Type-II Dirac neutrino seesaw in a flavour model

Mario Lamprea

- N.I

S

Institute of Physics, UNAM

in collab. with C. Bonilla, E. Peinado and J. W. F. Valle

Reunion anual - DPyC - ICN Mexico city, May 30th

Standar Model is complete

Discovery of the last SM particle

2

Standar Model is complete

3

Remain open questions in SM (some of them):

Neutrino oscillations (origin of the neutrino masses)

Evidence of dark matter (gravitation)

The *asymmetry matter-antimatter* of the universe (BAU)

Neutrinos

- There are tree massless neutrinos in the SM.
- But neutrino oscillations are evidence of their masses and mixing.
 - Two square mass differences, at least two masses are non-zero.
 - Still allowed both mass orderings: NO & IO.
- Nature of neutrinos: Dirac or Majorana fermions (can be proved by some process with 2L = 2, as 0v88 via blackbox theorem).
- * Unknown the absolute mass scale (hierarchy). There are some bounds from the Tritium B decay ($m_e \le 2 \text{ eV}$) & from the Cosmology ($\sum m_e \le 0.23 \text{ eV}$).
- The existence of neutrino masses are evidence of physics BSM.

- There are tree massless neutrinos in the SM.
- But neutrino oscillations are *evidence* of their masses and mixing.

Two square mass differences, at least two masses are non-zero.

Nature of neutrinos: Dirac or Majorana fermions (can be proved by some process with ΔL = 2, as 0vββ via blackbox theorem)

* Unknown the absolute mass scale (hierarchy). There are some bounds from the Tritium β decay ($m_e \leq 2$ eV). & from the Cosmology ($\sum m_e \leq 0.23$ eV).

 The existence of neutrino masses are evidence of physics BSM.

Neutrinos

Measurements of oscillation parameters

- There are tree massless neutrinos in the SM.
- But neutrino oscillations are *evidence* of their masses and mixing.
 - **Two square mass differences,** at least two masses are non-zero.

Neutrinos

Measurements of oscillation parameters

- There are tree massless neutrinos in the SM.
- But neutrino oscillations are *evidence* of their masses and mixing.
 - **Two square mass differences,** at least two masses are non-zero.
 - Still allowed both mass orderings: **NO** & **IO**.

* Unknown the absolute mass scale (hierarchy). There are some bounds from the Tritium B decay $(m_{\rm e} < 2 \, {\rm eV})$ & from the

The existence of neutrino masses area
 evidence of physics BSM.

Neutrinos

Measurements of oscillation parameters

Neutrinos

Neutrino oscillations status

Neutrinos

Neutrino oscillations status

- There are tree massless neutrinos in the SM.
- But neutrino oscillations are *evidence* of their masses and mixing.
 - **Two square mass differences,** at least two masses are non-zero.

Still allowed both mass orderings: NO & IO.

• Nature of neutrinos: **Dirac** or **Majorana** fermions (can be proved by some processes with $\Delta L = 2$, as **0v** $\beta\beta$ via **blackbox theorem**).

Black box theorem

Neutrinos

- There are tree massless neutrinos in the SM.
- But neutrino oscillations are *evidence* of their masses and mixing.
 - **Two square mass differences,** at least two masses are non-zero.

Still allowed both mass orderings: **NO** & **IO**.

- Nature of neutrinos: **Dirac** or **Majorana** fermions (can be proved by some processes with $\Delta L = 2$, as **0v** $\beta\beta$ via **blackbox theorem**).
- ◆ Unknown the absolute mass scale (hierarchy). There are some bounds from the Tritium β decay ($m_{ve} \leq 2$ eV) & from the Cosmology ($\sum m_v \leq 0.23$ eV).

ne existence of neutrino masses are vidence of physics BSM.

Neutrinos

- There are tree massless neutrinos in the SM.
- But neutrino oscillations are *evidence* of their masses and mixing.
 - **Two square mass differences,** at least two masses are non-zero.

Still allowed both mass orderings: NO & IO.

- Nature of neutrinos: **Dirac** or **Majorana** fermions (can be proved by some processes with $\Delta L = 2$, as **0v** $\beta\beta$ via **blackbox theorem**).
- ◆ Unknown the absolute mass scale (hierarchy). There are some bounds from the Tritium β decay ($m_{ve} \leq 2$ eV) & from the Cosmology ($\sum m_v \leq 0.23$ eV).
- The existence of neutrino masses are evidence of physics BSM.

