric Weyl tensor fields
� to construct the Lagrangian.
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Conclusions

� We make progress in constructing the Lagrangian for spin 1 particles
� using second rank symmetric Weyl tensor fields which could possibly
� guarantee the previous four conditions. We hope we can generalize it
� to any spin j.
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