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Abstract Hadron decay chains constitute one of the main
sources of information on the QCD spectrum. We discuss
the differences between several partial wave analysis for-
malisms used in the literature to build the amplitudes. We
match the helicity amplitudes to the covariant tensor basis.
Hereby, we pay attention to the analytical properties of
the amplitudes and separate singularities of kinematical and
dynamical nature. We study the analytical properties of the
spin-orbit (LS) formalism, and some of the covariant tensor
approaches. In particular, we explicitly build the amplitudes
for the B → ψπK and B → D̄ππ decays, and show that
the energy dependence of the covariant approach is model
dependent. We also show that the usual recursive construc-
tion of covariant tensors explicitly violates crossing sym-
metry, which would lead to different resonance parameters
extracted from scattering and decay processes.

1 Introduction

The high quality data on hadron production and decays that
are or will be available from BaBar, BelleII, BESIII, CMS,
CLAS12, COMPASS, GlueX, LHCb, and other experiments,
necessitate rigorous amplitude analysis. This is particularly
true for the extraction of resonance parameters that are based
on analytical partial waves. Moreover, analytical reaction
amplitudes are needed in conjunction with lattice data to

a e-mail: mikhail.mikhasenko@hiskp.uni-bonn.de
b e-mail: pillaus@jlab.org

study the hadron spectrum from first-principles lattice QCD
calculations [1–5].

In this paper, we focus on three-body decays, aka 1-to-3
processes. In recent years such reactions have led to ample
data that resulted in the observation of new exotic phenom-
ena, e.g. the so-called XYZ states in heavy meson decays [6–
8], and that are also used in studies of excited mesons and
baryons. The issues we address and the methodology we
present are, however, of relevance to other analyses as well,
for example to baryon resonance studies in photoproduction
[9,10], or meson spectroscopy from pion or photon beam
fragmentation [11–13].

In the modern literature, there seems to be a lot of
confusion regarding properties of the reaction amplitudes
employed in analyses of such processes. This is often stated
in the context of a potentially nonrelativistic character of
certain approaches [9,14,15]. As we explain below, how-
ever, rather than arising from relativistic kinematics, the dif-
ferences between the various formalisms have a dynami-
cal origin. Reaction amplitudes are given by the scattering
matrix elements between initial and final states that repre-
sent asymptotically free particles. Such states belong to a
unitary, noncovariant representation of the Lorentz group.
Since the scattering operator is a Lorentz scalar, reaction
amplitudes share the transformation properties of the free
particle states. A typical three particle decay process is dom-
inated by two-body resonances, and can be well approxi-
mated by a finite number of partial waves. The latter can be
given by the helicity partial waves or the Russell–Saunders,
aka LS amplitudes [16]. For the LS amplitudes, one couples
particle states in the canonical representation. The relation
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We discuss the di↵erences between several partial-wave analysis formalisms used in the con-
struction of three-body decay amplitudes involving fermions. Specifically, we consider the decay
⇤b !  pK�, where the hidden charm pentaquark signal has been reported. We analyze the ana-
lytical properties of the amplitudes and separate kinematical and dynamical singularities. The result
is an amplitude with the minimal energy dependence compatible with the S-matrix principles.