Neutrinos

Dirac and Majorana mass terms:

$$-\mathcal{L} = \frac{1}{2} \begin{pmatrix} \bar{\nu}_L & \bar{\nu}_L^c \end{pmatrix} \begin{pmatrix} m_M & m_D \\ m_D & m_s \end{pmatrix} \begin{pmatrix} \nu_R^c \\ \nu_R \end{pmatrix} + h.c.$$

 $-\mathcal{L}_{D} = m_{D}(\bar{\nu}_{L}\nu_{R} + \bar{\nu}_{R}\nu_{L}) \quad -\mathcal{L}_{M} = \frac{m_{M}}{2}(\bar{\nu}_{L}\nu_{R}^{c} + \bar{\nu}_{R}^{c}\nu_{L}) \quad -\mathcal{L}_{S} = \frac{m_{S}}{2}(\bar{\nu}_{L}^{c}\nu_{R} + \bar{\nu}_{R}\nu_{L}^{c})$

Neutrinos

Dirac and Majorana mass terms:

$$-\mathcal{L} = \frac{1}{2} \begin{pmatrix} \bar{\nu}_L & \bar{\nu}_L^c \end{pmatrix} \begin{pmatrix} m_M & m_D \\ m_D & m_s \end{pmatrix} \begin{pmatrix} \nu_R^c \\ \nu_R \end{pmatrix} + h.c.$$

$$-\mathcal{L}_D = m_D (\bar{\nu}_L \nu_R + \bar{\nu}_R \nu_L) \quad -\mathcal{L}_M = \frac{m_M}{2} (\bar{\nu}_L \nu_R^c + \bar{\nu}_R^c \nu_L) \quad -\mathcal{L}_S = \frac{m_S}{2} (\bar{\nu}_L^c \nu_R + \bar{\nu}_R \nu_L^c)$$

 Lepton mixing matrix (PMNS): From mismatch between mass and interaction (flavour) eigenstates.

$$U = V_L^{l\dagger} V_L^{\nu}$$

Neutrinos

Dirac and Majorana mass terms:

$$-\mathcal{L} = \frac{1}{2} \begin{pmatrix} \bar{\nu}_L & \bar{\nu}_L^c \end{pmatrix} \begin{pmatrix} m_M & m_D \\ m_D & m_s \end{pmatrix} \begin{pmatrix} \nu_R^c \\ \nu_R \end{pmatrix} + h.c.$$

$$-\mathcal{L}_{D} = m_{D}(\bar{\nu}_{L}\nu_{R} + \bar{\nu}_{R}\nu_{L}) \quad -\mathcal{L}_{M} = \frac{m_{M}}{2}(\bar{\nu}_{L}\nu_{R}^{c} + \bar{\nu}_{R}^{c}\nu_{L}) \quad -\mathcal{L}_{S} = \frac{m_{S}}{2}(\bar{\nu}_{L}^{c}\nu_{R} + \bar{\nu}_{R}\nu_{L}^{c})$$

 Lepton mixing matrix (PMNS): From mismatch between mass and interaction (flavour) eigenstates.

$$U = V_L^{l\dagger} V_L^{\nu}$$

For 3 light **Dirac** neutrinos (**3 mixing angles, 1 CP phase**)

$$U^{D} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix}$$

Majorana neutrinos (2 additional CP phases)

Neutrinos

Dirac and Majorana mass terms:

$$-\mathcal{L} = \frac{1}{2} \begin{pmatrix} \bar{\nu}_L & \bar{\nu}_L^c \end{pmatrix} \begin{pmatrix} m_M & m_D \\ m_D & m_s \end{pmatrix} \begin{pmatrix} \nu_R^c \\ \nu_R \end{pmatrix} + h.c.$$

$$-\mathcal{L}_{D} = m_{D}(\bar{\nu}_{L}\nu_{R} + \bar{\nu}_{R}\nu_{L}) \quad -\mathcal{L}_{M} = \frac{m_{M}}{2}(\bar{\nu}_{L}\nu_{R}^{c} + \bar{\nu}_{R}^{c}\nu_{L}) \quad -\mathcal{L}_{S} = \frac{m_{S}}{2}(\bar{\nu}_{L}^{c}\nu_{R} + \bar{\nu}_{R}\nu_{L}^{c})$$

 Lepton mixing matrix (PMNS): From mismatch between mass and interaction (flavour) eigenstates.

$$U = V_L^{l\dagger} V_L^{\nu}$$

For 3 light **Dirac** neutrinos (**3 mixing angles, 1 CP phase**)

$$U^{D} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix}$$

Majorana neutrinos (2 additional CP phases)

$$U_M = U_D D_M$$
 $D_M = \text{diag}(1, e^{i\lambda_2}, e^{i\lambda_3})$

Neutrinos

Mechanism for **mass** generation of **Majorana** LH neutrinos trough the *dimension 5* or *Weinberg operator* ($\Delta L = 2$).

$$\mathcal{O}_5 = \frac{g}{\mathcal{M}} (\bar{L}^c \sigma_2 H) (H^T \sigma_2 L)$$

At tree level by heavy mediator (seesaw type I, II & II).

