

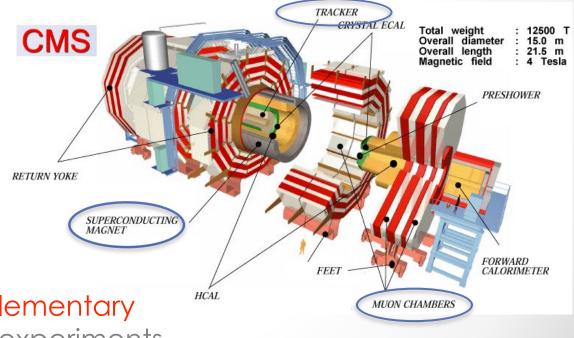
Recent (2018) CMS results on b hadrons & quarkonia

Ivan Heredia de la Cruz CINVESTAV / CONACyT

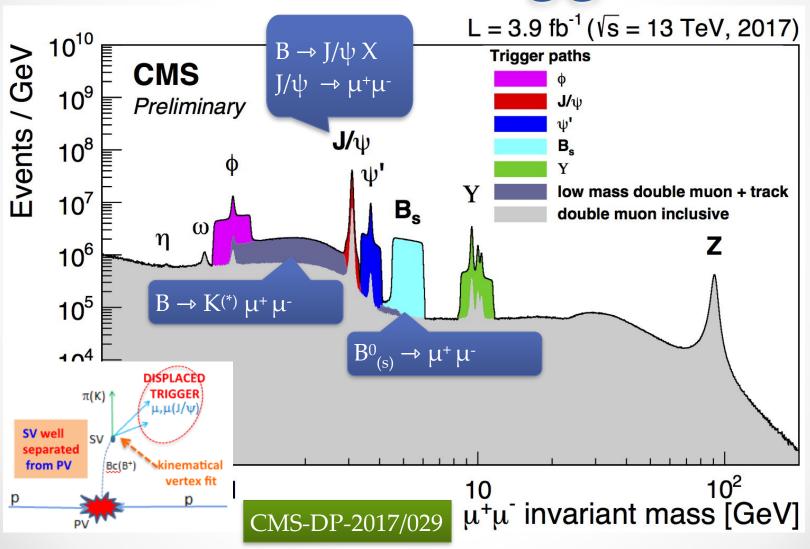
(on behalf of the CMS Collaboration)
XXXII Annual Meeting of the Division of particles and Fields
28-30 May 2018, ICN-UNAM.

Outline

- Introduction & HF program.
- * b hadron lifetimes [arXiv:1710.08949, accepted by EPJC].
- * Λ_b polarization and parameters of the $\Lambda_b \to J/\psi \Lambda$ decay [PRD 97, 072010 (2018)].
- * Cross sections of J/ψ , $\psi(2S)$ and Y(nS) (n=1,2,3) [PLB 780, 251 (2018)].
- * Search for resonances in the $B_s\pi^{\pm}$ mass spectrum [PRL 120, 202005 (2018)].
- Summary.

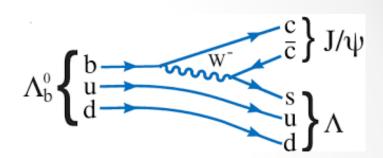

Introduction

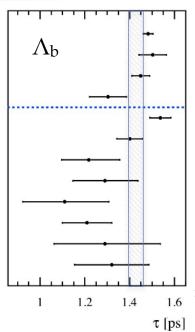
 LHC: pp collisions @ 7-8 (Run I) & 13 TeV (Run II) ⇒ large b and c hadron production.


CMS heavy flavors program ↔
Excellent µ ID + Track and
vertex reconstruction

Precise measurements
 of b hadrons and qq
 properties help to
 improve or constrain
 QCD-inspired
 models.

CMS heavy flavors
 physics results are
 competitive or complementary
 with respect to other experiments.