PACS numbers: 11.55.Bq, 11.80.Cr, 11.80.Et

I. INTRODUCTION

In the recent years experiments such as BaBar, Belle, BESIII, CLAS, COMPASS, GlueX, LHCb, have produced
significant amount of high-precision data on three-body hadron decays, garnering information on new hadronic states
[1–5]. To put existence of such states on firm theoretical footing and to determine their physical properties rigorous
amplitude analysis is needed. There are well established methods based on first principles of reaction theory for
construction of reaction amplitudes describing three particle decays of hadrons [6–15]. It appears, however that there
is significant confusion as to the role of various approximations that these methods entail. In an earlier work [16], we
pointed out that, contrary to the common wisdom, di↵erences among the various approaches are dynamical rather
than kinematical in nature, and we showed that the lore for the LS formalism to be nonrelativistic is unjustified.
As an example, we discussed the decay B !  ⇡K, which shows nontrivial structures appearing in the Belle and
LHCb data in  (2S)⇡ [17–20], and J/ ⇡ channels [21]. In the present paper, we extend the discussion to the more
complicated fermion-boson case. Our main goal is to properly separate kinematical from dynamical singularities. In
general, the analysis of kinematical singularities of amplitudes with fermions has to be handled with particular care,
because of the additional branch point at vanishing value of the Mandelstam variables [22], and because fermions and
antifermions have opposite intrinsic parities. Hence, one expects di↵erent behavior of the amplitudes at threshold
and pseudothreshold. We thus believe that study of such amplitudes deserves an extended discussion. Moreover,
because of the possible existence of hidden charm pentaquarks, there is particular interest in final states containing
the nucleon, a light meson and a charmonium [1–3]. In this paper we thus study the amplitudes for the reaction
⇤
b

!  pK

� in which a prominent pentaquark-like signal in the  p invariant mass observed at LHCb [23, 24].
The paper is organized as follows. In Sec. II we discuss the canonical approach used to analyze the ⇤

b

!  pK

�

decay. By relating the helicity partial waves to the Lorentz scalar amplitudes via the partial-wave expansion, we
derive constraints on the amplitudes and isolate the kinematical singularities. The results, and the comparison with
the LS partial-wave amplitudes, are summarized in Sec. III. In Sec. IV we examine the Covariant Projection Method
(CPM) approach and compare it to our results. Conclusions are given in Sec. V. For ease of readability in the main
text, most of the technical details are given in the appendices where we also give a practical parameterization of the
amplitudes suitable for data analysis.

⇤ pillaus@jlab.org
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between the helicity and LS basis is a straightforward orthog-
onal transformation. Because of the noncovariant transfor-
mation properties of the reaction amplitude, partial waves
transform in a nontrivial way as well, e.g. helicity amplitudes
mix under Lorentz boosts through Wigner rotations. Never-
theless, all of the amplitudes referred to above (the helicity
amplitudes, the helicity partial waves, the LS partial wave
amplitudes) are relativistic, i.e. have well defined behavior
under Lorentz transformations.

Since the helicity amplitudes involve asymptotically free
particle states, they must be proportional to free particle
wave functions, e.g. Dirac spinors or polarization tensors.
These wave functions have mixed transformation properties,
i.e. have both covariant (Lorentz or Dirac), and noncovari-
ant (helicity) indices. The Lorentz and Dirac indices need
to be contracted with covariant tensors built from particle
four-vectors and Dirac gamma matrices to yield the nonco-
variant helicity amplitudes. Helicity amplitudes can therefore
be expressed as linear combinations of products of covariant
tensors and wave functions with coefficients that are scalar
functions of the Mandelstam invariants. It can be shown that
these scalar functions have only dynamical singularities as
demanded by unitarity [17], and for this reason are useful
when analyzing singularities of the partial waves. Further-
more, these scalar functions are invariant under crossing
which makes them convenient to relate amplitudes in the
decay and scattering kinematics.

There exist an approach for constructing the scalar func-
tions from an assumed model for the partial waves, hereafter
referred to as the covariant projection method (CPM) [14,18–
20], that starts from a LS partial wave model (or equiv-
alently the Cartesian, aka Zemach amplitudes [21]) but
writes them in a covariant fashion. The method has a draw-
back, which is related to the behavior under crossing (see
Sect. 3.1). The alternative, which we refer to as the canon-
ical approach [16,22–25], is to use the well known rela-
tion between the helicity amplitudes and the helicity par-
tial waves [16] to determine the scalar functions in terms of
the partial wave models. The differences between these two
approaches to relate partial waves and scalar functions result
in factors which are confusingly referred in the literature as
“relativistic corrections”. These are actually Lorentz invari-
ant functions and therefore can be absorbed into the scalar

functions. In both the CPM and canonical approaches, the
relativistic kinematics is properly taken into account. Thus,
the differences in these approaches are dynamical in nature.