Other ways, as **radiative processes** (loop suppression of the LH neutrino masses)

Neutrinos

Mechanism for **mass** generation of **Majorana** LH neutrinos trough the *dimension 5* or *Weinberg operator* ($\Delta L = 2$).

$$\mathcal{O}_5 = \frac{g}{\mathcal{M}} (\bar{L}^c \sigma_2 H) (H^T \sigma_2 L)$$

 $m_e \simeq \mathcal{O}(1 \, eV)$ $g \simeq \mathcal{O}(10^{-2} - 1)$

Suppression of the LH neutrino masses)

 $\mathcal{M} \simeq 10^{13-15} \; GeV$

Neutrinos

H

Mechanism for **mass** generation of **Majorana** LH neutrinos trough the *dimension 5* or *Weinberg operator* ($\Delta L = 2$).

$$\mathcal{O}_5 = \frac{g}{\mathcal{M}} (\bar{L}^c \sigma_2 H) (H^T \sigma_2 L)$$

Completion of this dim-5 operator:

 m_e $g\simeq$ $\mathcal{M}\simeq$

 $m_e \simeq \mathcal{O}(1 \, eV)$ $g \simeq \mathcal{O}(10^{-2} - 1)$ $\mathcal{M} \simeq 10^{13 - 15} \; GeV$

Mechanism for **mass** generation of **Majorana** LH neutrinos trough the *dimension 5* or *Weinberg operator* ($\Delta L = 2$).

$$\mathcal{O}_5 = \frac{g}{\mathcal{M}} (\bar{L}^c \sigma_2 H) (H^T \sigma_2 L)$$

Completion of this dim-5 operator:

At **tree level** by heavy mediator (seesaw type I, II & III).

Other ways, as radiative processes (lo suppression of the LH neutrino masses)

$m_e \simeq \mathcal{O}(1 \, eV)$ $g \simeq \mathcal{O}(10^{-2} - 1)$ $\mathcal{M} \simeq 10^{13 - 15} \; GeV$

Neutrinos

Mechanism for **mass** generation of **Majorana** LH neutrinos trough the *dimension 5* or *Weinberg operator* ($\Delta L = 2$).

$$\mathcal{O}_5 = \frac{g}{\mathcal{M}} (\bar{L}^c \sigma_2 H) (H^T \sigma_2 L)$$

Completion of this dim-5 operator:

At **tree level** by heavy mediator (seesaw type I, II & III).

Other ways, as **radiative processes** (loop suppression of the LH neutrino masses)

Neutrinos

$$m_e \simeq \mathcal{O}(1 eV)$$

 $g \simeq \mathcal{O}(10^{-2} - 1)$
 $\mathcal{M} \simeq 10^{13 - 15} ~GeV$

 $\sim (\Omega(1 \circ U))$

Neutrinos

Neutrinos

In analogy with **quarks** and **charged leptons** in the **SM**. **Mass** term for **Dirac neutrinos** (RH neutrinos **v**_R *added*).

$$-\mathcal{L} = y_D \bar{L} H \nu_R + \text{h.c.}$$

Assuming Yukawa coupling of quark top of order 1.

For a Dirac neutrino.

For the lightest charged lepton (e-)

Seems unnatural the Yukawa coupling for a Dirac neutrino

Neutrinos

In analogy with **quarks** and **charged leptons** in the **SM**. **Mass** term for **Dirac neutrinos** (RH neutrinos **v**_R *added*).

$$-\mathcal{L} = y_D \bar{L} H \nu_R + \text{h.c.}$$

Assuming Yukawa coupling of quark top of order 1.

$$y_D \sim \mathcal{O}(10^{-12})$$
 For a Dirac neutrino.

 $y_e \sim \mathcal{O}(10^{-6})$ For the lightest charged lepton (e⁻).

Seems unnatural the Yukawa coupling for a Dirac neutrino

Neutrinos

H

Ж

 ν_R

In analogy with **quarks** and **charged leptons** in the **SM**. **Mass** term for **Dirac neutrinos** (RH neutrinos **v**_R *added*).

$$-\mathcal{L} = y_D \bar{L} H \nu_R + \text{h.c.}$$

Assuming Yukawa coupling of quark top of order 1.

$$y_D \sim \mathcal{O}(10^{-12})$$
 For a Dirac neutrino.

 $y_e \sim \mathcal{O}(10^{-6})$ For the lightest charged lepton (e⁻).

 ν_L

Seems unnatural the Yukawa coupling for a Dirac neutrino

Disparity between the quark and lepton mixing matrices

[S. Stone, 2013]

Disparity between the **quark** and **lepton masses**.

[J. Valle & J. Romão, 2015]

Family symmetries

- They have been used to reduce the n° of Yukawa couplings and correlations among observables: masses, mixings & CP phases.
 Sometimes gives predictions,
- Sometimes gives predictions, as certain mass matrix textures (TM, BM,TBM, BTM).

Family (horizontal or flavour) symmetry

Family symmetries

Non-Abelian finite groups of order < 32 constructed from direct products of Z, D, Q, S and T.