Dimuon trigger

b hadron lifetimes

- B-lifetimes determine importance of nonspectator contributions.
- Discrepancies among previous measurements of, e.g., Λ_b & B_c + lifetimes:

Experiment

LHCb (2013) [J/ψpK]

CMS (2012) [J/ψA]

ATLAS (2012) [J/ψΛ]

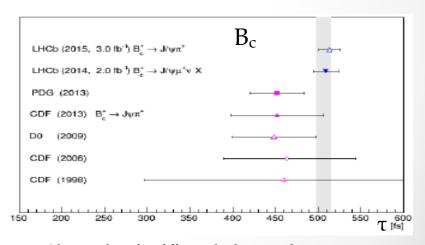
D0 (2012) [J/ψΛ]

CDF (2011) [J/ψΛ]

CDF (2010) $[\Lambda_{c}^{+}\pi^{-}]$

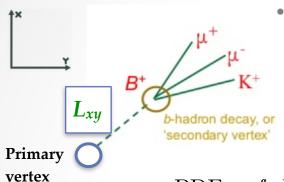
D0 (2007) [J/ψΛ]

D0 (2007) [Semileptonic decay]


DLPH (1999) [Semileptonic decay]

ALEP (1998) [Semileptonic decay]

OPAL (1998) [Semileptonic decay]

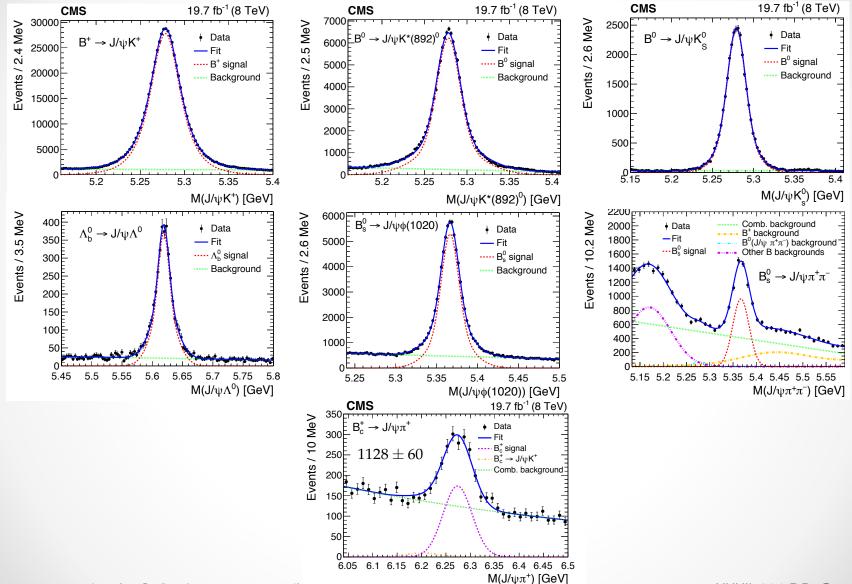

CDF (1996) [Semileptonic decay]

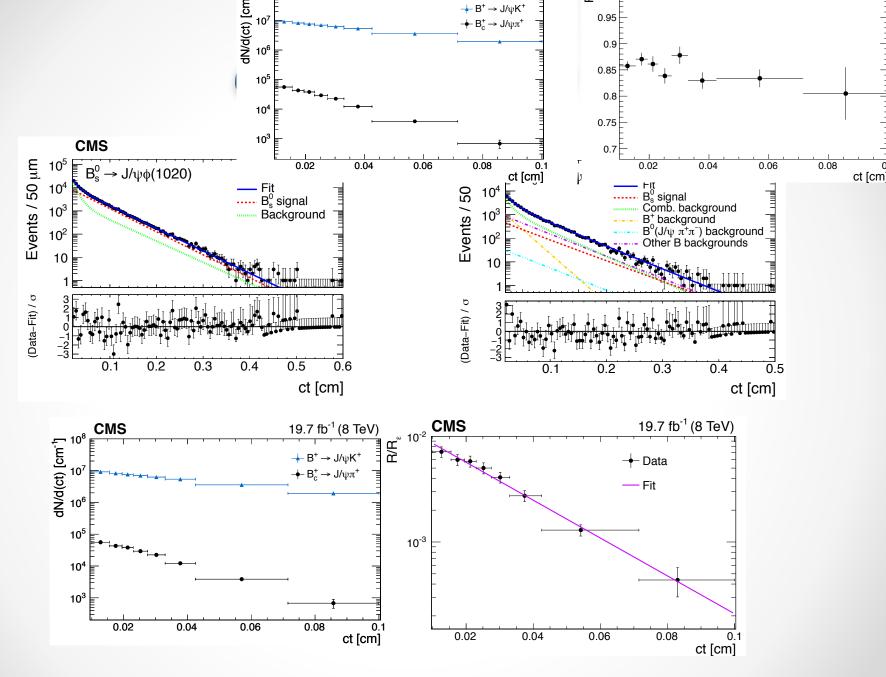
http://www.quantumdiaries.org/tag/b-physics/

