

XXXII RADPYC, 28th May 2018

What is the right formalism to search for resonances?

César Fernández-Ramírez

Instituto de Ciencias Nucleares Universidad Nacional Autónoma de México

and Joint Physics Analysis Center

References

Eur. Phys. J. C (2018) 78:229 https://doi.org/10.1140/epjc/s10052-018-5670-y THE EUROPEAN PHYSICAL JOURNAL C

Special Article - Tools for Experiment and Theory

Mikhasenko et al., Eur. Phys. J. C 78, 229 (2018) arXiv:1712.02815 [hep-ph]

What is the right formalism to search for resonances?

Joint Physics Analysis Center

M. Mikhasenko^{1,a}, A. Pilloni^{2,b}, J. Nys^{2,3,4,5}, M. Albaladejo⁶, C. Fernández-Ramírez⁷, A. Jackura^{4,5}, V. Mathieu², N. Sherrill^{4,5}, T. Skwarnicki⁸, A. P. Szczepaniak^{2,4,5}

JLAB-THY-18-2700

Pilloni et al. arXiv:1805.02113 [hep-ph]

What is the right formalism to search for resonances? II. The pentaquark chain

A. Pilloni,^{1,*} J. Nys,^{1,2,3,4,†} M. Mikhasenko,^{5,‡} M. Albaladejo,⁶ C. Fernández-Ramírez,⁷
A. Jackura,^{3,4} V. Mathieu,¹ N. Sherrill,^{3,4} T. Skwarnicki,⁸ and A. P. Szczepaniak^{1,3,4}
(Joint Physics Analysis Center)

Three body decays

LHCb, PRD 92, 112009 (2015)

S-matrix principles

- 1. Something must happen
- 2. We can exchange particles and antiparticles
- 3. Causes precede effects

Unitarity
 Crossing symmetry
 Causality ⇒ Analyticity

Singularities

- * We want to study scattering
- We need to build amplitudes according to S-matrix theory

S = I + 2iA

- That means to understand the singularities of the amplitude
 - ✤ Kinematical ⇒ From external momenta and spins
 - ♦ Dynamical ⇒ The physics we are after: resonances,
 QCD, BSM, etc.

$B^0 \rightarrow \psi \pi^- K^+$ amplitude

CFR, ICN-UNAM

- * B^0 decays weakly \Rightarrow PC and **PV** amplitudes
- * We can use crossing symmetry to treat the decay channel
- * The *s* channel is K* dominated
- Once we have the s channel, the *t* channel * can be built similarly ($\psi \pi$ resonances)

 p_1

 $s = (p_3 + p_4)^2,$

 $t = (\bar{p}_1 + p_3)^2$

 $u = (\bar{p}_1 + p_4)^2$

Non-PW expanded amplitude

$$A_{\lambda}(s,t) = \epsilon_{\mu}(\lambda,p_1) \left[(p_3 - p_4)^{\mu} - \frac{m_3^2 - m_4^2}{s} (p_3 + p_4)^{\mu} \right] C(s,t) + \epsilon_{\mu}(\lambda,p_1) (p_3 + p_4)^{\mu} B(s,t)$$

This is a choice for the tensors, there are others and provide the same results

C(s,t) and B(s,t) are scalar functions that are kinematical singularity free

Fine, but if we are going to search for resonances we are going to need this **PW expanded**, and that is where the **headache starts**

PW expanded amplitude

To incorporate resonances in the πK system with certain spin *j*, we expand the amplitude in partial waves

$$\mathcal{A}_{\lambda}(s,t,u) = \frac{1}{4\pi} \sum_{j=|\lambda|}^{\infty} (2j+1) A_{\lambda}^{j}(s) d_{\lambda 0}^{j}(z_{s})$$

The analysis of kinematical singularities has general validity, and may be applied to the original untruncated series

Kinematical singularities

 $d_{\lambda 0}^{j}(z_{s}) = \hat{d}_{\lambda 0}^{j}(z_{s})\xi_{\lambda 0}(z_{s}),$ where $\xi_{\lambda 0}(z_{s}) = \left(\sqrt{1-z_{s}^{2}}\right)^{|\lambda|} = \sin^{|\lambda|}\theta_{s}$ is the so-called half angle factor that contains all the kinematical singularities in t.

