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Introduction

Discovery of the last SM particle



Standar Model is complete
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But we have indications of new physics
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Remain open questions in SM (some of them):

Neutrino oscillations (origin of the 
neutrino masses) 

Evidence of dark matter (gravitation) 

The asymmetry matter-antimatter of the 
universe (BAU)



✤ There are tree massless neutrinos in the 
SM. 

✤ But neutrino oscillations are evidence of their 
masses and mixing. 

• Two square mass differences, at 
least two masses are non-zero.  

• Still allowed both mass orderings: NO 
& IO. 

✤ Nature of neutrinos: Dirac or Majorana 
fermions (can be proved by some proceses 
with ΔL = 2, as 0νββ via blackbox theorem). 

✤ Unknown the absolute mass scale 
(hierarchy). There are some bounds from the 
Tritium β decay (mνe ≲ 2 eV) & from the 
Cosmology (∑ mν ≲ 0.23 eV). 

✤ The existence of neutrino masses are 
evidence of physics BSM.

Neutrinos
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[S. King, 2016]

Neutrino oscillations status

Normal Inverted
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[S. King, 2016]

Neutrino oscillations status

Normal Inverted

In addition to 
a CP phase.
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✤ Dirac and Majorana mass terms:  

✤ Lepton mixing matrix (PMNS): From mismatch between mass and 
interaction (flavour) eigenstates.

�L =
1

2

�
⌫̄L ⌫̄cL

�✓mM mD

mD ms

◆✓
⌫cR
⌫R

◆
+ h.c..
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�LD = mD(⌫̄L⌫R + ⌫̄R⌫L) �LS =
mS

2
(⌫̄cL⌫R + ⌫̄R⌫

c
L)�LM =

mM

2
(⌫̄L⌫

c
R + ⌫̄cR⌫L)



✤ Dirac and Majorana mass terms:  

✤ Lepton mixing matrix (PMNS): From mismatch between mass and 
interaction (flavour) eigenstates.

�L =
1

2

�
⌫̄L ⌫̄cL

�✓mM mD

mD ms

◆✓
⌫cR
⌫R

◆
+ h.c..

U = V l†
L V ⌫

L ,

 15

Introduction
Neutrinos

�LD = mD(⌫̄L⌫R + ⌫̄R⌫L) �LS =
mS

2
(⌫̄cL⌫R + ⌫̄R⌫

c
L)�LM =

mM

2
(⌫̄L⌫

c
R + ⌫̄cR⌫L)



✤ Dirac and Majorana mass terms:  

✤ Lepton mixing matrix (PMNS): From mismatch between mass and 
interaction (flavour) eigenstates.

�L =
1

2

�
⌫̄L ⌫̄cL

�✓mM mD

mD ms

◆✓
⌫cR
⌫R

◆
+ h.c..

U = V l†
L V ⌫

L ,

UD =

0

@
c12c13 s12c13 s13e�i�

�s12c23 � c12s23s13ei� c12c23 � s12s23s13ei� s23c13
s12s23 � c12c23s13ei� �c12s23 � s12c23s13ei� c23c13

1

A ,

For 3 light Dirac neutrinos (3 mixing angles, 1 CP phase) 

Majorana neutrinos (2 additional CP phases)
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Majorana neutrinos (2 additional CP phases)
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O5 =
g

M (L̄c�2H)(HT�2L)

L L

H H
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Mechanism for mass generation of Majorana LH 
neutrinos trough the dimension 5 or Weinberg 
operator (ΔL = 2). 

At tree level by heavy mediator (seesaw type 
I, II & III). 

Other ways, as radiative processes (loop 
suppression of the LH neutrino masses)



O5 =
g

M (L̄c�2H)(HT�2L)

L L

H H
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g ' O(10�2 � 1)

me ' O(1 eV )

M ' 1013�15 GeV

Mechanism for mass generation of Majorana LH 
neutrinos trough the dimension 5 or Weinberg 
operator (ΔL = 2). 

At tree level by heavy mediator (seesaw type 
I, II & III). 

Other ways, as radiative processes (loop 
suppression of the LH neutrino masses)
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neutrinos trough the dimension 5 or Weinberg 
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At tree level by heavy mediator (seesaw type 
I, II & III). 

Other ways, as radiative processes (loop 
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Seesaw models:

Type I

Type II

Type III

Scotogenic
[E. Ma, 2006]

Radiative models:

Scalar SU(2)L triplet

Fermionic SU(2)L TripletHeavy RH Neutrinos

Introduction
Neutrinos
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Inert scalar SU(2)L doublet
RH Majorana Neutrinos



In analogy with quarks and charged leptons in the SM. 
Mass term for Dirac neutrinos (RH neutrinos νR added).
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For a Dirac neutrino.

For the lightest charged lepton (e-).

Assuming Yukawa coupling of quark top of order 1.

Seems unnatural the Yukawa coupling for a Dirac neutrino
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[S. Stone, 2013]

Introduction

Disparity between the quark and lepton mixing matrices
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[J. Valle & J. Romão, 2015]

Introduction

Disparity between the quark and lepton masses.



✤ They have been used to 
reduce the nº of Yukawa 
couplings and correlations 
among observables: masses, 
mixings & CP phases. 