LHCb results significantly larger than Tevatron measurements

Measurement strategy

Measurements **based on reconstruction of** the transverse decay length L_{xy} and UML fits of reco. mass (M), ct and σ_{ct} of the b hadron:


$$ct = cL_{xy} \frac{M_B^{\text{(PDG)}}}{p_{\text{T}}}$$
 ($ct > 200 \ \mu\text{m}$)


$$PDF = f_S M_S(M) T_S(ct) E_S(\sigma_{ct}) + (1 - f_S) M_B(M) T_B(ct) E_B(\sigma_{ct})$$

- This way, we measure $\tau_{B^0 \to J/\psi K^*}$, $\tau_{B^0 \to J/\psi Ks}$, $\tau_{\Lambda_b \to J/\psi \Lambda}$, the effective B_s lifetime $\tau_{B_s \to J/\psi \phi}$ (final states are admixture of CP eigenstates), and the CP-odd lifetime $\tau_{B_s \to J/\psi \pi \pi} \sim 1/\Gamma_H = \tau_H$ (lifetime of heavy mass state).
- B+ \rightarrow J/ ψ K+: reference mode, for evaluation of syst. uncertainties.
- The B_c^+ lifetime is obtained through the ratio of the B_c^+ & B^+ ct signal histograms, where the ct resolution "r(ct)" is shown to ~cancel out:

$$\frac{N_{\rm B_c^+}(ct)}{N_{\rm B^+}(ct)} \equiv R(ct) = \frac{\varepsilon_{\rm B_c^+}(ct)[r(ct)\otimes E_{\rm B_c^+}(ct)]}{\varepsilon_{\rm B^+}(ct)[r(ct)\otimes E_{\rm B^+}(ct)]} \approx R_{\varepsilon}(ct) \exp(-\Delta\Gamma t), \quad \Delta\Gamma \equiv \frac{1}{\tau_{\rm B_c^+}} - \frac{1}{\tau_{\rm B^+}}$$

Mass distributions

Accepted by EPJC (arXiv:1710.08949)

Results

$$c\tau_{\rm B^0\to J/\psi K^*(892)^0} = 453.0 \pm 1.6 \; ({\rm stat}) \pm 1.8 \; ({\rm syst}) \; \mu{\rm m}$$

$$c\tau_{\rm B^0\to J/\psi K^0_S} = 457.0 \pm 2.7 \; ({\rm stat}) \pm 2.8 \; ({\rm syst}) \; \mu{\rm m}$$

$$c\tau_{\rm B^0\to J/\psi K^0_S} = 457.0 \pm 2.7 \; ({\rm stat}) \pm 2.8 \; ({\rm syst}) \; \mu{\rm m}$$

$$c\tau_{\rm B^0\to J/\psi \pi^+\pi^-} = 502.7 \pm 10.2 \; ({\rm stat}) \pm 3.4 \; ({\rm syst}) \; \mu{\rm m} \; {\rm vs.} \; 495 \pm 10 \; ({\rm LHCb}), 510 \pm 36 \; ({\rm CDF}), 508 \pm 45 \; \mu{\rm m} \; ({\rm D0})$$

$$c\tau_{\rm B^0_S\to J/\psi \phi(1020)} = 443.9 \pm 2.0 \; ({\rm stat}) \pm 1.5 \; ({\rm syst}) \; \mu{\rm m} \; {\rm vs.} \; 443.4 \pm 3.6 \; \mu{\rm m} \; ({\rm HFAG})$$

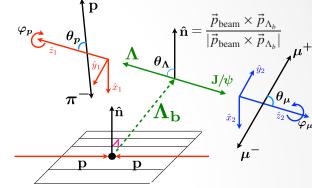
$$c\tau_{\rm A^0_D} = 442.9 \pm 8.2 \; ({\rm stat}) \pm 2.8 \; ({\rm syst}) \; \mu{\rm m} \; {\rm vs.} \; 440.7 \pm 3.0 \; \mu{\rm m} \; ({\rm HFAG})$$

$$c\tau_{\rm B^+_C} = 162.3 \pm 7.8 \; ({\rm stat}) \pm 4.2 \; ({\rm syst}) \pm 0.1 \; (\tau_{\rm B^+}) \; \mu{\rm m} \; {\rm vs.} \; 152.0 \pm 2.7 \; \mu{\rm m} \; ({\rm HFAG})$$

