

Universidad Nacional Autónoma de México

LAr Energy Response to Nuclear Recoils

XXXII Reunión Anual de la División de Partículas y Campos de la SMF

A. Míchell Martínez Mendoza

Universidad Nacional Autónoma de México Instituto de Física & Facultad de Ciencias

May 29, 2018

6. Conclusions

WIMPs

Introduction WIMPs

Direct Detection SNOLAB DEAP DEAP-3600

Neutron interaction in liquid argon

Energy Dependent Light Yield in LAr

Lindhard Theory Model for reduced scintillation light at hight ionization density

Relative scintillation efficiency \mathcal{L}_{eff} from Lindhard and Hitachi models

Experimental results

Conclusions

Most discussed candidate: Weakly interacting Massive Particle

- Produced during Big Bang, in thermal equilibrium in the early Universe
- Decouples from ordinary matter as the Universe expands and cools
- Still around today with densities about a few per liter

Dark sector could be as complicated as the SM. Searches not limited by expectations from SUSY models

Direct Detection

Introduction WIMPs

Direct Detection SNOLAB DEAP DEAP-3600

Neutron interaction in liquid argon

Energy Dependent Light Yield in LAr

Lindhard Theory Model for reduced scintillation light at hight ionization density

Relative scintillation efficiency \mathcal{L}_{eff} from Lindhard and Hitachi models

Experimental results

Conclusions

WIMPs can scatter elastically with nuclei and the recoil can be detected.

Where are the WIMPs?

Introduction WIMPs

Direct Detection SNOLAB DEAP DEAP-3600

Neutron interaction in liquid argon

Energy Dependent Light Yield in LAr

Lindhard Theory Model for reduced scintillation light at hight ionization density

Relative scintillation efficiency \mathcal{L}_{eff} from Lindhard and Hitachi models

Experimental results

Conclusions

The recipe for direct detection of dark matter

Introduction WIMPs

Direct Detection SNOLAB DEAP DEAP-3600

Neutron interaction in liquid argon

Energy Dependent Light Yield in LAr

Lindhard Theory Model for reduced scintillation light at hight ionization density

Relative scintillation efficiency \mathcal{L}_{eff} from Lindhard and Hitachi models

Experimental results

Conclusions

- Detect tiny energy deposits, energy of recoils is tens of keV
- Background suppression:
 - Deep sites to reduce cosmic ray flux
 - Passive/active shielding
 - Careful choice and preparation of material
- Background discrimination (electronics recoils vs nuclear recoils)

Large target mass, scalability to ton-scale targets

Introduction WIMPs Direct Detection SNOLAB DEAP DEAP-3600

Neutron interaction in liquid argon

Energy Dependent Light Yield in LAr

Lindhard Theory Model for reduced scintillation light at hight ionization density

Relative scintillation efficiency \mathcal{L}_{eff} from Lindhard and Hitachi models

Experimental results

Conclusions

Sudbury Neutrino Observatory Laboratory

Deepest and cleanest large-space international facility in the world (UNAM is collaborating with SNOLAB in several experiments since 2015)

- 2 km underground near Sudbury, Ontario
 - ultra-low radioactivity background environment Class 2000
- Physics programme focused on neutrino physics and direct dark matter searches

Home of the SNO experiment 2015 Noble prize in Physics

DEAP

Introduction WIMPs Direct Detection SNOLAB DEAP

DEAP-3600

Neutron interaction in liquid argon

Energy Dependent Light Yield in LAr

Lindhard Theory Model for reduced scintillation light at hight ionization density

Relative scintillation efficiency \mathcal{L}_{eff} from Lindhard and Hitachi models

Experimental results

Conclusions

Dark Matter Experiment with Argon and Pulse-shape Discrimination:

- Scattered nucleus detected via scintillation
- Pulse shape discrimination for suppression of β/γ events
- LAr advantages
 - is easily purified and high light yield
 - is well understood (ha!)
 - has an easily accessible temperature (85 K)
 - allos a very large detector mass with uniform response
- Detectors:
 - DEAP-1: prototype, 7 kg LAr, 2 PMTs
 - DEAP-3600: 3600 kg LAr, 255 8" PMTs