✤ Sometimes gives predictions, 
as certain mass matrix 
textures (TM, BM,TBM, BTM).
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Non-Abelian finite groups of order < 32 constructed from direct products 
of Z, D, Q, S and T.  



Non-abelian, discrete group. It has: 
Tree 1-dim. irreps.: 11, 12, 13. 

One 3-dim. irrep.: 3.

Alternating group (A4):   Flavour symmetry group. [E. Ma, et al. ‘01]

 31

Introduction Family symmetries



[E. Ma, et al. ‘01]Alternating group (A4):   Flavour symmetry group.
Non-abelian, discrete group. It has: 

Tree 1-dim. irreps.: 11, 12, 13. 
One 3-dim. irrep.: 3.Product rule: 

11 ⨂ 11 = 11,   12 ⨂ 12 = 13,  13 ⨂ 13 = 12, 
11 ⨂ 12 = 12 ,  11 ⨂ 13 = 13 ,  12 ⨂ 13 = 11, 

3 ⨂ 3 =  11 ⨁ 12 ⨁ 13 ⨁ 3 ⨁ 3.

Non-abelian, discrete group. It has: 
Tree 1-dim. irreps.: 11, 12, 13. 

One 3-dim. irrep.: 3.
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Figure 1. Neutrino mass generation in the Type-II seesaw for Dirac neutrinos [13–15]

A. Lepton sector

The particle assignments for the lepton sector and scalars are given in Table I. The SU(2) scalar doublets Hd =

(Hd
1 , Hd

2 , Hd
3 ) and � = (�1, �2, �3) transform as triplets under A4, where each component can be written as follows
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A4 3 3 3 3 3 3 or 1i

Z3 !2 ! ! 1 1 1

Z2 + + � + � �

Table I. Charge assignments for the particles involved in the neutrino mass generation mechanism, where !3 = 1.

The vacuum expectation value (vev) alignments of these scalar triplets are given by
⌦
Hd
↵
= (vhd

1
, vhd

2
, vhd

3
) and

h�i = (v�1 , v�2 , v�3). The complex scalars �i responsible for inducing the small vev of � could transform either as

triplet or singlets under A4
2. On the other hand all leptons, both left- and right-handed, including the right-handed

neutrinos ⌫R = (⌫R1 , ⌫R2 , ⌫R3), transform as A4 triplets. Given the charges under the cyclic groups Z3 ⌦ Z2, one can

easily see that the Z3 remains unbroken after symmetry breaking, because all scalars are blind under this symmetry.

Such residual Z3 symmetry forbids the Majorana mass terms MR ⌫R ⌫R as well as the dimension-5 operators: LHdLHd,

L�̃L�̃ and LHdL�̃. This symmetry also forbids higher order operators derived from the product of the previous

dimension-5 operators and (Hd †Hd)n, (�†�)n and (Hd†�̃)n as well as ⌫R ⌫R �n. Finally, the Z2 charges are assigned

2
In the first case � = (�1,�2,�3) is a triplet under A4 while for the latter each field �i transform as the singlet 1i under A4.
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where the symbol [a, b]3i stands for the two ways of contracting two triplets of A4, a and b, into a triplet, as shown

in the Appendix. Before proceeding we summarise our model structure by saying that, compared with the minimal

Standard Model case, here one has in addition to the Higgs doublet Hd, an extra scalar iso-doublet � and the

right-handed neutrino states ⌫R, all triplets under A4, and the iso-singlets �i which could be assigned as a triplet or

singlets of A4. After symmetry breaking, neutrinos get a small type-II seesaw mass, as a result of the small vacuum

expectation value (vev) h�i which is induced by the vev of �, as proposed in [13–15].
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predictions are made for the CKM quark mixing matrix, we show how it can be adequately fit in a simple way, see

reference [26]. We now spell out the detailed flavour predictions of our model.

A. Charged fermions and the generalised bottom-tau mass relation
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Figure 1. Neutrino mass generation in the Type-II seesaw for Dirac neutrinos [13–15]
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as (�) to ⌫R, � and � and + to the other particles. As a result they act in a complementary way to the Z3, forbiding

the unwanted renormalisable Yukawa couplings: L̄ �̃ `R and L̄ H̃d ⌫R, where �̃ = i�2�
⇤ and H̃d = i�2H

d ⇤.

In accordance with the previous discussion, the relevant part of Yukawa Lagrangian for the leptons is given as:
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where the symbol [a, b]3i stands for the two ways of contracting two triplets of A4, a and b, into a triplet, as shown

in the Appendix. Before proceeding we summarise our model structure by saying that, compared with the minimal

Standard Model case, here one has in addition to the Higgs doublet Hd, an extra scalar iso-doublet � and the

right-handed neutrino states ⌫R, all triplets under A4, and the iso-singlets �i which could be assigned as a triplet or

singlets of A4. After symmetry breaking, neutrinos get a small type-II seesaw mass, as a result of the small vacuum

expectation value (vev) h�i which is induced by the vev of �, as proposed in [13–15].
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predictions are made for the CKM quark mixing matrix, we show how it can be adequately fit in a simple way, see

reference [26]. We now spell out the detailed flavour predictions of our model.
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Bi-unitary invariants of the mass squared matrix

5

The bi–unitary invariants of the squared mass matrix M2
` = m`m

†

` are determined as:
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We work under the assumptions ⇢` � ↵`, ⇢` � 1, b` > a` and ⇢` � b`
a`

which, at leading order, ensure adequate

family mass hierarchy as well as mixing patterns. One can show from Eqs. (5–7) that:
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Notice that also the down–type quarks couple to the Hd and hence have the same flavour structure. This implies

that the parameters ⇢` and ↵` in Eq. (11) are common to the charged leptons and the down–type quarks, i.e. ⇢` = ⇢d

and ↵` = ↵d. From this we derive the generalised bottom–tau mass relation in Eq. (1):

m⌧p
memµ

=
mbp
mdms

,

in a straightforward way. This generalised down quark–charged lepton mass relation, Eq. (1), follows from our flavour

group assignments. Although it has been obtained also in other realizations of A4 family symmetry [24, 26, 27], these

are not equivalent.

