

What is the right formalism to search for resonances?

César Fernández-Ramírez

Instituto de Ciencias Nucleares
Universidad Nacional Autónoma de México

and Joint Physics Analysis Center

References

The European PhYsical Journal C

Special Article - Tools for Experiment and Theory

What is the right formalism to search for resonances?

Joint Physics Analysis Center
Mikhasenko et al.,
Eur. Phys. J. C 78, 229 (2018) arXiv:1712.02815 [hep-ph]
M. Mikhasenko ${ }^{1, \mathrm{a}}$, A. Pilloni ${ }^{2, b}$, J. Nys 2,3,4,5, M. Albaladejo ${ }^{6}$, C. Fernández-Ramírez ${ }^{7}$, A. Jackura ${ }^{4,5}$, V. Mathieu ${ }^{2}$, N. Sherrill ${ }^{4,5}$, T. Skwarnicki ${ }^{8}$, A. P. Szczepaniak ${ }^{2,4,5}$

What is the right formalism to search for resonances?
II. The pentaquark chain
A. Pilloni, ${ }^{1, *}$ J. Nys,,${ }^{1,2,3,4, \dagger}$ M. Mikhasenko, ${ }^{5}, \ddagger$ M. Albaladejo, ${ }^{6}$ C. Fernández-Ramírez, ${ }^{7}$
A. Jackura, ${ }^{3,4}$ V. Mathieu, ${ }^{1}$ N. Sherrill, ${ }^{3,4}$ T. Skwarnicki, ${ }^{8}$ and A. P. Szczepaniak ${ }^{1,3,4}$
(Joint Physics Analysis Center)

Three body decays

Z(4430)-

LHCb, PRD 92, 112009 (2015)

CFR, ICN-UNAM

XXXII RADPYC 2018

S-matrix principles

1. Something must happen
2. We can exchange particles and antiparticles
3. Causes precede effects

$$
\downarrow
$$

1. Unitarity

2. Crossing symmetry
3. Causality \Rightarrow Analyticity

Singularities

* We want to study scattering
* We need to build amplitudes according to S-matrix theory

$$
S=I+2 i A
$$

* That means to understand the singularities of the amplitude
* Kinematical \Rightarrow From external momenta and spins
* Dynamical \Rightarrow The physics we are after: resonances, QCD, BSM, etc.

$B^{0} \rightarrow \psi \pi \pi^{-} K^{+}$amplitude

* B^{0} decays weakly \Rightarrow PC and PV amplitudes
- We can use crossing symmetry to treat the decay channel
* The s channel is K^{*} dominated
* Once we have the s channel, the t channel can be built similarly ($\psi \pi$ resonances)

$$
\begin{array}{r}
s=\left(p_{3}+p_{4}\right)^{2}, \\
t=\left(\bar{p}_{1}+p_{3}\right)^{2} \\
u=\left(\bar{p}_{1}+p_{4}\right)^{2} \\
s+t+u=\sum_{i} m_{i}^{2}
\end{array}
$$

$$
\langle\psi \pi K, \text { out }| B, \text { in }\rangle=(2 \pi)^{4} \delta^{4}\left(p_{2}-\bar{p}_{1}-p_{3}-p_{4}\right) \mathcal{A}_{\lambda}
$$

Non-PW expanded amplitude

$$
A_{\lambda}(s, t)=\epsilon_{\mu}\left(\lambda, p_{1}\right)\left[\left(p_{3}-p_{4}\right)^{\mu}-\frac{m_{3}^{2}-m_{4}^{2}}{s}\left(p_{3}+p_{4}\right)^{\mu}\right] C(s, t)+\epsilon_{\mu}\left(\lambda, p_{1}\right)\left(p_{3}+p_{4}\right)^{\mu} B(s, t)
$$

This is a choice for the tensors, there are others and provide the same results
$C(s, t)$ and $B(s, t)$ are scalar functions that are kinematical singularity free

Fine, but if we are going to search for resonances we are going to need this PW expanded, and that is where the headache starts