In what follows, we present a detailed comparison of these
two approaches, paying specific attention to the analytical
properties, which are among the few constraints that can be
imposed in a model independent way. Instead of present-
ing results for a general case, we find it more pedagogical to
compare these constructions in a few concrete examples. The
examples we discuss are of special interest to various ongo-
ing analyses, and are complex enough to illustrate the gen-
eral principles. The first example is the parity violating (PV)
three-body decay B0 → ψπ−K+, with ψ = J/ψ,ψ(2S).
The analyses by Belle and LHCb show nontrivial structures
appearing in the ψ(2S)π [25–28], and in the J/ψ π chan-
nel [29]. These are of particular interest, because a resonance
in these channels would require an exotic interpretation [6–
8]. The rest of the paper is organized as follows. In Sect. 2
we discuss the canonical approach on the example of the
B → ψπK decay. By relating the helicity partial waves
to the scalar amplitudes via the partial wave expansion, we
derive constraints and isolate the kinematical singularities.
We also discuss implication of these constraints for the LS
partial wave amplitudes. The details of the amplitude param-
eterizations are given in the Appendices and are presented in
a way that can be implemented in the standard data analysis
tools [30,31]. In Sect. 3 we examine the CPM approach and
compare this model with the findings from Sect. 2. We men-
tion the crossing symmetry properties of CPM using, as an
example, B0 → D̄0π+π−, which was recently analyzed by
LHCb within this formalism [32]. Summary and conclusions
are given in Sect. 4.

2 Analyticity constraints for B → ψπK

In Fig. 1 we show a diagram representing the kinematics of
the decay B → ψ(→ µ+µ−)πK . The spinless particles
B, π , K are stable against the strong interaction. The ψ is
narrow enough to completely factorize its decay dynamics.
Thus, we construct the amplitude considering ψ to be sta-
ble. More details, including the dilepton decay of the ψ , are
given in Appendices A and B. We use pi , i = 2 . . . 4 to label

Fig. 1 Reaction diagrams for a
the B → ψ(→ µ−µ+)πK
decay process, and for b the
ψB → πK s-channel scattering
process. The t-channel process
ψπ → B̄K is indicated by the
vertical line

(a) (b)
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ψð2SÞπÞ
F 30ðmi

ψð2SÞπÞ
;

where the sum runs over the events in the pseudo- or real
experiments.
An exotic state in the ψð2SÞπ system would give

contributions to all Kπ Legendre polynomial moments,
whereas the conventional Kπ resonances contribute only to
moments corresponding to their spin and their interfer-
ences. If, for instance, the B0 → ψð2SÞKþπ− decay pro-
ceeds through S, P, and D Kπ resonances, then only
moments with lmax ≤ 4 would exhibit significant activity.
Therefore, activity in moments of order lmax > 4 would
suggest the presence of other resonant states contributing to

the decay. Lower-order Kπ Legendre polynomial moments,
determined from data and used to build the prediction,
although strongly dominated by the conventional Kπ
resonances, could also contain a contribution from the
exotic state. As a consequence, a relatively small ψð2SÞπ
resonant contribution could be accommodated by the
Monte Carlo prediction. Conversely, a significant disagree-
ment would imply that the ψð2SÞπ invariant mass spectrum
cannot be explained as a reflection of the activity of known
resonances in the Kπ system and would therefore constitute
strong evidence for the presence of exotic states in the
decay B0 → ψð2SÞKþπ−.
TheΔNLLlmax

distributions of the pseudoexperiments are
shown in Fig. 12 (points with error bars) for each of the
three lmax settings. They are consistent with Gaussian
distributions. The statistical significance, S, to rule out
the different hypotheses is the distance, in units of standard
deviations, between the mean value of the ΔNLLlmax