Family symmetriesAlternating group (A4):Flavour symmetry group.[E. Ma, et al. '01]

Non-abelian, discrete group. It has: Tree 1-dim. irreps.: 1_1 , 1_2 , 1_3 . One 3-dim. irrep.: 3. IntroductionFamily symmetry
symmetry group. [E. Ma, et al. '01]Alternating group (A4):Flavour symmetry group. [E. Ma, et al. '01]Non-abelian, discrete group. It has:
Tree 1-dim. irreps.: $1_1, 1_2, 1_3$.Product rule:One 3-dim. irreps.: $1_1, 1_2, 1_3$. $1_1 \otimes 1_1 = 1_1, 1_2 \otimes 1_2 = 1_3, 1_3 \otimes 1_3 = 1_2,$
 $1_1 \otimes 1_2 = 1_2, 1_1 \otimes 1_3 = 1_3, 1_2 \otimes 1_3 = 1_1,$

 $\mathbf{3} \otimes \mathbf{3} = \mathbf{1}_1 \oplus \mathbf{1}_2 \oplus \mathbf{1}_3 \oplus \mathbf{3} \oplus \mathbf{3}.$

Introduction Alternating group (A₄): Flavour symmetry group. [E. Ma, *et al.* '01] Non-abelian, discrete group. It has: Tree 1-dim. irreps.: $1_1, 1_2, 1_3$. One 3-dim. irrep.: 3. Product rule: $1_1 \otimes 1_1 = 1_1, 1_2 \otimes 1_2 = 1_3, 1_3 \otimes 1_3 = 1_2,$ $1_1 \otimes 1_2 = 1_2$, $1_1 \otimes 1_3 = 1_3$, $1_2 \otimes 1_3 = 1_1$, A₄ has two sub- $3 \otimes 3 = 1_1 \oplus 1_2 \oplus 1_3 \oplus 3 \oplus 3$. groups \mathbb{Z}_2 , \mathbb{Z}_3 . Two generators: **S**, **T**.

Introduction Family symmetriesAlternating group (A4):Flavour symmetry group.[E. Ma, et al. '01] Non-abelian, discrete group. It has: Tree 1-dim. irreps.: $1_1, 1_2, 1_3$. One 3-dim. irrep.: 3. Product rule: $1_1 \otimes 1_1 = 1_1, 1_2 \otimes 1_2 = 1_3, 1_3 \otimes 1_3 = 1_2,$ $1_1 \otimes 1_2 = 1_2$, $1_1 \otimes 1_3 = 1_3$, $1_2 \otimes 1_3 = 1_1$, A4 has two sub- $3 \otimes 3 = 1_1 \oplus 1_2 \oplus 1_3 \oplus 3 \oplus 3$. groups \mathbb{Z}_2 , \mathbb{Z}_3 . Two generators: **S**, **T**. Generators in the a $S = \left(\begin{array}{rrrr} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{array}\right)$ 3 dim. rep. (with S real and diagonal).

Introduction Family symmetriesAlternating group (A4):Flavour symmetry group.[E. Ma, et al. '01] Non-abelian, discrete group. It has: Tree 1-dim. irreps.: $1_1, 1_2, 1_3$. One 3-dim. irrep.: 3. Product rule: $1_1 \otimes 1_1 = 1_1, 1_2 \otimes 1_2 = 1_3, 1_3 \otimes 1_3 = 1_2,$ $1_1 \otimes 1_2 = 1_2$, $1_1 \otimes 1_3 = 1_3$, $1_2 \otimes 1_3 = 1_1$, A4 has two sub- $3 \otimes 3 = 1_1 \oplus 1_2 \oplus 1_3 \oplus 3 \oplus 3$. groups \mathbb{Z}_2 , \mathbb{Z}_3 . Two generators: **S**, **T**. Z_3 $S = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \qquad T = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \qquad \begin{array}{l} \text{Generators in the a} \\ 3 \ \text{dim. rep. (with } S \\ \text{real and diagonal).} \end{array}$

	\bar{L}	ℓ_R	$ u_R $	H^d	ϕ	σ
$SU(2)_L \otimes U(1)_Y$	(2, -1/2)	(1, -1)	(1, 0)	(2, 1/2)	(2, -1/2)	(1, 0)
A_4	3	3	3	3	3	$3 \text{ or } \mathbf{1_i}$
\mathbb{Z}_3	ω^2	ω	ω	1	1	1
\mathbb{Z}_2	+	+	_	+	_	

$$H^d = (H^d_1, H^d_2, H^d_3)$$

$$\phi = (\phi_1, \phi_2, \phi_3)$$

$$H_i^d = \begin{pmatrix} h_i^{d+} \\ h_i^{d\,0} \end{pmatrix} \qquad \qquad \phi_i = \begin{pmatrix} \phi_i^0 \\ \phi_i^- \end{pmatrix}$$

$$\nu_R = (\nu_{R_1}, \nu_{R_2}, \nu_{R_3})$$

Higgs doublets

RH Neutrinos

Flavon fields σ_i

	\bar{L}	ℓ_R	$ u_R$	H^d	ϕ	σ
$SU(2)_L \otimes U(1)_Y$	(2, -1/2)	(1, -1)	(1, 0)	(2, 1/2)	(2, -1/2)	(1,0)
A_4	3	3	3	3	3	$3 \text{ or } \mathbf{1_i}$
\mathbb{Z}_3	ω^2	ω	ω	1	1	1
\mathbb{Z}_2	+	+		+	_	

$$\nu_R = (\nu_{R_1}, \nu_{R_2}, \nu_{R_3})$$

 $H^d = (H^d_1, H^d_2, H^d_3)$

 $\left\langle H^d \right\rangle \,=\, \left(v_{h_1^d}, v_{h_2^d}, v_{h_3^d} \right)$