PW expanded amplitude

To incorporate resonances in the $\pi \mathrm{K}$ system with certain spin j, we expand the amplitude in partial waves

$$
\mathcal{A}_{\lambda}(s, t, u)=\frac{1}{4 \pi} \sum_{j=|\lambda|}^{\infty}(2 j+1) A_{\lambda}^{j}(s) d_{\lambda 0}^{j}\left(z_{s}\right)
$$

The analysis of kinematical singularities has general validity, and may be applied to the original untruncated series

Kinematical singularities

$d_{\lambda 0}^{j}\left(z_{s}\right)=\hat{d}_{\lambda 0}^{j}\left(z_{s}\right) \xi_{\lambda 0}\left(z_{s}\right)$, where $\xi_{\lambda 0}\left(z_{s}\right)=\left(\sqrt{1-z_{s}^{2}}\right)^{|\lambda|}=\sin ^{|\lambda|} \theta_{s}$ is the so-called half angle factor that contains all the kinematical singularities in t.
$\hat{d}_{\lambda 0}^{j}\left(z_{s}\right)$ is a polynomial in s and t of order $j-|\lambda|$ divided by the factor $\lambda_{12}^{(j-|\lambda|) / 2} \lambda_{34}^{(j-|\lambda|) / 2}$

The helicity partial waves $A_{\lambda}^{j}(s)$ have singularities in s. These have both dynamical and kinematical origin

First, the term $(p q)^{j-|\lambda|}$ is factorized out from the helicity amplitude $A_{\lambda}^{j}(s)$. This factor is there to cancel the threshold and pseudothreshold singularities in s that appear in $\hat{d}_{\lambda 0}^{j}\left(z_{s}\right)$

We introduce the kinematic factor $K_{\lambda 0}$ (' \pm ' is short for $\lambda= \pm 1$), required to account for a mismatch between the j and L dependence in the angular momentum barrier factors in presence of particles with spin.

Kinematically singularity-free helicity partial waves

$$
\begin{aligned}
A_{0}^{j}(s) & =K_{00}(p q)^{j} \hat{A}_{0}^{j}(s) \quad \text { for } j \geq 1 \\
A_{ \pm}^{j}(s) & =K_{ \pm 0}(p q)^{j-1} \hat{A}_{ \pm}^{j}(s) \quad \text { for } j \geq 1 \\
A_{0}^{0}(s) & =\frac{1}{K_{00}} \hat{A}_{0}^{0}(s) \quad \text { for } j=0 \\
& \text { with } K_{00} \text { and } K_{ \pm 0} \text { given by } \\
K_{00} & =\frac{m_{1}}{p \sqrt{s}}=\frac{2 m_{1}}{\lambda_{12}^{1 / 2}} \\
K_{ \pm 0} & =q=\frac{\lambda_{34}^{1 / 2}}{2 \sqrt{s}}
\end{aligned}
$$

$A_{\lambda}^{j}(s) \sim p^{L_{1}} q^{L_{2}}$ at threshold, where L_{1} and L_{2} are the lowest possible orbital angular momenta in the given helicity and parity combination

The K-factors have powers of \sqrt{s} as required to ensure factorization of the vertices of Regge poles.

We match the PW and the non-PW expanded amplitudes

$$
\begin{aligned}
-C(s, t) \frac{n(s, t)\left(s+m_{1}^{2}-m_{2}^{2}\right)}{4 m_{1}^{2} s}+B(s, t) \frac{\lambda_{12}}{4 m_{1}^{2}} & =\frac{A_{0}(s)}{K_{00} \xi_{00}\left(z_{s}\right)}=\frac{1}{4 \pi}\left(\sum_{j>0}(2 j+1)(p q)^{j} \hat{A}_{0}^{j}(s) \hat{d}_{00}^{j}\left(z_{s}\right)+\frac{\lambda_{12}}{4 m_{1}^{2}} \hat{A}_{0}^{0}(s)\right) \\
\pm \sqrt{2} C(s, t) & =\frac{A_{ \pm}(s)}{K_{ \pm 0} \xi_{10}\left(z_{s}\right)}= \pm \frac{1}{4 \pi} \sum_{j>0}(2 j+1)(p q)^{j-1} \hat{A}_{ \pm}^{j}(s) \hat{d}_{10}^{j}\left(z_{s}\right)
\end{aligned}
$$