Precision from each channel is as good as or better than previous measurements.

$$\begin{split} \tau_{\Lambda_b^0}/\tau_{B^0\to J/\psi K^*(892)^0} &= 0.978 \pm 0.018 \, (stat) \pm 0.006 \, (syst), \quad vs. \; 0.967 \pm 0.007 \, (HFAG) \\ \tau_{B_s^0\to J/\psi\phi(1020)}/\tau_{B^0\to J/\psi K^*(892)^0} &= 0.980 \pm 0.006 \, (stat) \pm 0.003 \, (syst). \quad vs. \; 0.993 \pm 0.004 \, (HFAG) \end{split}$$

Ratios are compatible with the current W.A. values ($\leq 1.5\sigma$).

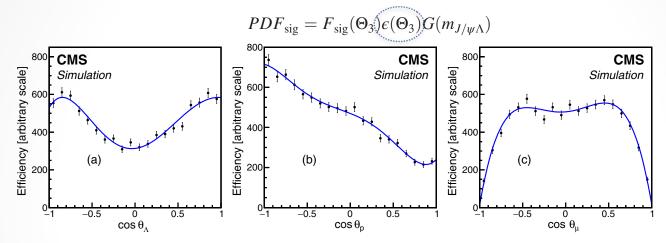

Combinations of previous results also lead to:

```
\begin{split} \Gamma_{\rm d} &= 0.662 \pm 0.003 \, ({\rm stat}) \pm 0.003 \, ({\rm syst}) \, {\rm ps^{-1}}, \\ \Delta \Gamma_{\rm d} &= 0.023 \pm 0.015 \, ({\rm stat}) \pm 0.016 \, ({\rm syst}) \, {\rm ps^{-1}}, \\ \Delta \Gamma_{\rm d} / \Gamma_{\rm d} &= 0.034 \pm 0.023 \, ({\rm stat}) \pm 0.024 \, ({\rm syst}). \quad \left( B^0 \right) \\ c\tau_{\rm L} &= 420.4 \pm 6.2 \, \mu {\rm m} \quad \left( B_{\rm s}^0 \right) \end{split} \quad \begin{array}{c} {\rm vs.} \ -0.002 \pm 0.010 \, ({\rm HFAG}) \\ {\rm vs.} \ 423.6 \pm 1.8 \, \mu {\rm m} \, ({\rm HFAG}) \end{array}
```

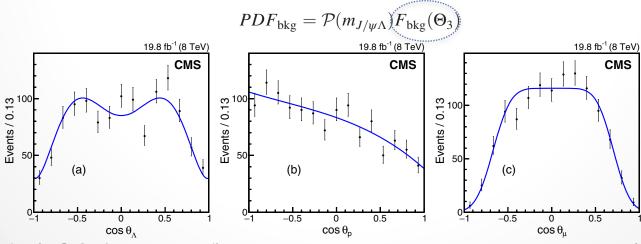
All results are in agreement with current W.A. values and with HQE predictions and other theoretical models.

Λ_b polarization and $\Lambda_b \rightarrow J/\psi \Lambda$ decay parameters

- HQET: A large fraction of transverse bpolarization remains after hadronization.
- This analysis: $\Lambda_b \rightarrow J/\psi \Lambda$ 5D angular decay function [Kramer & Simma, NPB-P.S. 50, 125 (1996)] is partially integrated:

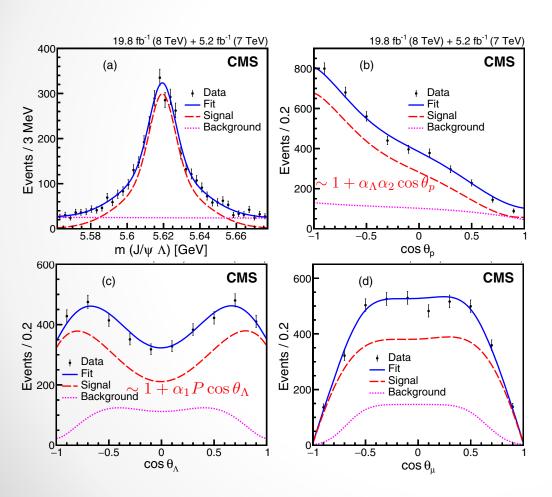

$$\frac{d^{5}\Gamma}{d\cos\theta_{\Lambda}d\Omega_{p}d\Omega_{\mu}}(\theta_{\Lambda},\theta_{p},\theta_{\mu},\varphi_{p},\varphi_{\mu}) \xrightarrow{\int_{-\pi}^{\pi}\int_{-\pi}^{\pi}d\varphi_{p}d\varphi_{\mu}} \sim \sum_{i=1}^{8} u_{i}(|T_{\lambda_{1}\lambda_{2}}|^{2})v_{i}(P,\alpha_{\Lambda})w_{i}(\theta_{\Lambda},\theta_{p},\theta_{\mu})$$

- α_{Λ} : asymmetry param. in $\Lambda \rightarrow p\pi$ decay (fixed to PDG 0.62 ± 0.013).
- \not **P**: Λ_b polarization.
- Asymmetry param. in $\Lambda_b \to J/\psi \Lambda$: $\alpha_1 = |T_{++}|^2 |T_{+0}|^2 + |T_{-0}|^2 |T_{--}|^2$ Long. polarization of the Λ : $\alpha_2 = |T_{++}|^2 + |T_{+0}|^2 |T_{-0}|^2 |T_{--}|^2$ to fit


Effects of integration of ϕ -angles propagated to syst. uncertainties.

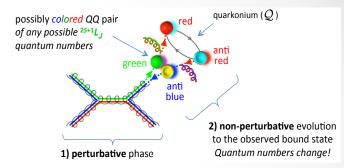
Angular efficiencies and background

Angular efficiencies obtained from simulations:


• Bkg. angular distributions obtained from $J/\psi\Lambda$ invariant mass sidebands:

Results

• Simultaneous (Λ_b & $\bar{\Lambda}_b$, 7 & 8 TeV) 3D-UML fit:


$$P = 0.00 \pm 0.06(\text{stat}) \pm 0.06(\text{syst}),$$

 $\alpha_1 = 0.14 \pm 0.14(\text{stat}) \pm 0.10(\text{syst}),$
 $\alpha_2 = -1.11 \pm 0.04(\text{stat}) \pm 0.05(\text{syst})$
 $\gamma_0 = -0.27 \pm 0.08(\text{stat}) \pm 0.11(\text{syst})$

- $P(LHCb) = 0.06 \pm 0.07 \pm 0.02$
- P(HQET) = 0.1 0.2
- $\alpha_1^{\text{(LHCb)}} = -\alpha_b^{\text{(LHCb)}} = -0.05 \pm 0.17 \pm 0.07$
- Many theoretical predictions for α_1 :
 - 0.1 0.2 (PQCD, factorization, several quark models).
 - -0.78 (HQET).

PRD 97, 072010 (2018)

Quarkonium production

Well established framework: NRQCD ~
factorizes short-dist. (SDCs, perturbative calculations) and universal long-dist.
(LDMEs, from fits to data) contributions.

- Contrary to expectations, LHC measurements indicate quarkonia are produced unpolarized ⇒ important to add more data to constrain LDMEs.
- For J/ψ, ψ' and Y(nS)
 (n=1,2,3) @13 TeV, CMS
 measures:

prompt signal events (cannot distinguish feed-down decays of heavier cc̄)

Acceptance

$$\mathcal{B}(\mathcal{Q} \to \mu^{-}\mu^{+}) \frac{\mathrm{d}^{2}\sigma}{\mathrm{d}p_{\mathrm{T}}\,\mathrm{d}y} = \frac{N(p_{\mathrm{T}}, y)}{\mathcal{L}\Delta y \Delta p_{\mathrm{T}}} \left\langle \frac{1}{\epsilon(p_{\mathrm{T}}, y)\mathcal{A}(p_{\mathrm{T}}, y)} \right\rangle$$

Integrated lumi

y and p_T bin widths (|y| < 1.2, $p_T = 20 - 150$ (130) GeV)