B. Fermion masses and mixing

In this section we focus on the lepton mixing matrix, because it is in this sector that our model makes non-trivial

predictions. However, the CKM matrix describing quark mixing will be adequately described, providing, in addition,

an input for the lepton mixing matrix. In analogy with the previous subsection, Eq. (3) gives the neutrino mass
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Mass matrix for charged leptons and down type quarks.



Model

4

as (�) to ⌫R, � and � and + to the other particles. As a result they act in a complementary way to the Z3, forbiding

the unwanted renormalisable Yukawa couplings: L̄ �̃ `R and L̄ H̃d ⌫R, where �̃ = i�2�
⇤ and H̃d = i�2H

d ⇤.

In accordance with the previous discussion, the relevant part of Yukawa Lagrangian for the leptons is given as:

LY � Y i
`

⇥
L̄, Hd

⇤
3i

`R + Y i
⌫

⇥
L̄, �

⇤
3i

⌫R + h.c., (3)

where the symbol [a, b]3i stands for the two ways of contracting two triplets of A4, a and b, into a triplet, as shown

in the Appendix. Before proceeding we summarise our model structure by saying that, compared with the minimal

Standard Model case, here one has in addition to the Higgs doublet Hd, an extra scalar iso-doublet � and the

right-handed neutrino states ⌫R, all triplets under A4, and the iso-singlets �i which could be assigned as a triplet or

singlets of A4. After symmetry breaking, neutrinos get a small type-II seesaw mass, as a result of the small vacuum

expectation value (vev) h�i which is induced by the vev of �, as proposed in [13–15].

III. FLAVOUR PREDICTIONS AND NUMERICAL RESULTS

Two aspects of the flavour problem concern the explanation of mass hierarchies of quarks and leptons, as well as to

account for the structure of mixing in each of these sectors, so disparate from each other. We will see how our model

leads to a successful “golden” mass formula relating quark and lepton masses, despite the absence of grand unification.

This is a flavour generalization of bottom-tau unification previously proposed in [12, 25–29]. In addition we will derive

the corresponding model-specific predictions for the lepton mixing matrix describing neutrino oscillations. While no

predictions are made for the CKM quark mixing matrix, we show how it can be adequately fit in a simple way, see

reference [26]. We now spell out the detailed flavour predictions of our model.

A. Charged fermions and the generalised bottom-tau mass relation

The complete particle assignment of our model is inspired in the one in [26], and is shown in Table II, including

both gauge as well as flavour transformation properties.

Q̄ L̄ uRi dR `R ⌫R Hu Hd � �

SU(2)L ⌦ U(1)Y (2, 1/6) (2,�1/2) (1, 2/3) (1,�1/3) (1,�1) (1, 0) (2,�1/2) (2, 1/2) (2,�1/2) (1, 0)

A4 3 3 1i 3 3 3 3 3 3 3/1i

Z3 1 !2 1 1 ! ! 1 1 1 1

Z2 + + + + + � + + � �
Zd

2 + + + � + + + � + +

Table II. Particle content and quantum numbers for the model.

From Eq. (3) one sees that the charged lepton mass matrix, following [25–27], can be parametrised as:

m` =

0

B@
0 a`↵`e

i✓` b`

b`↵` 0 ei✓`a`⇢`

a`e
i✓` b`⇢` 0

1

CA , (4)

where a` = vhd
2
(Y 1

` + Y 3
` ) and b` = vhd

2
(Y 2

` + Y 4
` ) are real Yukawa couplings, ✓` is a unremovable complex phase3 and

the Hd vev alignment is parameterised as
⌦
Hd

↵
= (vhd

1
, vhd

2
, vhd

3
) = vhd

2
(⇢`, 1, ↵`), with ↵` = vhd

3
/vhd

2
and ⇢` = vhd

1
/vhd

2
.

3
We assume that the non-conservation of CP symmetry comes entirely from the neutrino sector. Thus in our analysis we fixed ✓`=0.

4

as (�) to ⌫R, � and � and + to the other particles. As a result they act in a complementary way to the Z3, forbiding

the unwanted renormalisable Yukawa couplings: L̄ �̃ `R and L̄ H̃d ⌫R, where �̃ = i�2�
⇤ and H̃d = i�2H

d ⇤.