 $\hat{d}_{\lambda 0}^{j}(z_{s})$ is a polynomial in s and t of order $j - |\lambda|$ divided by the factor $\lambda_{12}^{(j-|\lambda|)/2} \lambda_{34}^{(j-|\lambda|)/2}$

The helicity partial waves $A^{j}_{\lambda}(s)$ have singularities in s. These have both dynamical and kinematical origin

First, the term $(pq)^{j-|\lambda|}$ is factorized out from the helicity amplitude $A_{\lambda}^{j}(s)$. This factor is there to cancel the threshold and pseudothreshold singularities in s that appear in $\hat{d}_{\lambda 0}^{j}(z_{s})$

We introduce the kinematic factor $K_{\lambda 0}$ ('±' is short for $\lambda = \pm 1$), required to account for a mismatch between the j and L dependence in the angular momentum barrier factors in presence of particles with spin.

CFR, ICN-UNAM

Kinematically singularity-free helicity partial waves

$$A_{0}^{j}(s) = K_{00} (pq)^{j} \hat{A}_{0}^{j}(s) \quad \text{for } j \ge 1,$$

$$A_{\pm}^{j}(s) = K_{\pm 0} (pq)^{j-1} \hat{A}_{\pm}^{j}(s) \quad \text{for } j \ge 1,$$

$$A_{0}^{0}(s) = \frac{1}{K_{00}} \hat{A}_{0}^{0}(s) \quad \text{for } j = 0,$$
with K_{00} and $K_{\pm 0}$ given by
$$K_{00} = \frac{m_{1}}{p\sqrt{s}} = \frac{2m_{1}}{\lambda_{12}^{1/2}},$$

$$K_{\pm 0} = q = \frac{\lambda_{34}^{1/2}}{2\sqrt{s}}.$$

 $A_{\lambda}^{j}(s) \sim p^{L_{1}}q^{L_{2}}$ at threshold, where L_{1} and L_{2} are the lowest possible orbital angular momenta in the given helicity and parity combination

The K-factors have powers of \sqrt{s} as required to ensure factorization of the vertices of Regge poles.