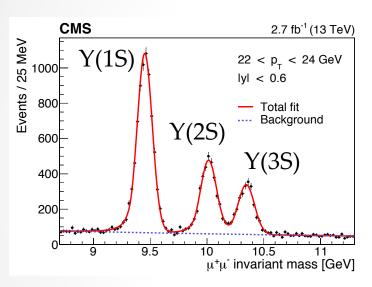
Reconstruction efficiency

Acceptance and efficiency

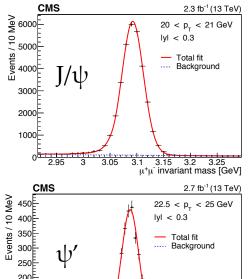
- Acceptance calculated w/ Pythia generated w/ data-derived p_T distribution & unpolarized J/ ψ : analysis provides scaling factors (0.75-1.20) to convert to polarized scenarios.
- Dimuon reconstruction efficiency:

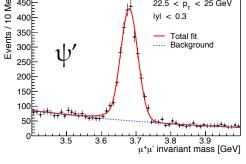
$$\epsilon_{\mu\mu}(p_{\mathrm{T}},y) = \epsilon(p_{\mathrm{T}1},\eta_1) \cdot \epsilon(p_{\mathrm{T}2},\eta_2) \cdot \rho(p_{\mathrm{T}},y) \cdot \epsilon_{tk}^2$$

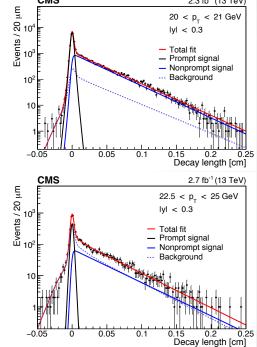
Single muon TnP efficiency from data and independent triggers. Multiplied & parametrized.


Correction factor from data (TnP uses special trigger w/ pT > 20 GeV) accounts for correlation & effects due to detector granularity and coarse L1 trigger.

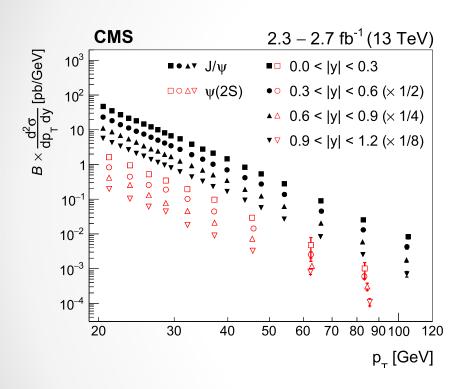
Tracking efficiency ~ 99%.

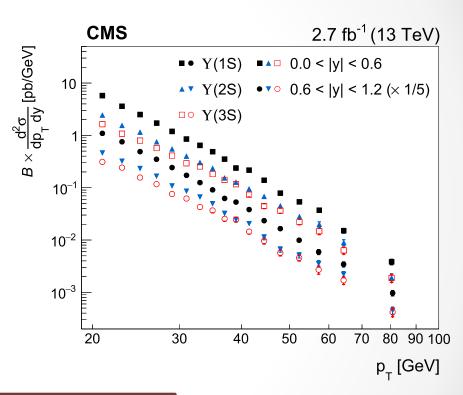

 $\epsilon_{\mu\mu}$ ~ 85%, decreases w/ p_T mainly due to ρ


Yields and prompt fraction


• UML fits to $M_{\mu\mu}$ ($M_{\mu\mu}$ -ct) in each y- p_T bin (for J/ψ and ψ '):

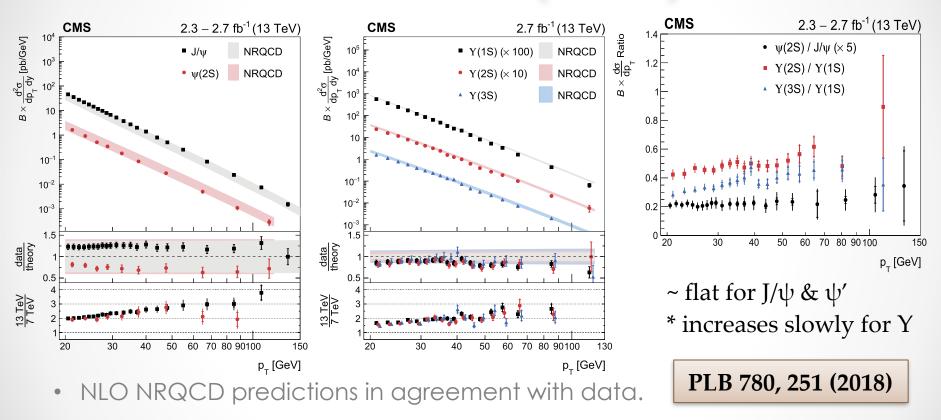
- Each: CB + Gaussian core.
- Means: fixed · common factor.
- Widths: ~common.
- CB params: constrained to the fit of the pT-integrated distribution.
- Bkg.: exponential.