(dashed red arrow in Fig. 12) and the observed value of
the real experiment (continuous black arrow in Fig. 12).
This ranges from 8 to 15 standard deviations, as listed in
Table IV.
The table also gives the statistical significance obtained

by restricting the analysis to the region 1000 MeV=c2 <
mKπ < 1390 MeV=c2, where the presence of the structure
around the Zð4430Þ− mass is most evident, as shown in
Fig. 13. Thus, the hypothesis that the data can be explained
solely in terms of plausible Kπ degrees of freedom can be
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FIG. 11 (color online). The experimental spectrum ofmψð2SÞπ is
shown by the black points. Superimposed are the distributions of
the Monte Carlo simulation: the dotted (black) line corresponds
to the pure phase space case; in the dash-dotted (red) line, themKπ
spectrum is weighted to reproduce the experimental distribution;
in the continuous (blue) line, the angular structure of the Kπ
system is incorporated using Legendre polynomials up to
lmax ¼ 30, which implies a full description of the spectrum
features even if it corresponds to an unphysical configuration
of the Kπ system. The shaded (yellow) bands are related to the
uncertainty on normalized moments.
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FIG. 12 (color online). Distributions of −2ΔNLL for the pseudoexperiments (black dots), fitted with a Gaussian function (dashed red
line), in three different configurations of theKπ system angular contributions: (left) lmax ¼ 4, (middle) lmax ¼ 6, and (right) lmax variable
according to Eq. (4). The black arrow represents the −2ΔNLL value obtained on the data.

TABLE IV. Significance, S, in units of standard deviations, at
which the hypothesis that mψð2SÞπ data can be described as a
reflection of the Kπ system angular structure is excluded, for
different configurations of the Kπ system angular contributions.
In the second column, the whole mKπ spectrum has been
analyzed, while in the third one, the specified mKπ cut is applied.

S, whole mKπ spectrum S, 1.0<mKπ<1.39GeV=c2

lmax ¼ 4 13.3σ 18.2σ
lmax ¼ 6 8.0σ 14.1σ
lmaxðmKπÞ 15.2σ 17.3σ

MODEL-INDEPENDENT CONFIRMATION OF THE … PHYSICAL REVIEW D 92, 112009 (2015)

112009-9

uncertainty in the simulation but only as an indicative
measure of the limited data sample used to compute
moments. Since the band and the error bars on the black
points are related to the same statistical uncertainty on
the data, they should not be combined when estimating the
statistical significance of deviations of the data from the
prediction.
When spin-3 Kπ states are included, by setting lmax ¼ 6,

the predictedmψð2SÞπ spectrum is modified as shown on the
right plot of Fig. 8. Even though the lmax ¼ 6 solution
apparently provides a better description of the data, it is
shown in the following that it is largely incompatible with
the data.
In Fig. 9, the maximum Legendre polynomial order is

limited as a function of mKπ, according to

lmax ¼

8
<

:

2 mKπ < 836 MeV=c2

3 836 MeV=c2 < mKπ < 1000 MeV=c2

4 mKπ > 1000 MeV=c2:

ð4Þ

Figure 9 demonstrates that with this better-motivated lmax
assignment, the simulation cannot reproduce adequately
the mψð2SÞπ distribution.
The disagreement is more evident when looking at

the same spectra in different intervals of mKπ , as shown
in Fig. 10. Here, the candidates are subdivided according
to the mKπ intervals defined in Eq. (4). The last interval is
further split into 1000 MeV=c2 < mKπ < 1390 MeV=c2

and mKπ > 1390 MeV=c2. Except for the mass region
around 4430 MeV=c2, all slices exhibit good agreement

between the data and the simulation. The peaking
structure is particularly evident in the region
1000 MeV=c2 < mKπ < 1390 MeV=c2, between the
K$ð892Þ0 and the resonances above 1400 MeV=c2.
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FIG. 8 (color online). Background subtracted and efficiency corrected spectrum ofmψð2SÞπ . Black points represent data. Superimposed
are the distributions of the Monte Carlo simulation: the dotted (black) line corresponds to the pure phase-space case; in the dash-dotted
(red) line, themKπ spectrum is weighted to reproduce the experimental distribution; in the continuous (blue) line, the angular structure of
the Kπ system is incorporated using Legendre polynomials up to (left) lmax ¼ 4 and (right) lmax ¼ 6. The shaded (yellow) bands are
related to the uncertainty on normalized moments, which is due to the statistical uncertainty that comes from the data. Therefore, the two
uncertainties should not be combined when comparing data and Monte Carlo predictions. See the text for further details.