Combining them we obtain

$$
\begin{aligned}
& 4 \pi B(s, t)=\hat{A}_{0}^{0}(s)+\frac{4 m_{1}^{2}}{\lambda_{12}} \sum_{j>0}(2 j+1)(p q)^{j}\left[\hat{A}_{0}^{j}(s) \hat{d}_{00}^{j}\left(z_{s}\right)+\frac{s+m_{1}^{2}-m_{2}^{2}}{\sqrt{2} m_{1}^{2}} \hat{A}_{+}^{j}(s) z_{s} \hat{d}_{10}^{j}\left(z_{s}\right)\right] \\
& \text { Two poles at } s_{ \pm}=\left(m_{1} \pm m_{2}\right)^{2} \\
& \text { Unless this guy cancel them out }
\end{aligned}
$$

The fact that $C(s, t)$ and $B(s, t)$ cannot have kinematical singularities imposes constrains in the PW expanded amplitudes

$\mathrm{S} \pm$ poles

Consequence: the $\hat{A}^{j_{\lambda}}(s)$ for different λ cannot be independent at pseudo(threshold) In the $s \rightarrow s_{ \pm}$limit at fixed $t, z_{s} \rightarrow \infty$ so

$$
\begin{aligned}
& \hat{d}_{\lambda 0}^{j}\left(z_{s}\right) \xrightarrow{z_{s} \rightarrow \infty}(-1)^{\frac{\lambda+|\lambda|}{2}} \frac{(2 J)![J(2 J-1)]^{1 / 2}}{2^{J} J[(1+\lambda)!(1-\lambda)!]^{1 / 2}} \frac{z_{s}^{J-|\lambda|}}{\langle j-1,0 ; 1, \lambda \mid j, \lambda\rangle} \quad \text { for }|\lambda| \leq 1 \\
& \hat{A}_{0}^{j}(s) \frac{\left(z_{s}\right)^{j}}{\langle j-1,0 ; 1,0 \mid j, 0\rangle}-\frac{s+m_{1}^{2}-m_{2}^{2}}{\sqrt{2} m_{1}^{2}} \hat{A}_{+}^{j}(s) \frac{\left(z_{s}\right)^{j}}{\sqrt{2}\langle j-1,0 ; 1,1 \mid j, 1\rangle}
\end{aligned}
$$

And the bracket in previous slide has to vanish, so

$$
\begin{aligned}
\hat{A}_{+}^{j}(s) & =\langle j-1,0 ; 1,1 \mid j, 1\rangle g_{j}(s)+\lambda_{12} f_{j}(s) \\
\hat{A}_{0}^{j}(s) & =\langle j-1,0 ; 1,0 \mid j, 0\rangle \frac{s+m_{1}^{2}-m_{2}^{2}}{2 m_{1}^{2}} g_{j}^{\prime}(s)+\lambda_{12} f_{j}^{\prime}(s)
\end{aligned}
$$

where $g_{j}(s), f_{j}(s), g_{j}^{\prime}(s)$, and $f_{j}^{\prime}(s)$ are regular functions at $s=s_{ \pm}$, and $g_{j}\left(s_{ \pm}\right)=g_{j}^{\prime}\left(s_{ \pm}\right)$

Final PW amplitudes

$$
\begin{aligned}
A_{+}^{j}(s) & =p^{j-1} q^{j}\left[\langle j-1,0 ; 1,1 \mid j, 1\rangle g_{j}(s)+\lambda_{12} f_{j}(s)\right] \\
A_{0}^{j}(s) & =p^{j-1} q^{j}\left[\langle j-1,0 ; 1,0 \mid j, 0\rangle \frac{s+m_{1}^{2}-m_{2}^{2}}{2 m_{1} \sqrt{s}} g_{j}^{\prime}(s)+\frac{m_{1}}{\sqrt{s}} \lambda_{12} f_{j}^{\prime}(s)\right]
\end{aligned}
$$

and

$$
A_{0}^{0}(s)=\lambda_{12}^{1 / 2} /\left(2 m_{1}\right) \hat{A}_{0}^{0}(s)
$$

Comparison to LS and CPM

LS PWA

Helicity amplitudes for

$$
\mathrm{B}^{+} \rightarrow \mathrm{X}(3872) \mathrm{K}^{+}, \mathrm{X}(3872) \rightarrow \underset{\mathrm{X} \text { rest frame }}{\mathrm{J} / \psi \rho} \mathrm{J} / \psi \rightarrow \mu^{+} \mu^{-}, \rho \rightarrow \pi^{+} \pi^{-}
$$