2.3 fb⁻¹ (13 TeV)

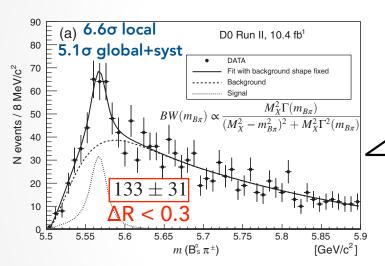
- CB (+ Gauss. J/ψ) + exponential bkg.
- Mean and CB params.
 constrained to p_T-int.
- Prompt = Res. (R): event-byevent-scaled double-Gauss.
- Non-prompt: $Exp \otimes R$.
- Bkg.: $R' + \exp \otimes R'$.

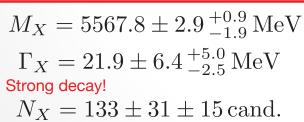
Results



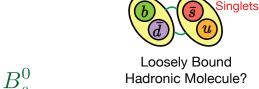
Shapes consistent across *y* region: **can** *integrate over y*.

y-integrated comparisons and ratios (to 1S)





- As expected from evolution of PDFs, cross sections increase with energy.
- These measurements should reduce theoretical uncertainties from the extraction of LDMEs.


$X(5568) \rightarrow B_s \pi^{\pm}$

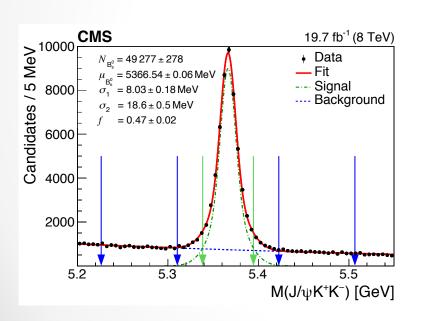
• Resonance found by the D0 experiment in the $B_s\pi^{\pm}$ mass spectrum: state w/ 4 different flavors of quarks.

PRL **117**, 022003 (2016)

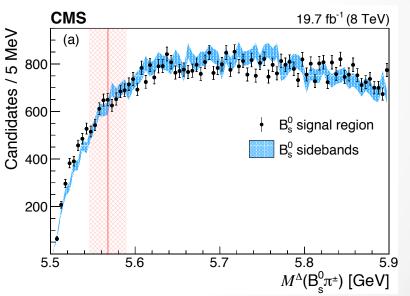
Not favored due to mass far from B-K thresh.

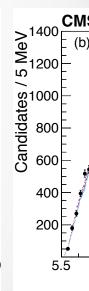
Tetraquark?

Possible, but theory predicts more states


• If
$$X(5568)^- \rightarrow B_s^0 \pi^-$$

then $J^P = 0^+$

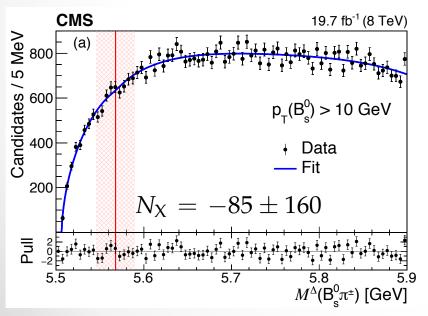

Not confirmed by LHCb

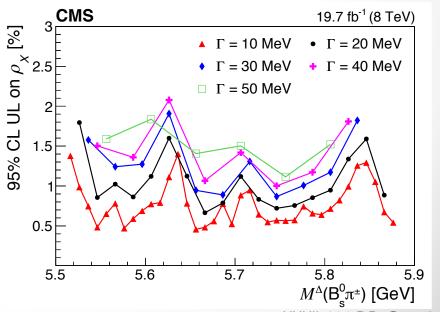

Search for the X(5 to 4000) at CMS

9000 - f = 0.47 ± 0.02 4000 - 2000 - 5.2 5.3 5.4 M(J

• Search for resonances in the $B_s \pi^{\pm}$ invariant mass spectrum: $B_s (\rightarrow J/\psi \phi(1020)) + \text{prompt pion}$.