]2 [MeV/cπ(2S)ψm
3800 4000 4200 4400 4600 4800

)2
Y

ie
ld

 / 
(2

5 
M

eV
/c

0

2000

4000

6000

8000

10000

12000

14000
LHCb

FIG. 9 (color online). The experimental spectrum of mψð2SÞπ is
shown by the black points. Superimposed are the distributions of
the Monte Carlo simulation: the dotted (black) line corresponds
to the pure phase-space case; in the dash-dotted (red) line, the
mKπ spectrum is weighted to reproduce the experimental dis-
tribution; in the continuous (blue) line, the angular structure of the
Kπ system is incorporated using Legendre polynomials with
index lmax variable according to mKπ as described in Eq. (4),
reaching up to lmax ¼ 4. The shaded (yellow) bands are related to
the uncertainty on normalized moments, which is due to the
statistical uncertainty that comes from the data. Therefore, the
two uncertainties should not be combined when comparing data
and Monte Carlo predictions. See the text for further details.
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1. Something must happen
2. We can exchange particles and antiparticles 
3. Causes precede effects

 ⇒
1. Unitarity
2. Crossing symmetry 
3. Causality ⇒ Analyticity
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Singularities
❖ We want to study scattering

❖ We need to build amplitudes according to S-matrix theory

❖ That means to understand the singularities of the 
amplitude

❖ Kinematical ⇒ From external momenta and spins

❖ Dynamical ⇒ The physics we are after: resonances, 
QCD, BSM, etc.

5

S = I + 2i A
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�⇥⇤⇥�⌅⇧⌃

⌥⇥⇤⇥⌥⌅⇧⌃�⇥⇤⇥�⌅⇧⌃

� ⌦↵�⌃⌃��

� ⌦↵�⌃⌃�� ⌥ ⌦↵�⌃⌃��

⌥⇥⇤⇥✏

�⇥⇤⇥✏

�⇥⇤⇥✏

�

⌥
�

⇣⌘

⌘

Figure 2.8: Dalitz plot of s-, t-, and u-channels.

p2

p1

p3

p4

e⇥

e⇥

e⇥

e⇥

(a)

p1

p2
p4

p3

e+

e⇥

e+

e⇥

(b)

Figure 2.9: Møller scattering (a) and Bhabha scattering (b).

Example We take a look at the Møller scattering,

e⇥e⇥ � e⇥e⇥,

which is the s-channel of the reaction depicted on Figure 2.9(a). By crossing, we get as

u-channel reaction the Bhabha scattering,

e+e⇥ � e+e⇥,

which is the reaction depicted on Figure 2.9(b).

The considerations of this chapter enable us to derive constraints on the possible dynamics

but are not suScient to decide on the dynamics. To “get” the dynamics we must calculate

and compare to experiments decay rates and scattering cross-sections.

s = (pa + pb)
2 = (pc + pd)

2

t = (pa � pb)
2 = (pc � pd)

2

u = (pa � pd)
2 = (pb � pc)

2

s+ t+ u = Ma +mb +mc +md

a,Ma

b,mb

c,mc

d,md

a,Ma c,mc

d,md

b̄,mb

Ma > mb +mc +md

A(s, t, u)

a,Ma b̄,mb

d,mdc̄,mc

a,Ma b̄,mb

d,mdc̄,mc
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B0→ψπ-K+ amplitude
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 , p1

B, p2

p3 , ⇡

p4 , K

s

t

B, p2 p3 , ⇡

p4 , K

q2 , µ+

q1 , µ�

 , p̄1

 

