STUDY OF THE ENERGY SPECTRUMS OBTAINED BY EXPOSING A CCD TO A ²⁵²CF SOURCE

BRENDA AUREA CERVANTES VERGARA (ICN - UNAM)

XXXII REUNIÓN ANUAL DE LA DIVISIÓN DE PARTÍCULAS Y CAMPOS INSTITUTO DE CIENCIAS NUCLEARES, UNAM CDMX, MÉXICO, 28-30 MAYO 2018

WHY A ²⁵²CF SOURCE?

- α decay (96.9 %) $\rightarrow \alpha$ + ²⁴⁸Cm
- Spontaneous fission (3.1 %) \rightarrow 3.77 **neutrons** per event and secondary excited nuclei which emit γ rays

Neutron energy spectrum (most probable energy value ~ 0.8 MeV)

WHY NEUTRONS?

International collaborations

Mexican team leaders (ICN-UNAM): Dr. Juan Carlos D'Olivo and Dr. Alexis Aguilar

These experiments aim to detect particles that present a elasticscattering interaction with the detectors (CCDs)

Bozorgnia, Gelmini and Gondolo. Channeling in direct dark matter detection II: channeling fraction in Si and Ge crystals. (DOI 10.1088/1475-7516/2010/11/028)

Energy spectrums depend on the incident particles' direction ?

THE CHANNELING EFFECT

- Small-angle scattering
- Energy loss mainly due to electric interactions rather than nuclear collisions → Quenching factor ≈ 1
- Studied considering continuous models (See Bozorgnia et al.)

FRACTION OF CHANNELED SI RECOIL NUCLEI IN A SI LATTICE

 χ_A is found to be maximum at E ~ 100 keV and $2^{\circ} \leq \Psi_r \leq 3^{\circ}$

FRACTION OF CHANNELED SI RECOIL NUCLEI IN A SI LATTICE

 χ_P is found to be maximum at E ~ 100 keV and $0.1^{\circ} \leq \Psi_r \leq 0.3^{\circ}$ χ_P is, at least, 8 orders of magnitude smaller than χ_A

WHY SI?... THE CCDS

MOS capacitor array

Charge generation (1 e-h pair \rightarrow ~ 3.6 eV)

PROCESSING IMAGES

Finally, a .fits image is obtained

- RAWI RAW Image
- OSI Overscan Subtracted Image
- MBI Master Bias Image
- MADI Median Absolute Deviation Image

- MBSI Master Bias Subtracted Image
- MASK
- SCNI Subtracted Correlated Noise Image

EXPERIMENTAL SETUP

Vacuum: ~1 x 10⁻⁷ mbar Temperature: ~130 K Substrate voltage: ~40 V

‡Fermilab

Manufactured by the Lawrence Berkeley National Laboratory 2048 x 4096 pixels of 15 x 15 x 250 µm each <100> is the normal crystallographic axis to the CCD surface

EXPERIMENTAL SCHEME

BUT FIRST... CALIBRATION

X ray source - ⁵⁵Fe

Total exposure time: 27 min

T=8 μs

DETECTOR CALIBRATION

Total exposure time : 74 hrs 23 min

DETECTOR CALIBRATION

- Peak 1. K_{α} Mn (5.893 keV)
- Peak 2. K_β Mn (6.490 keV)
- Peak 3. K_α Si (1.740 keV)

- Peak 4. Scape α Mn (4.153 keV)
- Peak 5. Scape β Mn (4.750 keV)

BACKGROUND CHARACTERIZATION

<u>Total</u> exposure time: 7 days 36 min

T=400 μs

²⁵²CF NEUTRON SOURCE EXPOSURE

3.81 μCi 1.76 x 10⁴ neutrons / sec

⁶⁰CO GAMMA SOURCE EXPOSURE WO PB

⁶⁰Co \rightarrow ⁶⁰Ni + e⁻ + v_e 2 γ (1.17 and 1.33 MeV)