No excess is visible.




Search for resonances

- Signal modeled w/ relativistic BW (eff. and resol. variations considered in syst. unc.).
- Bkg. shape inspired from MC (modeling varied or fixed for syst. uncertainty estimations).

$$\rho_X \equiv \frac{\sigma(pp \to X + \text{anything})\mathcal{B}(X \to B_s^0 \pi^{\pm})}{\sigma(pp \to B_s^0 + \text{anything})}$$

$$= \frac{N_X}{\epsilon_{\text{rel}} N_{B_s^0}}, \quad \epsilon_{\text{rel}} \text{ from MC}$$

Summary of the search

- No significant structure in $M(B_s\pi^{\pm})$ is found for masses up to 5.9 GeV, disfavoring predictions of tetraquark models.
- No signal found despite trying different kinematic & quality cuts, variants of bkg. modeling and fit regions.

```
ho_{
m X} < 1.1\% at 95% CL for p_{
m T}({
m B}_{
m s}^0) > 10\,{
m GeV} and 
ho_{
m X} < 1.0\% at 95% CL for p_{
m T}({
m B}_{
m s}^0) > 15\,{
m GeV}.
```

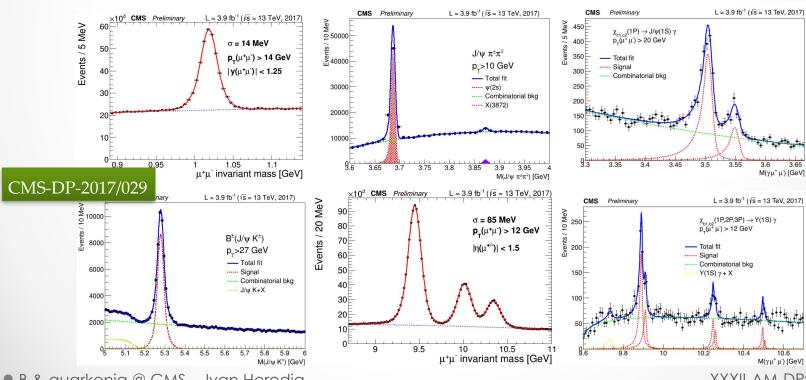
CMS PAS BPH-16-002

PRL 120, 202005 (2018)

Previous results:

$$\rho = (8.6 \pm 1.9 \pm 1.4)\%$$
 for $p_T(B_s^0) > 10 \text{ GeV \& lyl} \le 2 \text{ DO}$

```
\begin{split} \rho_X^{\text{LHCb}}[p_T(B_s^0) > 5 \text{ GeV}] < 0.011 \, (0.012), & \text{LHCb [PRL 117, 152003 (2016)]} \\ \rho_X^{\text{LHCb}}[p_T(B_s^0) > 10 \text{ GeV}] < 0.021 \, (0.024), & \text{at } 90 \, (95)\% \text{ C.L.} & \textbf{2} < |\textbf{y}| < \textbf{4.5} \\ \rho_X^{\text{LHCb}}[p_T(B_s^0) > 15 \text{ GeV}] < 0.018 \, (0.020). \end{split}
```


CDF: ρ < 6.7% for $p_T(B_s) > 10$ GeV & |y| $\lesssim 1$ does not favor D0 results [PRL 120, 202006 (2018)]

ATLAS: ρ < 1.6% for $p_T(B_s) > 10$ GeV & |y| \leq 2 [PRL 120, 202007 (2018)]

D0: reconfirms with 6.7σ using B_s semileptonic decays [PRD 97, 092004 (2018)]

Summary and outlook

- CMS has produced several competitive results related to searches, production, polarization, lifetimes, and other properties of B hadrons and quarkonia.
- The B_c, B-baryon, quarkonium and exotic hadrons program will continue and benefit from the additional data in Run II.