⇡

B

K

p2

p1

p3

p4

z

x

y

✓
s

h ⇡K, out|B, ini = (2⇡)4�4(p2 � p̄1 � p3 � p4)A�

s = (p3 + p4)
2,

t = (p̄1 + p3)
2

u = (p̄1 + p4)
2

s+ t+ u =
X

i

m2
i

❖ B0 decays weakly ⇒ PC and PV amplitudes

❖ We can use crossing symmetry to treat the 
decay channel

❖ The s channel is K* dominated

❖ Once we have the s channel, the t channel 
can be built similarly (ψπ resonances)
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Non-PW expanded amplitude

8

A�(s, t) = ✏µ(�, p1)


(p3 � p4)

µ � m2
3 �m2

4

s
(p3 + p4)

µ

�
C(s, t) + ✏µ(�, p1)(p3 + p4)

µB(s, t)

This is a choice for the tensors, there are others and provide the same results

C(s,t) and B(s,t) are scalar functions that are kinematical singularity free

Fine, but if we are going to search for resonances we are going to 
need this PW expanded, and that is where the headache starts
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PW expanded amplitude

9

A�(s, t, u) =
1

4⇡

1X

j=|�|

(2j + 1)Aj
�(s) d

j
�0(zs)

To incorporate resonances in the πK system with certain spin j, we expand 
the amplitude in partial waves

The analysis of kinematical singularities has general validity, and may be 
applied to the original untruncated series
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Kinematical singularities

10

dj�0(zs) =

ˆdj�0(zs)⇠�0(zs), where ⇠�0(zs) =

⇣p
1� z2s

⌘|�|
= sin

|�| ✓s is the

so-called half angle factor that contains all the kinematical singularities in t.

ˆdj�0(zs) is a polynomial in s and t of order j � |�| divided by the factor

�(j�|�|)/2
12 �(j�|�|)/2

34

The helicity partial waves Aj
�(s) have singularities in s. These have both

dynamical and kinematical origin

First, the term (pq)j�|�|
is factorized out from the helicity amplitude Aj

�(s).
This factor is there to cancel the threshold and pseudothreshold singularities in

s that appear in

ˆdj�0(zs)

We introduce the kinematic factor K�0 (‘±’ is short for � = ±1), required

to account for a mismatch between the j and L dependence in the angular

momentum barrier factors in presence of particles with spin.
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Kinematically singularity-free helicity partial waves

11

Aj
0(s) = K00 (pq)j ˆAj

0(s) for j � 1,

Aj
±(s) = K±0 (pq)j�1

ˆAj
±(s) for j � 1,

A0
0(s) =

1

K00

ˆA0
0(s) for j = 0,

with K00 and K±0 given by

K00 =

m1

p
p
s
=

2m1

�1/2
12

,

K±0 = q =

�1/2
34

2

p
s
.

Aj
�(s) ⇠ pL1qL2

at threshold, where L1 and L2 are the lowest possible orbital

angular momenta in the given helicity and parity combination

The K-factors have powers of

p
s as required to ensure factorization of the

vertices of Regge poles.
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We match the PW and the non-PW expanded amplitudes 

12

�C(s, t)
n(s, t)(s+m2

1 �m2
2)

4m2
1s

+B(s, t)
�12

4m2
1

=
A0(s)

K00 ⇠00(zs)
=

1

4⇡

0

@
X

j>0

(2j + 1)(pq)jÂj
0(s)d̂

j
00(zs) +

�12

4m2
1

Â0
0(s)

1

A

±
p
2C(s, t) =

A±(s)

K±0 ⇠10(zs)
= ± 1

4⇡

X

j>0

(2j + 1)(pq)j�1Âj
±(s) d̂

j
10(zs)

4⇡B(s, t) = Â0
0(s) +

4m2
1

�12

X

j>0

(2j + 1)(pq)j

Âj

0(s)d̂
j
00(zs) +

s+m2
1 �m2

2p
2m2

1

Âj
+(s) zsd̂

j
10(zs)