λ - particle helicity
(spin projection onto its momentum)

$$
D_{\lambda_{A}, \lambda_{B}-\lambda_{C}}^{J}(\phi, \theta, 0)^{*}=e^{i \phi} d_{\lambda_{A}, \lambda_{B}-\lambda_{C}}^{J}
$$

$$
\begin{aligned}
& \text { nuisance parameters } \\
& \Delta \lambda_{\mu}=\lambda_{\mu+}-\lambda_{\mu-} \\
& \Omega \equiv\left(\theta_{X}, \theta_{\psi}, \theta_{\rho}, \Delta \phi_{\psi, X}, \Delta \phi_{\rho_{X}}\right) \\
& M_{\Delta \lambda_{\mu}}^{X \rightarrow \psi \rho}=\sum_{\lambda_{\psi}=-1,0,1} \sum_{\lambda_{\rho}=-1,0,1} H_{\lambda_{\psi}, \lambda_{\rho}}^{J_{X}} D_{0, \lambda_{\psi}-\lambda_{\rho}}^{J_{X}}\left(0, \theta_{X}, 0\right)^{*} D_{\lambda_{\psi}, \Delta \lambda_{\mu}}^{1}\left(\Delta \phi_{\psi, X}, \theta_{\psi}, 0\right)^{*} D_{\lambda_{\rho}, 0}^{1}\left(\Delta \phi_{\rho, X}, \theta_{\rho}, 0\right)^{*} \\
& H_{\lambda_{\psi}, \lambda_{\rho}}^{J_{X}}=\sum_{L} \sum_{S} B_{L, S}^{J_{X}} \sqrt{\frac{2 L+1}{2 J_{X}+1}}\left(\begin{array}{cc|c}
J_{\psi} & J_{\rho} & S \\
\lambda_{\psi} & -\lambda_{\rho} & \lambda_{\psi}-\lambda_{\rho}
\end{array}\right)\left(\begin{array}{cc|c}
L & S & J_{X} \\
0 & \lambda_{\psi}-\lambda_{\rho} & \lambda_{\psi}-\lambda_{\rho}
\end{array}\right) \begin{array}{c}
\text { Clebsch-Gordan } \\
\text { coefficients }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \left|J_{\psi}-J_{\rho}\right| \leq S \leq J_{\psi}+J_{\rho} \\
& \left|J_{X}-S\right| \leq L \leq J_{X}+S \\
& P_{X}=P_{\psi} P_{\rho}(-1)^{L}=(-1)^{L}
\end{aligned}
$$

(P-conservation since strong decay)

Number of $B_{L S}$ coupling equals number of independent $H_{\lambda \psi, \lambda \rho}$ couplings (1-5 depending on J_{X}) - neglecting high L values can reduce number of couplings to fit to the data

LS for $\mathrm{B}^{0} \rightarrow \psi \pi^{-} \mathrm{K}^{+}$amplitude

$$
\begin{gathered}
|j \Lambda ; L S\rangle=\sqrt{\frac{2 L+1}{2 j+1}} \sum_{\lambda_{1} \lambda_{2}}<L, 0 ; S, \lambda_{1}-\lambda_{2}|j \Lambda\rangle<j_{1}, \lambda_{1} ; j_{2},-\lambda_{2}\left|S, \lambda_{1}-\lambda_{2}\right\rangle\left|j \Lambda ; \lambda_{1} \lambda_{2}\right\rangle \\
G_{L}^{j}(s)=\sqrt{\frac{2 L+1}{2 j+1}} \sum_{\lambda}<L, 0 ; 1, \lambda \mid j \lambda>A_{\lambda}^{j}(s)
\end{gathered}
$$