In accordance with the previous discussion, the relevant part of Yukawa Lagrangian for the leptons is given as:

LY � Y i
`

⇥
L̄, Hd

⇤
3i

`R + Y i
⌫

⇥
L̄, �

⇤
3i

⌫R + h.c., (3)

where the symbol [a, b]3i stands for the two ways of contracting two triplets of A4, a and b, into a triplet, as shown

in the Appendix. Before proceeding we summarise our model structure by saying that, compared with the minimal

Standard Model case, here one has in addition to the Higgs doublet Hd, an extra scalar iso-doublet � and the

right-handed neutrino states ⌫R, all triplets under A4, and the iso-singlets �i which could be assigned as a triplet or

singlets of A4. After symmetry breaking, neutrinos get a small type-II seesaw mass, as a result of the small vacuum

expectation value (vev) h�i which is induced by the vev of �, as proposed in [13–15].

III. FLAVOUR PREDICTIONS AND NUMERICAL RESULTS

Two aspects of the flavour problem concern the explanation of mass hierarchies of quarks and leptons, as well as to

account for the structure of mixing in each of these sectors, so disparate from each other. We will see how our model

leads to a successful “golden” mass formula relating quark and lepton masses, despite the absence of grand unification.

This is a flavour generalization of bottom-tau unification previously proposed in [12, 25–29]. In addition we will derive

the corresponding model-specific predictions for the lepton mixing matrix describing neutrino oscillations. While no

predictions are made for the CKM quark mixing matrix, we show how it can be adequately fit in a simple way, see

reference [26]. We now spell out the detailed flavour predictions of our model.

A. Charged fermions and the generalised bottom-tau mass relation

The complete particle assignment of our model is inspired in the one in [26], and is shown in Table II, including

both gauge as well as flavour transformation properties.

Q̄ L̄ uRi dR `R ⌫R Hu Hd � �

SU(2)L ⌦ U(1)Y (2, 1/6) (2,�1/2) (1, 2/3) (1,�1/3) (1,�1) (1, 0) (2,�1/2) (2, 1/2) (2,�1/2) (1, 0)

A4 3 3 1i 3 3 3 3 3 3 3/1i

Z3 1 !2 1 1 ! ! 1 1 1 1

Z2 + + + + + � + + � �
Zd

2 + + + � + + + � + +

Table II. Particle content and quantum numbers for the model.

From Eq. (3) one sees that the charged lepton mass matrix, following [25–27], can be parametrised as:

m` =

0

B@
0 a`↵`e

i✓` b`

b`↵` 0 ei✓`a`⇢`

a`e
i✓` b`⇢` 0

1

CA , (4)

where a` = vhd
2
(Y 1

` + Y 3
` ) and b` = vhd

2
(Y 2

` + Y 4
` ) are real Yukawa couplings, ✓` is a unremovable complex phase3 and

the Hd vev alignment is parameterised as
⌦
Hd

↵
= (vhd

1
, vhd

2
, vhd

3
) = vhd

2
(⇢`, 1, ↵`), with ↵` = vhd

3
/vhd

2
and ⇢` = vhd

1
/vhd

2
.

3
We assume that the non-conservation of CP symmetry comes entirely from the neutrino sector. Thus in our analysis we fixed ✓`=0.

4

as (�) to ⌫R, � and � and + to the other particles. As a result they act in a complementary way to the Z3, forbiding

the unwanted renormalisable Yukawa couplings: L̄ �̃ `R and L̄ H̃d ⌫R, where �̃ = i�2�
⇤ and H̃d = i�2H

d ⇤.

In accordance with the previous discussion, the relevant part of Yukawa Lagrangian for the leptons is given as:

LY � Y i
`

⇥
L̄, Hd

⇤
3i

`R + Y i
⌫

⇥
L̄, �

⇤
3i

⌫R + h.c., (3)

where the symbol [a, b]3i stands for the two ways of contracting two triplets of A4, a and b, into a triplet, as shown

in the Appendix. Before proceeding we summarise our model structure by saying that, compared with the minimal

Standard Model case, here one has in addition to the Higgs doublet Hd, an extra scalar iso-doublet � and the

right-handed neutrino states ⌫R, all triplets under A4, and the iso-singlets �i which could be assigned as a triplet or

singlets of A4. After symmetry breaking, neutrinos get a small type-II seesaw mass, as a result of the small vacuum

expectation value (vev) h�i which is induced by the vev of �, as proposed in [13–15].

III. FLAVOUR PREDICTIONS AND NUMERICAL RESULTS

Two aspects of the flavour problem concern the explanation of mass hierarchies of quarks and leptons, as well as to

account for the structure of mixing in each of these sectors, so disparate from each other. We will see how our model

leads to a successful “golden” mass formula relating quark and lepton masses, despite the absence of grand unification.

This is a flavour generalization of bottom-tau unification previously proposed in [12, 25–29]. In addition we will derive

the corresponding model-specific predictions for the lepton mixing matrix describing neutrino oscillations. While no

predictions are made for the CKM quark mixing matrix, we show how it can be adequately fit in a simple way, see

reference [26]. We now spell out the detailed flavour predictions of our model.

A. Charged fermions and the generalised bottom-tau mass relation

The complete particle assignment of our model is inspired in the one in [26], and is shown in Table II, including

both gauge as well as flavour transformation properties.