 $\langle \phi \rangle = (v_{\phi_1}, v_{\phi_2}, v_{\phi_3}).$

	$ar{L}$	ℓ_R	$ u_R$	H^d	ϕ	σ
$SU(2)_L \otimes U(1)_Y$	(2, -1/2)	(1, -1)	(1, 0)	(2, 1/2)	(2, -1/2)	(1,0)
A_4	3	3	3	3	3	$3 \text{ or } \mathbf{1_i}$
\mathbb{Z}_3	ω^2	ω	ω	T	1	1
\mathbb{Z}_2	+	+		+	_	—

A4 gives the flavour structure

	\overline{L}	ℓ_R	$ u_R $	H^d	ϕ	σ
$SU(2)_L \otimes U(1)_Y$	(2, -1/2)	(1, -1)	(1, 0)	(2, 1/2)	(2, -1/2)	(1,0)
A_4	3	3	3	3	3	$3 ext{ or } \mathbf{1_i}$
\mathbb{Z}_3	ω^2	ω	ω	1	1	1
\mathbb{Z}_2	+	+				

A4 gives the flavour structure

 $M_R \nu_R \nu_R$

Maj. mass term RH

	\bar{L}	ℓ_R	$ u_R $	H^d	ϕ	σ
$SU(2)_L \otimes U(1)_Y$	(2, -1/2)	(1, -1)	(1, 0)	(2, 1/2)	(2, -1/2)	(1,0)
A_{14}	3	3	3	3	3	$3 ext{ or } \mathbf{1_i}$
\mathbb{Z}_3	ω^2	ω	ω	1	1	1
\mathbb{Z}_2	+	Ŧ				*******************************

LH^dLH^d
$L ilde{\phi} L ilde{\phi}$
$LH^dL\tilde\phi$

 Z_3

forbids

Maj. mass dim-5 Op. term RH

	\bar{L}	ℓ_R	$ u_R $	H^d	ϕ	σ
$SU(2)_L \otimes U(1)_Y$	(2, -1/2)	(1, -1)	(1, 0)	(2, 1/2)	(2, -1/2)	(1,0)
A_{11}	3	3	3	3	3	$3 ext{ or } \mathbf{1_i}$
\mathbb{Z}_3	ω^2	ω	ω	1	1	1
\mathbb{Z}_2	+	+				

A4 gives the flavour structure

+

ᅔ

 ϕ

	\bar{L}	ℓ_R	$ u_R$	H^d	ϕ	σ
$SU(2)_L \otimes U(1)_Y$	(2, -1/2)	(1, -1)	(1, 0)	(2, 1/2)	(2, -1/2)	(1, 0)
A_4	3	3	3	3	3	$3 \text{ or } \mathbf{1_i}$
<u>Z</u> 3	ω^2	ω	ω	1	1	1
\mathbb{Z}_2	+	+	_	+	_	_

A4 gives the flavour structure

	\bar{L}	ℓ_R	$ u_R$	H^d	ϕ	σ
$SU(2)_L \otimes U(1)_Y$	(2, -1/2)	(1, -1)	(1, 0)	(2, 1/2)	(2, -1/2)	(1, 0)
A_4	3	3	3	3	3	$3 \text{ or } \mathbf{1_i}$
\mathbb{Z}_3	ω^2	ω	ω	1	1	1
\mathbb{Z}_2	+	+		+	_	

$$\mathcal{L}_Y \supset Y^i_{\ell} \left[\bar{L}, H^d \right]_{3_i} \ell_R + Y^i_{\nu} \left[\bar{L}, \phi \right]_{3_i} \nu_R + \text{h.c.}$$

φ acquires a **small** induced **vev**.

[C. Bonilla et. al., 2016]

$$v_{\Phi} \approx \kappa v_H \left(\frac{1}{\lambda_{H\Phi} \frac{v_H^2}{v_{\sigma}^2} + \lambda_{\sigma\Phi} - 2\frac{\mu_{\Phi}^2}{v_{\sigma}^2}} \right)$$

 $v_{\sigma} \gtrsim v_H \gg v_{\Phi}$

	\bar{L}	ℓ_R	$ u_R$	H^d	ϕ	σ
$SU(2)_L \otimes U(1)_Y$	(2, -1/2)	(1, -1)	(1, 0)	(2, 1/2)	(2, -1/2)	(1, 0)
A_4	3	3	3	3	3	$3 \text{ or } \mathbf{1_i}$
\mathbb{Z}_3	ω^2	ω	ω	1	1	1
\mathbb{Z}_2	+	+	_	+		

Complete model (inspired in [S. King, et al. (2013)])