�

Combining them we obtain

The fact that C(s,t) and B(s,t) cannot have kinematical singularities imposes 
constrains in the PW expanded amplitudes

Two poles at s±=(m1±m2)2

Unless this guy cancel them out
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s± poles

13

Consequence: the Âjλ(s) for different λ cannot be independent at pseudo(threshold) 

In the s→s± limit at fixed t, zs→∞ so

ˆdj�0(zs)
zs!1����! (�1)

�+|�|
2

(2J)! [J(2J � 1)]

1/2

2

JJ [(1 + �)!(1� �)!]1/2
zJ�|�|
s

hj � 1, 0; 1,�|j,�i for |�|  1

And the bracket in previous slide has to vanish, so

Âj
0(s)

(zs)j

hj � 1, 0; 1, 0|j, 0i �
s+m2

1 �m2
2p

2m2
1

Âj
+(s)

(zs)jp
2 hj � 1, 0; 1, 1|j, 1i

Âj
+(s) = hj � 1, 0; 1, 1|j, 1i gj(s) + �12 fj(s)

Âj
0(s) = hj � 1, 0; 1, 0|j, 0is+m2

1 �m2
2

2m2
1

g0j(s) + �12 f
0
j(s)

where gj(s), fj(s), g'j(s), and f'j(s) are regular functions at s=s± , and gj(s±)=g'j(s±)
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Final PW amplitudes

14

Aj
+(s) = pj�1qj


hj � 1, 0; 1, 1|j, 1i gj(s) + �12 fj(s)

�

Aj
0(s) = pj�1qj


hj � 1, 0; 1, 0|j, 0i s+m2

1 �m2
2

2m1
p
s

g0j(s) +
m1p
s
�12 f

0
j(s)

�

A0
0(s) = �1/2

12 /(2m1) Â
0
0(s)

and
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Comparison to LS and CPM
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LS PWA
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Tetra- & penta-quarks from amp.ana. of b-decays, FDSA2017, Tomasz Skwarnicki 5

Helicity amplitudes for 
B+→→→→X(3872)K+, X(3872) →→→→ J/ψψψψ ρρρρ , , , , J/ψψψψ→→→→µµµµ++++µµµµ−−−− , ρ, ρ, ρ, ρ→→→→ ππππ++++ππππ−−−−

,

** 1 * 1
0, , ,

1,0,1 1
,

,0,1
0 ,(0, ,0) ( , ,0) ( , ,0)X XJX

X

J

X XM D DH D
µ µλ λ ψ ρ ψ ρψ ρ

ψ ρ

λ λ λ
ψρ

ψλ λ λ
λ λ

ψ ρ ρθ φ θ φ θ→
−

= −
∆ ∆

− =

= ∆ ∆∑ ∑

, ,( , , , , )X X Xψ ρ ψ ρθ θ θ φ φΩ ≡ ∆ ∆

Helicity couplings:
nuisance parameters

, ,

2 1

02 1
X X

L S

J J

XL S

XS J
H B

L J J

J

L S
ψ ρ

ψ

λ λ
ψ ρ ψ ρ ψ ρ

ρ

ψ ρ
λ λ λ λ λ λλ λ

  +
=     +   − − −− 
∑∑

( 1) ( 1)

X X

X

L L

J J J

J

J

P P

S

S L SJ

P

ψ ρ ψ ρ

ψ ρ

− ≤ ≤ +

− ≤ ≤ +

− = −=

Number of BLS coupling equals number of 
independent Hλψ,λρ couplings (1-5 depending on JX)  
– neglecting high L values can reduce number of 
couplings to fit to the data  

(P-conservation 
since strong decay)

5D
analysis

,

1 1

2

,

2

( | , )  X X XP J

X MHM J
µλ λψ ρ

µλ

ψρ
λ
→

∆
∆ =−

Ω = ∑

Clebsch-Gordan
coefficients

λ – particle helicity 
(spin projection onto its momentum)