Q̄ L̄ uRi dR `R ⌫R Hu Hd � �

SU(2)L ⌦ U(1)Y (2, 1/6) (2,�1/2) (1, 2/3) (1,�1/3) (1,�1) (1, 0) (2,�1/2) (2, 1/2) (2,�1/2) (1, 0)

A4 3 3 1i 3 3 3 3 3 3 3/1i

Z3 1 !2 1 1 ! ! 1 1 1 1

Z2 + + + + + � + + � �
Zd

2 + + + � + + + � + +

Table II. Particle content and quantum numbers for the model.

From Eq. (3) one sees that the charged lepton mass matrix, following [25–27], can be parametrised as:

m` =

0

B@
0 a`↵`e

i✓` b`

b`↵` 0 ei✓`a`⇢`

a`e
i✓` b`⇢` 0

1

CA , (4)

where a` = vhd
2
(Y 1

` + Y 3
` ) and b` = vhd

2
(Y 2

` + Y 4
` ) are real Yukawa couplings, ✓` is a unremovable complex phase3 and

the Hd vev alignment is parameterised as
⌦
Hd

↵
= (vhd

1
, vhd

2
, vhd

3
) = vhd

2
(⇢`, 1, ↵`), with ↵` = vhd

3
/vhd

2
and ⇢` = vhd

1
/vhd

2
.

3
We assume that the non-conservation of CP symmetry comes entirely from the neutrino sector. Thus in our analysis we fixed ✓`=0.

5

The bi–unitary invariants of the squared mass matrix M2
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We work under the assumptions ⇢` � ↵`, ⇢` � 1, b` > a` and ⇢` � b`
a`

which, at leading order, ensure adequate

family mass hierarchy as well as mixing patterns. One can show from Eqs. (5–7) that:
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Notice that also the down–type quarks couple to the Hd and hence have the same flavour structure. This implies

that the parameters ⇢` and ↵` in Eq. (11) are common to the charged leptons and the down–type quarks, i.e. ⇢` = ⇢d

and ↵` = ↵d. From this we derive the generalised bottom–tau mass relation in Eq. (1):

m⌧p
memµ

=
mbp
mdms

,

in a straightforward way. This generalised down quark–charged lepton mass relation, Eq. (1), follows from our flavour

group assignments. Although it has been obtained also in other realizations of A4 family symmetry [24, 26, 27], these

are not equivalent.

B. Fermion masses and mixing

In this section we focus on the lepton mixing matrix, because it is in this sector that our model makes non-trivial

predictions. However, the CKM matrix describing quark mixing will be adequately described, providing, in addition,

an input for the lepton mixing matrix. In analogy with the previous subsection, Eq. (3) gives the neutrino mass

matrix, which can also be parametrised as:
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in a straightforward way. This generalised down quark–charged lepton mass relation, Eq. (1), follows from our flavour
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are not equivalent.
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as (�) to ⌫R, � and � and + to the other particles. As a result they act in a complementary way to the Z3, forbiding

the unwanted renormalisable Yukawa couplings: L̄ �̃ `R and L̄ H̃d ⌫R, where �̃ = i�2�
⇤ and H̃d = i�2H

d ⇤.

In accordance with the previous discussion, the relevant part of Yukawa Lagrangian for the leptons is given as:

LY � Y i
`

⇥
L̄, Hd

⇤
3i

`R + Y i
⌫

⇥
L̄, �

⇤
3i

⌫R + h.c., (3)

where the symbol [a, b]3i stands for the two ways of contracting two triplets of A4, a and b, into a triplet, as shown

in the Appendix. Before proceeding we summarise our model structure by saying that, compared with the minimal

Standard Model case, here one has in addition to the Higgs doublet Hd, an extra scalar iso-doublet � and the

right-handed neutrino states ⌫R, all triplets under A4, and the iso-singlets �i which could be assigned as a triplet or

singlets of A4. After symmetry breaking, neutrinos get a small type-II seesaw mass, as a result of the small vacuum

expectation value (vev) h�i which is induced by the vev of �, as proposed in [13–15].

III. FLAVOUR PREDICTIONS AND NUMERICAL RESULTS

Two aspects of the flavour problem concern the explanation of mass hierarchies of quarks and leptons, as well as to

account for the structure of mixing in each of these sectors, so disparate from each other. We will see how our model

leads to a successful “golden” mass formula relating quark and lepton masses, despite the absence of grand unification.

This is a flavour generalization of bottom-tau unification previously proposed in [12, 25–29]. In addition we will derive

the corresponding model-specific predictions for the lepton mixing matrix describing neutrino oscillations. While no

predictions are made for the CKM quark mixing matrix, we show how it can be adequately fit in a simple way, see

reference [26]. We now spell out the detailed flavour predictions of our model.

A. Charged fermions and the generalised bottom-tau mass relation

The complete particle assignment of our model is inspired in the one in [26], and is shown in Table II, including

both gauge as well as flavour transformation properties.

Q̄ L̄ uRi dR `R ⌫R Hu Hd � �

SU(2)L ⌦ U(1)Y (2, 1/6) (2,�1/2) (1, 2/3) (1,�1/3) (1,�1) (1, 0) (2,�1/2) (2, 1/2) (2,�1/2) (1, 0)

A4 3 3 1i 3 3 3 3 3 3 3/1i

Z3 1 !2 1 1 ! ! 1 1 1 1

Z2 + + + + + � + + � �
Zd

2 + + + � + + + � + +

Table II. Particle content and quantum numbers for the model.