	\bar{Q}	\bar{L}	u_{R_i}	d_R	ℓ_R	ν_R	H^u	H^d	ϕ	σ
$SU(2)_L \otimes U(1)_Y$	(2, 1/6)	(2, -1/2)	(1, 2/3)	(1, -1/3)	(1, -1)	(1,0)	(2, -1/2)	(2, 1/2)	(2, -1/2)	(1,0)
A_4	3	3	$1_{\mathbf{i}}$	3	3	3	3	3	3	$3/1_{i}$
Z_3	1	ω^2	1	1	ω	ω	1	1	1	1
Z_2	+	+	+	+	+	—	+	+	—	_
Z_2^d	+	+	+	_	+	+	+	—	+	+

Accounts for the **masses** and **mixings** of **quarks** and **leptons**

Flavour structure provides the generalised bottom-tau mass relation.

$$\mathcal{L}_Y \supset Y^i_\ell \left[\bar{L}, H^d \right]_{3_i} \ell_R + \text{h.c.}$$

Mass matrix for charged leptons and down type quarks.

$$m_{\ell} = \begin{pmatrix} 0 & a_{\ell} \alpha_{\ell} e^{i\theta_{\ell}} & b_{\ell} \\ b_{\ell} \alpha_{\ell} & 0 & e^{i\theta_{\ell}} a_{\ell} \rho_{\ell} \\ a_{\ell} e^{i\theta_{\ell}} & b_{\ell} \rho_{\ell} & 0 \end{pmatrix}$$

with

$$a_{\ell} = v_{h_2^d} (Y_{\ell}^1 + Y_{\ell}^3) \qquad b_{\ell} = v_{h_2^d} (Y_{\ell}^2 + Y_{\ell}^4)$$

$$\alpha_{\ell} = v_{h_3^d} / v_{h_2^d} \qquad \qquad \rho_{\ell} = v_{h_1^d} / v_{h_2^d}$$

$$\langle H^d \rangle = (v_{h_1^d}, v_{h_2^d}, v_{h_3^d}) = v_{h_2^d}(\rho_\ell, 1, \alpha_\ell)$$

Unremovable **CP phase** θ_{ℓ}

Set $\theta_\ell = 0$

CPV comes from u-type quarks and neutrinos

Flavour structure provides the generalised bottom-tau mass relation.

$$\mathcal{L}_Y \supset Y^i_\ell \left[\bar{L}, H^d \right]_{3_i} \ell_R + \text{h.c.}$$

Mass matrix for charged leptons and down type quarks.

$$m_{\ell} = \begin{pmatrix} 0 & a_{\ell} \alpha_{\ell} e^{i\theta_{\ell}} & b_{\ell} \\ b_{\ell} \alpha_{\ell} & 0 & e^{i\theta_{\ell}} a_{\ell} \rho_{\ell} \\ a_{\ell} e^{i\theta_{\ell}} & b_{\ell} \rho_{\ell} & 0 \end{pmatrix}$$

Bi-unitary invariants of the mass squared matrix $M_{\ell}^2 = m_{\ell} m_{\ell}^{\dagger}$

$$\operatorname{Tr} M_{\ell}^2 = m_1^2 + m_2^2 + m_3^2,$$
$$\det M_{\ell}^2 = m_1^2 m_2^2 m_3^2,$$
$$(\operatorname{Tr} M_{\ell}^2)^2 - \operatorname{Tr} (M_{\ell}^2)^2 = 2m_1^2 m_2^2 + 2m_2^2 m_3^2 + 2m_1^2 m_3^2.$$

Flavour structure provides the generalised bottom-tau mass relation.

$$\mathcal{L}_Y \supset Y^i_\ell \left[\bar{L}, H^d \right]_{3_i} \ell_R + \text{h.c.}$$

Mass matrix for charged leptons and down type quarks.

$$m_{\ell} = \begin{pmatrix} 0 & a_{\ell} \alpha_{\ell} e^{i\theta_{\ell}} & b_{\ell} \\ b_{\ell} \alpha_{\ell} & 0 & e^{i\theta_{\ell}} a_{\ell} \rho_{\ell} \\ a_{\ell} e^{i\theta_{\ell}} & b_{\ell} \rho_{\ell} & 0 \end{pmatrix}$$

Bi-unitary invariants of the mass squared matrix $M_{\ell}^2 = m_{\ell} m_{\ell}^{\dagger}$

$$\begin{aligned} (b_{\ell}\rho_{\ell})^2 &\approx m_3^2, & \rho_{\ell} \gg \alpha_{\ell} \\ (b_{\ell}^3\rho_{\ell}\alpha_{\ell})^2 &\approx m_1^2 m_2^2 m_3^2, & \text{assuming} \\ (a_{\ell}b_{\ell}\rho_{\ell}^2)^2 &\approx m_2^2 m_3^2. & \rho_{\ell} \gg \frac{b_{\ell}}{a_{\ell}} \end{aligned}$$

Flavour structure provides the generalised bottom-tau mass relation.