CFR, ICN-UNAM

We match the PW and the non-PW expanded amplitudes

$$-C(s,t)\frac{n(s,t)(s+m_1^2-m_2^2)}{4m_1^2s} + B(s,t)\frac{\lambda_{12}}{4m_1^2} = \frac{A_0(s)}{K_{00}\,\xi_{00}(z_s)} = \frac{1}{4\pi} \left(\sum_{j>0} (2j+1)(pq)^j \hat{A}_0^j(s) \hat{d}_{00}^j(z_s) + \frac{\lambda_{12}}{4m_1^2} \hat{A}_0^0(s)\right) + \frac{1}{4\pi^2} \left(\sum_{j>0} (2j+1)(pq)^j \hat{A}_0^j(s) \hat{d}_{00}^j(z_s) + \frac{\lambda_{12}}{4m_1^2} \hat{A}_0^0(s)\right) + \frac{1}{4\pi^2} \left(\sum_{j>0} (2j+1)(pq)^j \hat{A}_0^j(s) \hat{d}_{00}^j(z_s) + \frac{\lambda_{12}}{4m_1^2} \hat{A}_0^0(s)\right) + \frac{1}{4\pi^2} \left(\sum_{j>0} (2j+1)(pq)^j \hat{A}_0^j(s) \hat{d}_{00}^j(z_s) + \frac{\lambda_{12}}{4m_1^2} \hat{A}_0^0(s)\right) + \frac{1}{4\pi^2} \left(\sum_{j>0} (2j+1)(pq)^j \hat{A}_0^j(s) \hat{d}_{00}^j(z_s) + \frac{\lambda_{12}}{4m_1^2} \hat{A}_0^0(s)\right) + \frac{1}{4\pi^2} \left(\sum_{j>0} (2j+1)(pq)^j \hat{A}_0^j(s) \hat{d}_{00}^j(z_s) + \frac{\lambda_{12}}{4m_1^2} \hat{A}_0^0(s)\right) + \frac{1}{4\pi^2} \left(\sum_{j>0} (2j+1)(pq)^j \hat{A}_0^j(s) \hat{d}_{00}^j(z_s) + \frac{\lambda_{12}}{4m_1^2} \hat{A}_0^0(s)\right) + \frac{1}{4\pi^2} \left(\sum_{j>0} (2j+1)(pq)^j \hat{A}_0^j(s) \hat{d}_{00}^j(z_s) + \frac{\lambda_{12}}{4m_1^2} \hat{A}_0^0(s)\right) + \frac{1}{4\pi^2} \left(\sum_{j>0} (2j+1)(pq)^j \hat{A}_0^j(s) \hat{d}_{00}^j(z_s) + \frac{\lambda_{12}}{4m_1^2} \hat{A}_0^0(s)\right) + \frac{1}{4\pi^2} \left(\sum_{j>0} (2j+1)(pq)^j \hat{A}_0^j(s) \hat{d}_{00}^j(z_s) + \frac{\lambda_{12}}{4m_1^2} \hat{A}_0^0(s)\right) + \frac{1}{4\pi^2} \left(\sum_{j>0} (2j+1)(pq)^j \hat{A}_0^j(s) \hat{d}_{00}^j(z_s) + \frac{\lambda_{12}}{4m_1^2} \hat{A}_0^0(s)\right) + \frac{1}{4\pi^2} \left(\sum_{j>0} (2j+1)(pq)^j \hat{A}_0^j(s) \hat{d}_{00}^j(z_s) + \frac{\lambda_{12}}{4m_1^2} \hat{A}_0^0(s)\right) + \frac{1}{4\pi^2} \left(\sum_{j>0} (2j+1)(pq)^j \hat{A}_0^j(s) \hat{d}_{00}^j(z_s) + \frac{\lambda_{12}}{4m_1^2} \hat{A}_0^0(s)\right) + \frac{1}{4\pi^2} \left(\sum_{j>0} (2j+1)(pq)^j \hat{A}_0^j(s) \hat{d}_{00}^j(z_s) + \frac{\lambda_{12}}{4m_1^2} \hat{A}_0^0(s)\right) + \frac{1}{4\pi^2} \left(\sum_{j>0} (2j+1)(pq)^j \hat{A}_0^j(s) \hat{d}_{00}^j(z_s)\right) + \frac{1}{4\pi^2} \left(\sum_{j>0} (2j+1)(pq)^j \hat{A}_0^j(s) \hat{A}_0^j(s)\right) + \frac{1}{4\pi^2} \left(\sum_{j>0} (2j+1)(pq)^j \hat{A}_0^j(s) \hat{A}_0^j(s)\right) + \frac{1}{4\pi^2} \left(\sum_{j>0} (2j+1)(pq)^j \hat{A}_0^j(s) + \frac{1}{4\pi^2} \left(\sum_{j>0} (2j+1)(pq)^j \hat{A}_0^j(s)\right) + \frac{1}{4\pi^2} \left(\sum_{j>0}$$

Combining them we obtain

$$4\pi B(s,t) = \hat{A}_{0}^{0}(s) + \frac{4m_{1}^{2}}{\lambda_{12}} \sum_{j>0} (2j+1)(pq)^{j} \left[\hat{A}_{0}^{j}(s)\hat{d}_{00}^{j}(z_{s}) + \frac{s+m_{1}^{2}-m_{2}^{2}}{\sqrt{2}m_{1}^{2}} \hat{A}_{+}^{j}(s) z_{s}\hat{d}_{10}^{j}(z_{s}) \right]$$

Two poles at $s_{\pm} = (m_{1} \pm m_{2})^{2}$
Unless this guy cancel them out

The fact that *C*(*s*,*t*) and *B*(*s*,*t*) cannot have kinematical singularities imposes **constrains** in the PW expanded amplitudes

s_{\pm} poles

Consequence: the $\hat{A}_{\lambda}(s)$ for different λ cannot be independent at pseudo(threshold)