From Eq. (3) one sees that the charged lepton mass matrix, following [25–27], can be parametrised as:

m` =

0

B@
0 a`↵`e

i✓` b`

b`↵` 0 ei✓`a`⇢`

a`e
i✓` b`⇢` 0

1

CA , (4)

where a` = vhd
2
(Y 1

` + Y 3
` ) and b` = vhd

2
(Y 2

` + Y 4
` ) are real Yukawa couplings, ✓` is a unremovable complex phase3 and

the Hd vev alignment is parameterised as
⌦
Hd

↵
= (vhd

1
, vhd

2
, vhd

3
) = vhd

2
(⇢`, 1, ↵`), with ↵` = vhd

3
/vhd

2
and ⇢` = vhd

1
/vhd

2
.

3
We assume that the non-conservation of CP symmetry comes entirely from the neutrino sector. Thus in our analysis we fixed ✓`=0.
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The bi–unitary invariants of the squared mass matrix M2
` = m`m

†

` are determined as:

TrM2
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We work under the assumptions ⇢` � ↵`, ⇢` � 1, b` > a` and ⇢` � b`
a`

which, at leading order, ensure adequate

family mass hierarchy as well as mixing patterns. One can show from Eqs. (5–7) that:

(b`⇢`)
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3, (8)

(b3`⇢`↵`)
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2
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2
3, (9)
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2
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2
3. (10)

Solving the system in Eqs. (8-10), we can find the approximate expressions:

a` ⇡
m2

m3

r
m1m2

↵`
, b` ⇡

r
m1m2

↵`
and

⇢`p
↵`

⇡ m3p
m1m2

. (11)

Notice that also the down–type quarks couple to the Hd and hence have the same flavour structure. This implies

that the parameters ⇢` and ↵` in Eq. (11) are common to the charged leptons and the down–type quarks, i.e. ⇢` = ⇢d

and ↵` = ↵d. From this we derive the generalised bottom–tau mass relation in Eq. (1):

m⌧p
memµ

=
mbp
mdms

,

in a straightforward way. This generalised down quark–charged lepton mass relation, Eq. (1), follows from our flavour

group assignments. Although it has been obtained also in other realizations of A4 family symmetry [24, 26, 27], these

are not equivalent.

B. Fermion masses and mixing

In this section we focus on the lepton mixing matrix, because it is in this sector that our model makes non-trivial

predictions. However, the CKM matrix describing quark mixing will be adequately described, providing, in addition,
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we performed a numerical scan over the parameter regions for the solutions of Eqs. (13–15) that reproduce the

measured elements of the leptonic mixing matrix V = U†

l U⌫ . To do this we use as inputs the 3� values for the three

neutrino mixing angles and the two mass squared di↵erences from the global fit [1]. The U⌫ matrix comes from the

bi–unitary transformation for the neutrinos U †

⌫m⌫V⌫ = D⌫ , where D = diag (m⌫1 , m⌫2 , m⌫3), while the Ul comes from

the equivalent transformation for the charged leptons, e.g. U†

` m`V` = D`.

We now turn to the CKM matrix describing quark mixing. Although we have no family symmetry prediction for

the CKM matrix, we notice that it can be accomodated in the same way as described in [26]. This fixes the value

for the ↵d parameter which enters also in the leptonic sector. In order to adequately fit the CKM matrix we need

↵d = ↵l ⇡ 1.58 [26]. Taking into account the numerical values for the charged lepton masses me = 0.511006 MeV,

mµ = 105.656 MeV and m⌧ = 1776.96 MeV and assuming that the complex phase ✓` = 0, as in Refs. [25–27], we find

that the resulting contribution from the charged lepton sector to the neutrino mixing matrix is fixed and close to be

diagonal, see for instance [25].

C. Neutrino oscillation predictions

In order to determine the neutrino oscillation predictions of the model, we have performed a numerical scan in

which parameters are varied randomly in the ranges

↵⌫ 2 [�10, 10] , ⇢⌫ 2 [�10, 10] and ✓⌫ 2 [0, 2⇡] . (16)

Only those choices for which the undisplayed and well-measured oscillation parameters are within 3� of the values

obtained in the latest neutrino oscillation global fit of Ref. [1] are kept. This way we have obtained the model–allowed

regions in terms of the “interesting” and poorly determined oscillation parameters ✓23, �CP as well as the lightest

neutrino mass eigenvalue. These are displayed in shaded (green) regions in the Figures 2, 3 and 4. In contrast,

the band in Fig. 2 and the unshaded regions are the 90 and 99%CL regions in Fig. 4 are obtained directly from the

unconstrained three–neutrino oscillation global fit [1], see Figures 4 and 5 in reference [1].

We find that the model is only compatible with the inverted ordering for the neutrino mass eigenvalues. The

consistent parameter regions for the atmospheric mixing angle sin ✓23 vs. the lightest neutrino mass m3 are given in

Fig. 2, while the CP violation parameters �CP and JCP vs. m3 are displayed in Fig. 3.

From the plot given in Fig. 3 one sees that the allowed region for the lightest neutrino mass m3 is within the

range [6.4 ⇥ 10�4 eV, 2.7 ⇥ 10�3 eV]. We can see that only masses above ⇠ 0.002 eV allow JCP = 0, signifying no

CP violation, while for lower masses such value is always non–zero. The shaded areas in Fig. 4 are obtained from a

numerical scan that filters those parameter choices for which the well-measured undisplayed oscillation parameters

lie within 3� of the best fit values obtained in the latest neutrino oscillation global fit in Ref. [1]. These should be

compared with the unshaded 90 and 99%CL regions obtained directly in the unconstrained three–neutrino oscillation

global fit [1].