$$(b_{\ell}\rho_{\ell})^{2} \approx m_{3}^{2}, \qquad \text{Solving} \qquad \begin{array}{l} a_{\ell} \approx \frac{m_{2}}{m_{3}} \sqrt{\frac{m_{1}m_{2}}{\alpha_{\ell}}} \\ (b_{\ell}^{3}\rho_{\ell}\alpha_{\ell})^{2} \approx m_{1}^{2}m_{2}^{2}m_{3}^{2}, \qquad \rho_{\ell} \gg \alpha_{\ell} \\ (a_{\ell}b_{\ell}\rho_{\ell}^{2})^{2} \approx m_{2}^{2}m_{3}^{2}. \qquad \rho_{\ell} \gg 1 \\ (a_{\ell}b_{\ell}\rho_{\ell}^{2})^{2} \approx m_{2}^{2}m_{3}^{2}. \qquad \rho_{\ell} \gg 1 \\ b_{\ell} > a_{\ell} \\ \rho_{\ell} \gg \frac{b_{\ell}}{a_{\ell}} \qquad \frac{\rho_{\ell}}{\sqrt{\alpha_{\ell}}} \approx \frac{m_{3}}{\sqrt{m_{1}m_{2}}} \end{array}$$

Leading to
$$\frac{m_{\tau}}{\sqrt{m_e m_{\mu}}} = \frac{m_b}{\sqrt{m_d m_s}}$$

$$\rho_{\ell} = \rho_d$$
$$\alpha_{\ell} = \alpha_d$$

as

 α_d υį

[S. Morisi, et al., 2016]

 $|m_1 m_0|$

 m_{0}

Results

No actual perdition for the CKM, but it can be fitted in the model. However there are predictions for the LMM (PMNS).

iowever there are **predictions** for the Livin (**i w**i

$$\mathcal{L}_Y \supset Y^i_{\nu} \left[\bar{L}, \phi \right]_{3_i} \nu_R + \text{h.c.},$$

Neutrino mass matrix

$$m_{\nu} = \begin{pmatrix} 0 & a_{\nu}\alpha_{\nu} & b_{\nu}e^{i\theta_{\nu}} \\ b_{\nu}e^{i\theta_{\nu}}\alpha_{\nu} & 0 & a_{\nu}\rho_{\nu} \\ a_{\nu} & b_{\nu}e^{i\theta_{\nu}}\rho_{\nu} & 0 \end{pmatrix}$$

real Yukawas

$$a_{\nu} = v_{\phi_2}(Y_{\nu}^1 + Y_{\nu}^3) \qquad b_{\nu} = v_{\phi_2}(Y_{\nu}^2 + Y_{\nu}^4)$$

$$\alpha_{\nu} = v_{\phi3}/v_{\phi2}$$
 $\rho_{\nu} = v_{\phi1}/v_{\phi2}$

θ_{ν} CPV phase lepton sector

$$m_{\nu} = \begin{pmatrix} 0 & a_{\nu}\alpha_{\nu} & b_{\nu}e^{i\theta_{\nu}} \\ b_{\nu}e^{i\theta_{\nu}}\alpha_{\nu} & 0 & a_{\nu}\rho_{\nu} \\ a_{\nu} & b_{\nu}e^{i\theta_{\nu}}\rho_{\nu} & 0 \end{pmatrix}$$

Invariants of the squared neutrino $M_{\nu}^2 = m_{\nu} m_{\nu}^{\dagger}$ matrix

$$\begin{aligned} (a_{\nu}^{2} + b_{\nu}^{2})(1 + \alpha_{\nu}^{2} + \rho_{\nu}^{2}), &= m_{1}^{2} + m_{2}^{2} + m_{3}^{2}, \\ (a_{\nu}^{6} + b_{\nu}^{6} + 2a_{\nu}^{3}b_{\nu}^{3}\cos(3\theta_{\nu}))\alpha_{\nu}^{2}\rho_{\nu}^{2}, &= m_{1}^{2}m_{2}^{2}m_{3}^{2}, \\ a_{\nu}^{2}b_{\nu}^{2}(1 + \alpha_{\nu}^{4} + \rho_{\nu}^{4}) + (a_{\nu}^{4} + b_{\nu}^{4})(\rho_{\nu}^{2} + \alpha_{\nu}^{2}(1 + \rho_{\nu}^{2})) &= 2m_{1}^{2}m_{2}^{2} + 2m_{2}^{2}m_{3}^{2} + 2m_{1}^{2}m_{3}^{2} \end{aligned}$$

Lepton mixing matrix (**PMNS**) $V = U_l^{\dagger} U_{\nu}$ fitting. **Close to a**

$$U_{\nu}^{\dagger} m_{\nu} V_{\nu} = D_{\nu}$$
$$U_{\ell}^{\dagger} m_{\ell} V_{\ell} = D_{\ell}$$