In the $s \rightarrow s_{\pm}$ limit at fixed $t, z_s \rightarrow \infty$ so

$$\hat{d}_{\lambda 0}^{j}(z_{s}) \xrightarrow{z_{s} \to \infty} (-1)^{\frac{\lambda + |\lambda|}{2}} \frac{(2J)! \left[J(2J-1)\right]^{1/2}}{2^{J} J \left[(1+\lambda)!(1-\lambda)!\right]^{1/2}} \frac{z_{s}^{J-|\lambda|}}{\langle j-1,0;1,\lambda|j,\lambda\rangle} \qquad \text{for } |\lambda| \le 1$$

$$\hat{A}_{0}^{j}(s)\frac{(z_{s})^{j}}{\langle j-1,0;1,0|j,0\rangle} - \frac{s+m_{1}^{2}-m_{2}^{2}}{\sqrt{2}m_{1}^{2}}\hat{A}_{+}^{j}(s)\frac{(z_{s})^{j}}{\sqrt{2}\langle j-1,0;1,1|j,1\rangle}$$

And the bracket in previous slide has to vanish, so

$$\hat{A}_{+}^{j}(s) = \langle j - 1, 0; 1, 1 | j, 1 \rangle \, g_{j}(s) + \lambda_{12} \, f_{j}(s)$$
$$\hat{A}_{0}^{j}(s) = \langle j - 1, 0; 1, 0 | j, 0 \rangle \frac{s + m_{1}^{2} - m_{2}^{2}}{2m_{1}^{2}} \, g_{j}'(s) + \lambda_{12} \, f_{j}'(s)$$

where $g_j(s)$, $f_j(s)$, $g'_j(s)$, and $f'_j(s)$ are regular functions at $s=s_{\pm}$, and $g_j(s_{\pm})=g'_j(s_{\pm})$

CFR, ICN-UNAM

XXXII RADPYC 2018

Final PW amplitudes

$$A_{+}^{j}(s) = p^{j-1}q^{j} \left[\langle j-1,0;1,1|j,1\rangle g_{j}(s) + \lambda_{12} f_{j}(s) \right]$$
$$A_{0}^{j}(s) = p^{j-1}q^{j} \left[\langle j-1,0;1,0|j,0\rangle \frac{s+m_{1}^{2}-m_{2}^{2}}{2m_{1}\sqrt{s}} g_{j}'(s) + \frac{m_{1}}{\sqrt{s}}\lambda_{12} f_{j}'(s) \right]$$

and

 $A_0^0(s) = \lambda_{12}^{1/2} / (2m_1) \,\hat{A}_0^0(s)$

Comparison to LS and CPM

LS PWA

CFR, ICN-UNAM

LS for
$$B^0 \rightarrow \psi \pi^- K^+$$
 amplitude

$$|j\Lambda;LS\rangle = \sqrt{\frac{2L+1}{2j+1}}\sum_{\lambda_1\lambda_2} \langle L,0;S,\lambda_1-\lambda_2|j\Lambda\rangle \langle j_1,\lambda_1;j_2,-\lambda_2|S,\lambda_1-\lambda_2\rangle |j\Lambda;\lambda_1\lambda_2\rangle}$$

$$G_L^j(s) = \sqrt{\frac{2L+1}{2j+1}} \sum_{\lambda} \langle L, 0; 1, \lambda | j\lambda \rangle \langle A_\lambda^j(s) \rangle$$

We invert it

$$A_{\lambda}^{j}(s) = p^{j-1}q^{j} \left(\sqrt{\frac{2j-1}{2j+1}} \langle j-1,0;1,\lambda|j,\lambda\rangle \hat{G}_{j-1}^{j}(s) + \sqrt{\frac{2j+3}{2j+1}} \langle j+1,0;1,\lambda|j,\lambda\rangle p^{2} \hat{G}_{j+1}^{j}(s) \right) = p^{j-1}q^{j} \left(\sqrt{\frac{2j-1}{2j+1}} \langle j-1,0;1,\lambda|j,\lambda\rangle \hat{G}_{j-1}^{j}(s) + \sqrt{\frac{2j+3}{2j+1}} \langle j+1,0;1,\lambda|j,\lambda\rangle p^{2} \hat{G}_{j+1}^{j}(s) \right)$$