IV. CONCLUSIONS

We have proposed a A4 ⌦ Z3 ⌦ Z2 flavour extension of the Standard Model where the small neutrino masses are

generated from a type II Dirac see-saw mechanism. The model addresses both aspects of the flavour problem: the

explanation of mass hierarchies of quark and leptons, as well as restricting the structure of the lepton mixing matrix.

Concerning the first point, our model leads to a successful “golden” mass relation between quark en lepton masses,

proposed previously. In addition, the model provides flavour predictions for the lepton mixing matrix relevant for

neutrino oscillations. First of all, inverted neutrino mass ordering and non-maximal atmospheric mixing angle are

predicted. While this is at odds with the results of the latest neutrino oscillation global fit in [1], we stress that the
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mµ = 105.656 MeV and m⌧ = 1776.96 MeV and assuming that the complex phase ✓` = 0, as in Refs. [25–27], we find

that the resulting contribution from the charged lepton sector to the neutrino mixing matrix is fixed and close to be
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In order to determine the neutrino oscillation predictions of the model, we have performed a numerical scan in

which parameters are varied randomly in the ranges
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unconstrained three–neutrino oscillation global fit [1], see Figures 4 and 5 in reference [1].
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Lepton mixing matrix (PMNS)
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The bi–unitary invariants of the squared mass matrix M2
` = m`m

†

` are determined as:

TrM2
` = m2

1 + m2
2 + m2

3, (5)

detM2
` = m2

1m
2
2m

2
3, (6)

(TrM2
` )

2 � Tr(M2
` )

2 = 2m2
1m

2
2 + 2m2

2m
2
3 + 2m2

1m
2
3. (7)

We work under the assumptions ⇢` � ↵`, ⇢` � 1, b` > a` and ⇢` � b`
a`

which, at leading order, ensure adequate

family mass hierarchy as well as mixing patterns. One can show from Eqs. (5–7) that:

(b`⇢`)
2 ⇡ m2

3, (8)

(b3`⇢`↵`)
2 ⇡ m2

1m
2
2m

2
3, (9)

(a`b`⇢
2
`)

2 ⇡ m2
2m

2
3. (10)

Solving the system in Eqs. (8-10), we can find the approximate expressions:

a` ⇡
m2

m3

r
m1m2

↵`
, b` ⇡

r
m1m2

↵`
and

⇢`p
↵`

⇡ m3p
m1m2

. (11)

Notice that also the down–type quarks couple to the Hd and hence have the same flavour structure. This implies

that the parameters ⇢` and ↵` in Eq. (11) are common to the charged leptons and the down–type quarks, i.e. ⇢` = ⇢d

and ↵` = ↵d. From this we derive the generalised bottom–tau mass relation in Eq. (1):

m⌧p
memµ

=
mbp
mdms

,

in a straightforward way. This generalised down quark–charged lepton mass relation, Eq. (1), follows from our flavour

group assignments. Although it has been obtained also in other realizations of A4 family symmetry [24, 26, 27], these

are not equivalent.

B. Fermion masses and mixing

In this section we focus on the lepton mixing matrix, because it is in this sector that our model makes non-trivial

predictions. However, the CKM matrix describing quark mixing will be adequately described, providing, in addition,

an input for the lepton mixing matrix. In analogy with the previous subsection, Eq. (3) gives the neutrino mass

matrix, which can also be parametrised as:

m⌫ =

0

B@
0 a⌫↵⌫ b⌫e

i✓⌫

b⌫e
i✓⌫↵⌫ 0 a⌫⇢⌫

a⌫ b⌫e
i✓⌫⇢⌫ 0

1

CA , (12)

where a⌫ = v�2(Y
1
⌫ + Y 3

⌫ ) and b⌫ = v�2(Y
2
⌫ + Y 4

⌫ ) are real Yukawa couplings, ✓⌫ is the complex phase that cannot be

rotated away under SU(2) transformations, and characterizes the strentgh of CP violation in the lepton sector. The

vev–alignment of � can be written as h�i = (v�1 , v�2 , v�3) = v�2(⇢⌫ , 1, ↵⌫), with ↵⌫ = v�3/v�2 and ⇢⌫ = v�1/v�2.

From the invariants Eqs.(5–7) of the squared neutrino mass matrix M2
⌫ = m⌫m

†

⌫ :

Tr(M2
⌫ ) = (a2

⌫ + b2⌫)(1 + ↵2
⌫ + ⇢2⌫), (13)

det(M2
⌫ ) = (a6

⌫ + b6⌫ + 2a3
⌫b

3
⌫ cos(3✓⌫))↵

2
⌫⇢

2
⌫ , (14)

1

2

⇥
(TrM2

⌫ )
2 � Tr(M4

⌫ )
⇤
= a2

⌫b
2
⌫(1 + ↵4

⌫ + ⇢4⌫) + (a4
⌫ + b4⌫)(⇢

2
⌫ + ↵2

⌫(1 + ⇢2⌫)), (15)

Fixed by CKM 
fitting.  