Liquid Argon Scintillation

Introduction WIMPs Direct Detection SNOLAB

DEAP

DEAP-3600

Neutron interaction in liquid argon

Energy Dependent Light Yield in LAr

Lindhard Theory Model for reduced scintillation light at hight ionization density

Relative scintillation efficiency \mathcal{L}_{eff} from Lindhard and Hitachi models

Experimental results

Conclusions

Argon, nuclear recoil

Liquid Argon Scintillation

DEAP-3600

- Introduction
- WIMPs Direct Detection
- DEAP
- DEAP-3600
- Neutron interaction in liquid argon
- Energy Dependent Light Yield in LAr
- Lindhard Theory Model for reduced scintillation light at hight ionization density
- Relative scintillation efficiency \mathcal{L}_{eff} from Lindhard and Hitachi models
- Experimental results
- Conclusions

- Single phase liquid argon: simple, scalable, inexpensive
- 3600 kg argon (1000 kg fiducial) in ultra-clean AV
- Vessel is "resurfaced" in-situ to remove Rn daughters
- TPB wavelength shifter deposition: in-situ vacuum evaporation
- 255 Hamamatsu R5912 HQE 8@ PMTs (32% QE, 75% coverage)
- 50 cm light guides and PE shielding for neutron moderation
- Detector immersed in 8 m water shield tank in Cube Hall

This is DEAP-3600

- Introduction WIMPs Direct Detection SNOLAB DEAP
- DEAP-3600
- Neutron interaction in liquid argon
- Energy Dependent Light Yield in LAr
- Lindhard Theory Model for reduced scintillation light at hight ionization density
- Relative scintillation efficiency \mathcal{L}_{eff} from Lindhard and Hitachi models
- Experimental results
- Conclusions

Neutron Interaction in Liquid Argon

- Introduction
- WIMPs Direct Detection SNOLAB DEAP DEAP-3600

Neutron interaction in liquid argon

- Energy Dependent Light Yield in LAr
- Model for reduced scintillation light at hight ionization density
- Relative scintillation efficiency \mathcal{L}_{eff} from Lindhard and Hitachi models
- Experimental results
- Conclusions

The three types of interaction that neutrons may undergo in LAr are the following:

- **Elastic scattering** producing nuclear recoils
- **Inelastic collision** leading to γ emission and nuclear recoils
- Neutron capture with subsequent emission of a γ and Auger electrons.

Since its event topology is similar as WIMPs, neutron elastic scattering might be an issue because both particles produce a recoiling argon nucleus.

Neutron Interaction in Liquid Argon

Introduction WIMPs Direct Detection SNOLAB DEAP DEAP-3600

Neutron interaction in liquid argon

Energy Dependent Light Yield in LAr

Lindnard Theory Model for reduced scintillation light at hight ionization density

Relative scintillation efficiency \mathcal{L}_{eff} from Lindhard and Hitachi models

Experimental results

Conclusions

Figure 2.1: Neutron elastic scattering (red), inelastic scattering (blue) and capture (black) cross section on LAr. PhysRevC.85.065811 A. Michell Martínez Mendoza LAr Energy Response to Nuclear Recoils May 29, 2018 12/24

Energy Dependent Light Yield in LAr

- Introduction
- WIMPs
- Direct Detection
- DEAP
- DEAP-3600

Neutron interaction in liquid argon

Energy Dependent Light Yield in LAr

Lindhard Theory Model for reduced scintillation light at hight ionization density

Relative scintillation efficiency \mathcal{L}_{eff} from Lindhard and Hitachi models

Experimental results

Conclusions

- It is well known that for nuclear recoils in liquid noble gas, only a fraction of the energy deposit leads to ionization and scintillation.
- The rest of the energy is transferred to atomic motion and lost in heat without electrically exciting or ionizing argon target.
- This effect is called nuclear quenching and is described by the Lindhard theory¹.