 $D = \text{diag}(m_{\nu_1}, m_{\nu_2}, m_{\nu_3})$

diagonal

Results

Global Neutrino Fit [P. F. de Salas, et al., 2017]

parameter	best fit $\pm 1\sigma$	2σ range	3σ range
$\Delta m_{21}^2 [10^{-5} \text{eV}^2]$	7.56 ± 0.19	7.20-7.95	7.05-8.14
$ \Delta m_{31}^2 [10^{-3} \text{eV}^2]$ (NO)	2.55 ± 0.04	2.47-2.63	2.43-2.67
$ \Delta m_{31}^2 [10^{-3} \text{eV}^2] (\text{IO})$	$2.47_{-0.05}^{+0.04}$	2.39 - 2.55	2.34-2.59
$\sin^2 \theta_{12}/10^{-1}$	$3.21\substack{+0.18\\-0.16}$	2.89-3.59	2.73-3.79
$\theta_{12}/^{\circ}$	$34.5^{+1.1}_{-1.0}$	32.5 - 36.8	31.5 - 38.0
$\sin^2 \theta_{23}/10^{-1}$ (NO)	$4.30^{+0.20}_{-0.18}$ a	3.98-4.78 & 5.60-6.17	3.84-6.35
$\theta_{23}/^{\circ}$	41.0 ± 1.1	$39.1{-}43.7 \ \& \ 48.4{-}51.8$	38.3-52.8
$\sin^2 \theta_{23} / 10^{-1}$ (IO)	$5.98^{+0.17}_{-0.15}$	$4.09{-}4.42\ \&\ 5.61{-}6.27$	3.89 - 4.88 & 5.22 - 6.41
$\theta_{23}/^{\circ}$	$50.7^{+1.0}_{-0.9}$	39.8-41.7 & 48.5-52.3	38.6 - 44.3 & 46.2 - 53.2
$\sin^2 \theta_{13}/10^{-2}$ (NO) $\theta_{13}/^{\circ}$	$2.155^{+0.090}_{-0.075}$ $8.44^{+0.18}_{-0.15}$	1.98-2.31 8.1-8.7	1.89–2.39 7.9–8.9
$\sin^2 \theta_{13} / 10^{-2}$ (IO)	$2.155_{-0.092}^{+0.076}$	1.98 - 2.31	1.90 - 2.39
$\theta_{13}/^{\circ}$	$8.44_{-0.18}^{+0.15}$	8.1-8.7	7.9-8.9
δ/π (NO)	$1.40\substack{+0.31 \\ -0.20}$	0.85-1.95	0.00-2.00
$\delta/^{\circ}$	252^{+56}_{-36}	153 - 351	0-360
δ/π (IO)	$1.56^{+0.22}_{-0.26}$	1.07 - 1.97	0.00-0.17 & 0.83-2.00
δ/°	281^{+39}_{-47}	193-355	0-31 & 149-360

^aThere is a local minimum in the second octant, at $\sin^2 \theta_{23} = 0.596$ with $\Delta \chi^2 = 2.1$ with respect to the global minimum. ^bThere is a local minimum in the first octant, at $\sin^2 \theta_{23} = 0.426$ with $\Delta \chi^2 = 3.0$ with respect to the global minimum for IO.

TABLE I: Neutrino oscillation parameters summary determined from this global analysis. The ranges for inverted ordering refer to the local minimum of this neutrino mass ordering.

Results

Numerical scan in the parameter region taking as inputs the 3σ values of the neutrino oscillation parameters.

Figure 2. The regions in the atmospheric mixing angle θ_{23} and the lightest neutrino mass m_3 plane allowed by current oscillation data are the shaded (green) areas, see text. The horizontal dashed line represents the best-fit value for $\sin^2 \theta_{23}$, whereas the horizontal shaded region corresponds to the 1σ allowed region from Ref. [1].

Numerical scan in the parameter region taking as inputs the 3σ values of the neutrino oscillation parameters.

Figure 3. Correlation between the CP violation and the lightest neutrino mass. Left: correlation between the Jarlskog invatiant and the lightest neutrino mass m_3 allowed by the current oscillation data from Ref. [1]. Right: We plot also the allowed region for the correlation between the the Dirac CP phase δ_{CP} and the lightest neutrino mass m_3 .

Numerical scan in the parameter region taking as inputs the 3σ values of the neutrino oscillation parameters.

Data from [P. F. de Salas, et al., 2017]

Figure 4. The allowed regions of the atmospheric mixing angle and δ_{CP} are indicated in shaded (green). They result from a numerical scan keeping only those choices that lie within 3σ of their preferred best fit values Ref. [1] The unshaded regions are 90 and 99%CL regions obtained directly in the unconstrained three-neutrino oscillation global fit [1].

We have propose a SM extension with underlying A4 flavour symmetry.

The **model addresses** both aspects of the flavour problem: the explanation of **mass hierarchies** of quark and leptons, as well as **restricting** the **structure** of the **lepton mixing matrix**.

The model predicts the golden flavour-dependent bottom-tau mass relation.

Summary and Conclusions

Requires an **IO** and **non-maximal atmospheric mixing** angle (Neither the preference for normal ordering nor the indication for an octant are currently statistically significant).

The residual flavour symmetry forbids the Majorana mass terms at any order and provides a natural realisation of a type-II Dirac seesaw mechanism.

The **CKM matrix**, although **no** definite **predictions** are made, the required CKM **matrix elements** can be adequately **described**. Then the **contribution to the neutrino mixing matrix** that comes from the **charged lepton sector** is fixed.

Gracias!