We invert it

$$
A_{\lambda}^{j}(s)=\underline{p^{j-1} q^{j}}\left(\sqrt{\frac{2 j-1}{2 j+1}}\langle j-1,0 ; 1, \lambda \mid j, \lambda\rangle \hat{G}_{j-1}^{j}(s)+\sqrt{\frac{2 j+3}{2 j+1}}\langle j+1,0 ; 1, \lambda \mid j, \lambda\rangle p^{2} \hat{G}_{j+1}^{j}(s)\right)
$$

Note: relativistic but not covariant

Matching

$$
\begin{aligned}
g_{j}(s) & =\sqrt{\frac{2 j-1}{2 j+1}} \hat{G}_{j-1}^{j}(s) \\
f_{j}(s) & =\frac{1}{4 s} \sqrt{\frac{2 j+3}{2 j+1}}\langle j+1,0 ; 1,1 \mid j, 1\rangle \hat{G}_{j+1}^{j}(s) \\
g_{j}^{\prime}(s) & =\frac{2 m_{1} \sqrt{s}}{s+m_{1}^{2}-m_{2}^{2}} \sqrt{\frac{2 j-1}{2 j+1}} \hat{G}_{j-1}^{j}(s) \\
f_{j}^{\prime}(s) & =\frac{1}{4 m_{1} \sqrt{s}} \sqrt{\frac{2 j+3}{2 j+1}}\langle j+1,0 ; 1,0 \mid j, 0\rangle \hat{G}_{j+1}^{j}(s)
\end{aligned}
$$

Covariant Projection Method

$0 \rightarrow 1 r(\rightarrow 23)$

$$
\varepsilon_{\mu_{1}, \ldots, \mu_{j_{3}}}^{3}\left(p_{3}\right)
$$

Can be used both for scattering and decay

Scattering vs decay for CPM

CPM explicitly violates crossing symmetry

$$
B \rightarrow \bar{D} \pi \pi
$$

$$
D B \rightarrow \pi \pi
$$

in P wave
$\mathcal{A}_{[B D \rightarrow \pi \pi]}=p q \cos \theta_{s} g_{P}(s), \quad \mathcal{A}_{[B \rightarrow \bar{D} \pi \pi]}=\gamma(s) \frac{\sqrt{s}}{m_{2}} p q \cos \theta_{s} g_{P}(s)$

$$
\gamma(s) \sqrt{s} / m_{2}=\left(s-m_{1}^{2}+m_{2}^{2}\right) /\left(2 m_{2}^{2}\right)
$$

Simple model

$$
g_{S}(s)=\hat{G}_{0}^{1}(s)=F_{0}^{1}(s)=0 \text { and } g_{D}(s)=\hat{G}_{2}^{1}(s)=F_{2}^{1}(s)=T_{K^{*}}(s) B_{1}(q) B_{2}(p)
$$

$$
T_{K^{*}}(s) \equiv \frac{0.1}{M_{K^{*}(892)}^{2}-s-i M_{K^{*}(892)} \Gamma_{K^{*}(892)}}+\frac{1}{M_{K^{*}(1410)}^{2}-s-i M_{K^{*}(1410)} \Gamma_{K^{*}(1410)}}
$$

$$
B_{1}(q)=\sqrt{\frac{1}{1+q^{2} R^{2}}} ; \quad B_{2}(q)=\sqrt{\frac{1}{9+3 q^{2} R^{2}+q^{4} R^{4}}} \frac{d \Gamma}{d s}=\sum_{j} N_{j}\left(\left|A_{0}^{j}(s)\right|^{2}+2\left|A_{+}^{j}(s)\right|^{2}\right) \rho(s)
$$

CFR, ICN-UNAM

Conclusions

* Kinematical singularities matter A LOT
* Kinematical and dynamical singularities are entangled
* Careful with the formalism, it introduces model dependencies
* Careful when you write your hadron model (BW?), you might be careful with the singularities
* Compare apples to apples
* Doing it properly is a nightmare
* Growing spins \Rightarrow Growing pains