17/31

⁶⁰CO GAMMA SOURCE EXPOSURE W PB

Número de eventos / hora 60 Co - 0° a 19 cm con Pb Número de eventos / hora 60 Co - 0° a 19 cm con Pb $^{60}\mathrm{Co}$ - 90° a 23 cm con Pb ⁶⁰Co **-** 90° a 23 cm con Pb Energía (keV) Energía (keV) T=8 μs Total exposure time: 0° at 19 cm : 22 min 90° at 23 cm : 27 min

QUENCHING FACTOR

 $\varepsilon_M = Q(E_M) E_M$ — Lindhard \times DAMIC E_M - recoiling energy - Ajuste DAMIC 0.5 ε_M - energy deposited in form of ionization 0.4 Lindhard 0.3 $Q_L(E_M) = \frac{kg(\epsilon(E_M))}{1 + kg(\epsilon(E_M))}$ 0.2 0.1 $k = 0.133 Z^{2/3} A^{-1/2}$ $g = 3 \epsilon^{0.15} + 0.7 \epsilon^{0.6} + \epsilon$ $\epsilon = 11.5 \ Z^{-7/3} E_M$ 10^{-1} 10^{-2} 10^{-3} 1 10 $\epsilon_{_{\rm M}} \, ({\rm keV})$

• Fit to DAMIC measurements (Phys. Rev. D 94, 082007, (2016))

$$\widetilde{Q}_D\left(\varepsilon_M\right) = \frac{p_3\varepsilon_M + p_4\varepsilon_M^2 + \varepsilon_M^3}{p_0 + p_1\varepsilon_M + p_2\varepsilon_M^2}$$

 $p_0 = 27.54 \pm 1.31$ $p_1 = 623.88 \pm 12.89$ $p_2 = 330.26 \pm 1.73$ $p_3 = 87.66 \pm 2.60$ $p_4 = 127.47 \pm 0.88$

19/31

THEORETICAL SPECTRUM

Neutron-nucleus elastic scattering problem

• Yukawa potential and Saxon-Woods matter distribution:

$$V(r) = V_0 \int \frac{e^{-\chi |\mathbf{r} - \mathbf{r}'|}}{|\mathbf{r} - \mathbf{r}'|} \widetilde{\rho}(r') d^3 r'$$

• Diferential cross section:

$$\frac{d\sigma}{dE_M} = \left(\frac{\pi mM}{\mu^2 E_{mi}}\right) \frac{1}{2ME_M} \left[\frac{8\pi\mu\hbar\mathcal{C}V_0}{(\hbar^2\chi^2 + 2ME_M)} \int_0^\infty \frac{r''\sin\left(\frac{\sqrt{2ME_M}}{\hbar}r''\right)}{\left[1 + \exp\left(\frac{r''-R}{a}\right)\right]} dr''\right]^2$$

• Recoiling nuclei spectrum:

$$N_r \left(E_M \right) = \int_{\frac{mME_M}{4\mu^2}}^{\infty} N_n \left(E_{mi} \right) \frac{d\sigma}{dE_M} dE_{mi}$$

• Recoiling nuclei spectrum corrected by the quenching factor:

$$\widetilde{N}_r\left(\varepsilon_M\right) = N_r\left(E_M\right) \left(Q + E_M \frac{dQ}{dE_M}\right)^{-1} = N_r\left(E_M\right) \widetilde{Q}^{-1} \left(1 - \varepsilon_M \widetilde{Q}^{-1} \frac{d\widetilde{Q}}{d\varepsilon_M}\right)$$

THEORETICAL SPECTRUM

THEORETICAL SPECTRUM

72 million neutrons with 7° of angular dispersion

Simulated neutron energy spectrum values: $N_0 = 29178.1 \pm 65.6$ $\alpha = (0.871 \pm 0.001) \text{ MeV}^{-1}$