*

, ,( , ,0) ( )
A B C A B C

J i JD e dφ
λ λ λ λ λ λφ θ θ− −=

A BC→

µ µ µλ λ λ+ −∆ = −

Stolen from Tomasz Skwarnicki (LHCb)
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LS for B0→ψπ-K+ amplitude

17

|j⇤;LS >=

s
2L+ 1

2j + 1

X

�1�2

< L, 0;S,�1 � �2|j⇤ >< j1,�1; j2,��2|S,�1 � �2 > |j⇤;�1�2 >

Gj
L(s) =

s
2L+ 1

2j + 1

X

�

< L, 0; 1,�|j� > Aj
�(s)

We invert it

Aj
�(s) = pj�1qj

 s
2j � 1

2j + 1
hj � 1, 0; 1,�|j,�iĜj

j�1(s) +

s
2j + 3

2j + 1
hj + 1, 0; 1,�|j,�ip2Ĝj

j+1(s)

!

Note: relativistic but not covariant
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Matching
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gj(s) =

s
2j � 1

2j + 1
Ĝj

j�1(s)

fj(s) =
1

4s

s
2j + 3

2j + 1
hj + 1, 0; 1, 1|j, 1i Ĝj

j+1(s)

g0j(s) =
2m1

p
s

s+m2
1 �m2

2

s
2j � 1

2j + 1
Ĝj

j�1(s)

f 0
j(s) =

1

4m1
p
s

s
2j + 3

2j + 1
hj + 1, 0; 1, 0|j, 0i Ĝj

j+1(s)
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Covariant Projection Method

19

0 1

2

3

r

j0

jr

j1

j2

j3

"1µ1,...,µj1
(p1)

"3µ1,...,µj3
(p3)

"2µ1,...,µj2
(p2)

"0µ1,...,µj0
(p0)

"rµ1,...,µjr
(pr)Xµ1,...,µL(p1r, P1r)

Xµ1,...,µL(p23, P23)

0 ! 1 r (! 2 3)
Can be used both for scattering and decay



CFR, ICN-UNAM XXXII RADPYC 2018

Scattering vs decay for CPM

20

CPM explicitly violates crossing symmetry

B ! D̄⇡⇡ DB ! ⇡⇡

A[BD!⇡⇡] = pq cos ✓s gP (s), A[B!D̄⇡⇡] = �(s)

p
s

m2
pq cos ✓s gP (s)

�(s)
p
s/m2 = (s�m2

1 +m2
2)/(2m

2
2)

in P wave
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Simple model
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d�

ds
=

X

j

Nj

✓���Aj
0(s)

���
2
+ 2

���Aj
+(s)

���
2
◆
⇢(s)

TK⇤(s) ⌘ 0.1

M2
K⇤(892) � s� iMK⇤(892)�K⇤(892)

+
1

M2
K⇤(1410) � s� iMK⇤(1410)�K⇤(1410)

gS(s) = Ĝ1
0(s) = F 1

0 (s) = 0 and gD(s) = Ĝ1
2(s) = F 1

2 (s) = TK⇤(s)B1(q)B2(p)

0.5 1.0 1.5 2.0 2.5
M2

pK (GeV2)

0.0

0.5

1.0

1.5

2.0

1/
G

dG
/d

M
2
p

K
(G

eV
�

2 )

With Blatt-Weisskopf factors

0.5 1.0 1.5 2.0 2.5
M2

pK (GeV2)

0

1

2

3

4

5

1/
G

dG
/d

M
2
p

K
(G

eV
�

2 )

Without Blatt-Weisskopf factors

JPAC
CPM scattering
CPM decay
LS scattering
LS decay

B1(q) =

r
1

1 + q2R2
; B2(q) =

r
1

9 + 3q2R2 + q4R4
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Conclusions
❖ Kinematical singularities matter A LOT

❖ Kinematical and dynamical singularities are entangled

❖ Careful with the formalism, it introduces model dependencies

❖ Careful when you write your hadron model (BW?), you might 
be careful with the singularities

❖ Compare apples to apples

❖ Doing it properly is a nightmare

❖ Growing spins ⇒ Growing pains
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