Note: relativistic but not covariant

CFR, ICN-UNAM

XXXII RADPYC 2018

Matching

$$g_{j}(s) = \sqrt{\frac{2j-1}{2j+1}} \hat{G}_{j-1}^{j}(s)$$

$$f_{j}(s) = \frac{1}{4s} \sqrt{\frac{2j+3}{2j+1}} \langle j+1,0;1,1|j,1\rangle \, \hat{G}_{j+1}^{j}(s)$$

$$g_{j}'(s) = \frac{2m_{1}\sqrt{s}}{s+m_{1}^{2}-m_{2}^{2}} \sqrt{\frac{2j-1}{2j+1}} \hat{G}_{j-1}^{j}(s)$$

$$f_{j}'(s) = \frac{1}{4m_{1}\sqrt{s}} \sqrt{\frac{2j+3}{2j+1}} \langle j+1,0;1,0|j,0\rangle \, \hat{G}_{j+1}^{j}(s)$$

CFR, ICN-UNAM

Covariant Projection Method

$$\begin{array}{c}
\varepsilon_{\mu_{1},...,\mu_{j_{0}}}^{0}(p_{0}) & \varepsilon_{\mu_{1},...,\mu_{j_{1}}}^{1}(p_{1})_{j_{1}} & 1 \\
0 & & \\
X_{\mu_{1},...,\mu_{L}}^{j_{0}}(p_{1r},P_{1r}) & \varepsilon_{\mu_{1},...,\mu_{j_{r}}}^{r}(p_{r}) & \varepsilon_{\mu_{1},...,\mu_{j_{2}}}^{2}(p_{2}) \\
& & \\
X_{\mu_{1},...,\mu_{L}}(p_{23},P_{23}) & & \\
\varepsilon_{\mu_{1},...,\mu_{j_{3}}}^{3}(p_{3}) & & \\
& & \\
0 \rightarrow 1r(\rightarrow 23)
\end{array}$$

Can be used both for scattering and decay

XXXII RADPYC 2018

Scattering vs decay for CPM

CPM explicitly violates crossing symmetry

$$B \to \bar{D}\pi\pi$$
 $DB \to \pi\pi$

in P wave

 $\mathcal{A}_{[BD\to\pi\pi]} = pq\cos\theta_s \, g_P(s), \quad \mathcal{A}_{[B\to\bar{D}\pi\pi]} = \gamma(s)\frac{\sqrt{s}}{m_2}pq\cos\theta_s \, g_P(s)$

$$\gamma(s)\sqrt{s}/m_2 = (s - m_1^2 + m_2^2)/(2m_2^2)$$

Simple model

 $g_S(s) = \hat{G}_0^1(s) = F_0^1(s) = 0$ and $g_D(s) = \hat{G}_2^1(s) = F_2^1(s) = T_{K^*}(s)B_1(q)B_2(p)$

$$T_{K^*}(s) \equiv \frac{0.1}{M_{K^*(892)}^2 - s - iM_{K^*(892)}\Gamma_{K^*(892)}} + \frac{1}{M_{K^*(1410)}^2 - s - iM_{K^*(1410)}\Gamma_{K^*(1410)}}$$
$$B_1(q) = \sqrt{\frac{1}{1 + q^2R^2}}; \quad B_2(q) = \sqrt{\frac{1}{9 + 3q^2R^2 + q^4R^4}} \quad \frac{d\Gamma}{ds} = \sum_j N_j \left(\left| A_0^j(s) \right|^2 + 2 \left| A_+^j(s) \right|^2 \right) \rho(s)$$

21

CFR, ICN-UNAM

XXXII RADPYC 2018

Conclusions

- * Kinematical singularities matter **A LOT**
- Kinematical and dynamical singularities are entangled
- * **Careful** with the formalism, it introduces model dependencies
- Careful when you write your hadron model (BW?), you might be careful with the singularities
- Compare apples to apples
- * Doing it properly is a <u>nightmare</u>
- ★ Growing spins ⇒ Growing pains