 $\beta = (1.907 \pm 0.007) \text{ MeV}^{-1}$

GEANT4 SIMULATION

Ajuste al espectro $H^{0 a 19}_{con Pb}$						
Espectro F	Espectro G	\tilde{a}	${ ilde b}$	$\tilde{c} \ge 10^{-2}$	χ^2 / ndf	
$F_{\rm teo\ D}$	G ^{0 a 19} sin Pb	1.224 ± 0.032	0.304 ± 0.054	-0.540 ± 0.032	$160.6 \ / \ 97$	
$\rm F_{teo\ L}$		1.138 ± 0.030	0.404 ± 0.052	-0.555 ± 0.032	$160.1 \; / \; 97$	
$\mathrm{F}_{\mathrm{teo}}$		3.283 ± 0.090	0.027 ± 0.062	-2.326 ± 0.046	$261.9 \;/\; 97$	
$\mathrm{F_{sim}^{0\ a\ 19}}$		0.805 ± 0.022	0.550 ± 0.051	-0.376 ± 0.035	$272.5 \ / \ 97$	
$\mathrm{F_{sim}^{0\ a\ 19}}$		0.753 ± 0.021	0.628 ± 0.049	-0.401 ± 0.034	$242.4 \ / \ 97$	
$F^{0 a 19}_{sim}$		3.433 ± 0.112	0.366 ± 0.061	-2.842 ± 0.065	638.6 / 97	

Ajuste al espectro $H_{con Pb}^{0 a 23}$						
Espectro F	Espectro G	\tilde{a}	${ ilde b}$	$\tilde{c} \ge 10^{-2}$	χ^2 / ndf	
$F_{\rm teo \ D}$	G ^{0 a 23} sin Pb	1.150 ± 0.031	0.480 ± 0.056	-0.641 ± 0.034	$195.8 \ / \ 97$	
$\rm F_{teo\ L}$		1.072 ± 0.028	0.576 ± 0.054	-0.658 ± 0.034	180.0 / 97	
$\mathrm{F}_{\mathrm{teo}}$		3.102 ± 0.089	0.185 ± 0.066	-2.303 ± 0.041	383.6 / 97	
$\mathrm{F_{sim}^{0\ a\ 23}}$		0.766 ± 0.021	0.720 ± 0.052	-0.502 ± 0.036	$278.2 \ / \ 97$	
$\mathrm{F}^{0\ a\ 23}_{\mathrm{sim}\ L}$		0.719 ± 0.019	0.789 ± 0.051	-0.522 ± 0.036	$239.5 \ / \ 97$	
$\mathrm{F}^{0 \ a \ 23}_{\mathrm{sim}}$		2.697 ± 0.111	0.844 ± 0.065	-2.591 ± 0.061	1017 / 97	

Ajuste al espectro $H_{con Pb}^{90 a 23}$						
Espectro F	Espectro G	\tilde{a}	${\widetilde b}$	$\tilde{c} \ge 10^{-2}$	χ^2 / ndf	
$F_{\rm teo\ D}$	- G ⁹⁰ a 23 sin Pb	1.092 ± 0.034	0.479 ± 0.056	-0.584 ± 0.032	$174.6 \ / \ 97$	
$\mathrm{F}_{\mathrm{teo}\ \mathbf{L}}$		1.009 ± 0.032	0.567 ± 0.054	-0.590 ± 0.032	$182.1 \ / \ 97$	
$\mathrm{F}_{\mathrm{teo}}$		2.981 ± 0.099	0.218 ± 0.065	-2.214 ± 0.050	$272.1 \ / \ 97$	
$\mathrm{F}^{90 \ a \ 23}_{\mathrm{sim \ D}}$		0.755 ± 0.024	0.658 ± 0.053	-0.430 ± 0.035	$229.0 \ / \ 97$	
$\mathrm{F}^{90~a~23}_{\mathrm{sim~L}}$		0.705 ± 0.023	0.721 ± 0.051	-0.443 ± 0.034	$217.4 \ / \ 97$	
$\mathrm{F}^{90 \ a \ 23}_{\mathrm{sim}}$		2.365 ± 0.118	0.929 ± 0.060	-2.344 ± 0.074	781.4 / 97	