Close to a 
diagonal
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Figure 2. The regions in the atmospheric mixing angle ✓23 and the lightest neutrino mass m3 plane allowed by current oscillation

data are the shaded (green) areas, see text. The horizontal dashed line represents the best-fit value for sin2 ✓23, whereas the

horizontal shaded region corresponds to the 1� allowed region from Ref. [1].

Figure 3. Correlation between the CP violation and the lightest neutrino mass. Left: correlation between the Jarlskog invatiant

and the lightest neutrino mass m3 allowed by the current oscillation data from Ref. [1]. Right: We plot also the allowed region

for the correlation between the the Dirac CP phase �CP and the lightest neutrino mass m3.

neither the preference for normal ordering nor the indication for a given octant are currently statistically significant,

since the general three-neutrino fit gives four possible closely separated local minima. In any case, taken at face value,

the model at hand would suggest a slight preference for the higher octant, since it predicts inverted neutrino mass

ordering. We have also found a positive hint for CP violation, �CP 6= 0, if m⌫lightest . 0.002 eV, while bigger masses

are consistent with CP conserving solutions. Concerning the CKM quark mixing matrix, we also saw that, although

no definite predictions are made, the required CKM matrix elements can be adequately described, and they also fix

the contribution to the neutrino mixing matrix that comes from the charged lepton sector. Finally, we note that the

residual flavour symmetry forbids the Majorana mass terms at any order and provides, by construction, a natural

realization of a type II Dirac see-saw mechanism for small neutrino masses.

Global fit data from [P. F. de Salas, et al., 2017]

Only 
consistent 
with the IO
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Figure 2. The regions in the atmospheric mixing angle ✓23 and the lightest neutrino mass m3 plane allowed by current oscillation

data are the shaded (green) areas, see text. The horizontal dashed line represents the best-fit value for sin2 ✓23, whereas the

horizontal shaded region corresponds to the 1� allowed region from Ref. [1].
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Figure 3. Correlation between the CP violation and the lightest neutrino mass. Left: correlation between the Jarlskog invatiant

and the lightest neutrino mass m3 allowed by the current oscillation data from Ref. [1]. Right: We plot also the allowed region

for the correlation between the the Dirac CP phase �CP and the lightest neutrino mass m3.

neither the preference for normal ordering nor the indication for a given octant are currently statistically significant,

since the general three-neutrino fit gives four possible closely separated local minima. In any case, taken at face value,

the model at hand would suggest a slight preference for the higher octant, since it predicts inverted neutrino mass

ordering. We have also found a positive hint for CP violation, �CP 6= 0, if m⌫lightest . 0.002 eV, while bigger masses

are consistent with CP conserving solutions. Concerning the CKM quark mixing matrix, we also saw that, although

no definite predictions are made, the required CKM matrix elements can be adequately described, and they also fix

the contribution to the neutrino mixing matrix that comes from the charged lepton sector. Finally, we note that the

residual flavour symmetry forbids the Majorana mass terms at any order and provides, by construction, a natural

realization of a type II Dirac see-saw mechanism for small neutrino masses.

Numerical scan in the parameter region taking as inputs 
the 3σ values of the neutrino oscillation parameters.
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Figure 4. The allowed regions of the atmospheric mixing angle and �CP are indicated in shaded (green). They result from a

numerical scan keeping only those choices that lie within 3� of their preferred best fit values Ref. [1] The unshaded regions are

90 and 99%CL regions obtained directly in the unconstrained three–neutrino oscillation global fit [1].
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Appendix A: The A4 product representation

The non abelian discrete group A4, or the group of the even permutation of four elements, has four irreducible

representations [30–32]: three singlets 11, 12, and 13 and one triplet 3 and two generators: S and T following the

relations S2 = T 3 = (ST )3 = I. The one-dimensional unitary representations are

11 : S = 1, T = 1,

12 : S = 1, T = !,

13 : S = 1, T = !2,

(A1)

where !3 = 1. In the basis where S is real diagonal,

S =

0

B@
1 0 0

0 �1 0

0 0 �1

1

CA and T =

0

B@
0 1 0

0 0 1

1 0 0

1

CA . (A2)

The product rule for the singlets are

11 ⌦ 11 = 12 ⌦ 13 = 1,

12 ⌦ 12 = 13,

13 ⌦ 13 = 12,

(A3)

Numerical scan in the parameter region taking as inputs 
the 3σ values of the neutrino oscillation parameters.



Summary and Conclusions

We have propose a SM extension with underlying A4 
flavour symmetry. 

The model addresses both aspects of the flavour 
problem: the explanation of mass hierarchies of quark 
and leptons, as well as restricting the structure of the 
lepton mixing matrix. 

The model predicts the golden flavour-dependent 
bottom-tau mass relation. 



Summary and Conclusions
Requires an IO and non-maximal atmospheric mixing 
angle (Neither the preference for normal ordering nor the 
indication for an octant are currently statistically 
significant). 

The residual flavour symmetry forbids the Majorana 
mass terms at any order and provides a natural 
realisation of a type-II Dirac seesaw mechanism. 

The CKM matrix, although no definite predictions are 
made, the required CKM matrix elements can be 
adequately described. Then the contribution to the 
neutrino mixing matrix that comes from the charged 
lepton sector is fixed.
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