Ajuste al espectro $H^{0 a 19}_{con Pb}$						
Espectro F	Espectro G	\tilde{a}	\widetilde{b}	$\tilde{c} \ge 10^{-2}$	χ^2 / ndf	
F _{teo L}	$G_{ m sin\ Pb}^{0\ a\ 19}$	0.305 ± 0.050	1.174 ± 0.101	-0.601 ± 0.067	111.6 / 88	
$F_{\rm teo}$		0.443 ± 0.071	1.029 ± 0.117	-0.608 ± 0.066	109.9 / 88	
$F^{0 a 19}_{sim L}$		0.293 ± 0.056	1.231 ± 0.102	-0.643 ± 0.066	121.6 / 88	
${ m F}_{ m sim}^{ m 0\ a\ 19}$		0.448 ± 0.067	1.107 ± 0.104	-0.685 ± 0.062	104.5 / 88	

Ajuste al espectro $H_{con Pb}^{0 a 23}$						
Espectro F	Espectro G	\tilde{a}	\widetilde{b}	$\tilde{c} \ge 10^{-2}$	χ^2 / ndf	
$F_{teo L}$	$G_{ m sin\ Pb}^{0\ a\ 23}$	0.269 ± 0.045	1.239 ± 0.094	-0.642 ± 0.062	$129.0 \ / \ 88$	
$F_{\rm teo}$		0.382 ± 0.065	1.122 ± 0.108	-0.652 ± 0.062	$129.3 \ / \ 88$	
$F^{0 a 23}_{sim L}$		0.274 ± 0.052	1.276 ± 0.095	-0.675 ± 0.061	$136.6 \ / \ 88$	
$F_{ m sim}^{0\ a\ 23}$		0.365 ± 0.059	1.207 ± 0.095	-0.715 ± 0.058	$125.9 \ / \ 88$	

Ajuste al espectro $H_{con Pb}^{90 a 23}$						
Espectro F	Espectro G	\tilde{a}	${ ilde b}$	$\tilde{c} \ge 10^{-2}$	χ^2 / ndf	
$F_{\rm teo\ L}$	G ^{90 a 23} sin Pb	0.026 ± 0.062	1.705 ± 0.196	-0.896 ± 0.144	$120.3 \ / \ 88$	
$\mathrm{F}_{\mathrm{teo}}$		0.079 ± 0.090	1.602 ± 0.227	-0.847 ± 0.150	$119.7 \ / \ 88$	
$\mathrm{F}^{90\ a\ 23}_{\mathrm{sim}\ \mathrm{L}}$		0.005 ± 0.074	1.757 ± 0.204	-0.927 ± 0.146	$120.5 \ / \ 88$	
$\mathrm{F}^{\mathrm{90\ a\ 23}}_{\mathrm{sim}}$		0.093 ± 0.079	1.593 ± 0.197	-0.850 ± 0.134	119.1 / 88	

- Good calibration and background characterization.
- The ²⁵²Cf energy spectrums, at 0.4 ≤ E ≤ 30 keV, have more neutronic contribution. Gamma rays promote the appearance of fluorescence peaks.
- Gamma rays contribution to the 252 Cf energy spectrums at 30 \leq E \leq 200 keV, is much higher than the neutronic one.
- The corrected theoretical and simulated spectrums with the fit of the quenching factor of DAMIC measurements seem to fit well the experimental spectrums.
- The theoretical and simulated spectrums of recoiling nuclei seem to fit well the experimental spectrums.
- The channeling effect is more probable to occur when 30 ≤ E ≤ 200 keV but, due to the large contribution of gamma rays, in this study, a directional dependence in the experimental spectrums is not identified.

THANK YOU!