¹ *Mat. Fys. Medd. Dn. Vid. Selks.* 33(1963), no. 10, 1-42. A. Michell Martínez Mendoza LAr Energy Response to Nuclear Recoils May 29, 2018

Energy Dependent Light Yield in LAr

Introduction

WIMPs Direct Detection SNOLAB DEAP DEAP-3600

Neutron interaction in liquid argon

Energy Dependent Light Yield in LAr

Lindhard Theory Model for reduced scintillation light at hight ionization density

Relative scintillation efficiency \mathcal{L}_{eff} from Lindhard and Hitachi models

Experimental results

Conclusions

The luminescence quenching depends upon other processes:

A.Hitachi and T.Doke²:

$$Ar^* + Ar^* \rightarrow Ar + Ar^+ + e^-.$$
 (3.1)

The penning process:

$$Ar_{2}^{*} + Ar_{2}^{*} \rightarrow 2Ar + Ar_{2}^{+} + e^{-}.$$
 (3.2)

- Superelastic collisions quenching the singlet states to the triplet states³.
- Purity effects.

²PhysRevB.27.5279 ³doi:10:1016/0009-2614(76)80566-0 A. Michell Martínez Mendoza LAr Energy Response to Nuclear Recoils May 29, 2018 14/24

Lindhard Theory

Introduction

- WIMPs Direct Detection
- SNOLAB
- DEAP-3600

Neutron interaction in liquid argon

Energy Dependent Light Yield in LAr

Lindhard Theory

Model for reduced scintillation light at hight ionization density

Relative scintillation efficiency \mathcal{L}_{eff} from Lindhard and Hitachi models

Experimental results

Conclusions

In general

$$(\frac{dE}{dx})_{total} = (\frac{dE}{dx})_{elec} + (\frac{dE}{dx})_{nucl}.$$
 (3.3)

Lindhard suggested:

$$E_R = \eta(E_R) + \nu(E_R).$$
 (3.4)

Then:

$$f_n(E_R) \equiv \frac{\eta(E_R)}{E_R} = \frac{\eta(E_R)}{\eta(E_R) + \nu(E_R)} = \frac{\int_0^{E_R} (dE/dx)_{elec} dE}{\int_0^{E_R} (dE/dx)_{tot} dE}.$$
(3.5)

A. Michell Martinez Mendoza LAr Energy Response to Nuclear Recoils May 29, 2018 15/24

Lindhard Theory

Introduction

WIMPs Direct Detection SNOLAB DEAP DEAP-3600

Neutron interaction in liquid argon

Energy Dependent Light Yield in LAr

Lindhard Theory

Model for reduced scintillation light at hight ionization density

Relative scintillation efficiency \mathcal{L}_{eff} from Lindhard and Hitachi models

Experimental results

Conclusions

The last expression needs to be evaluated for any possible recoil energies and can be approximated by

$$f_n = \frac{k \cdot g(\varepsilon)}{1 + k \cdot g(\varepsilon)}$$
(3.6)

where $k\approx 0.133 Z^{2/3} A^{-1/2}$ and

$$g(\varepsilon) \approx 3\varepsilon^{0.15} + 0.7\varepsilon^{0.6} + \varepsilon.$$
(3.7)

Figure 3.1: Ionization energy reduction factor (f_n) as a function of the recoil energy for argon.

Model for reduced scintillation light at high ionization density

Introduction

WIMPs Direct Detecti SNOLAB

DEAP DEAP-3600

Neutron interaction in liguid argon

Energy Dependent Light Yield in LAr

Lindhard Theory

Model for reduced scintillation light at hight ionization density

Relative scintillation efficiency \mathcal{L}_{eff} from Lindhard and Hitachi models

Experimental results

Conclusions

In the presence of the luminescence quenching, the scintillation light response is described by the Birk's law saturation:

⁴PhysRevB.54.15724

A. Michell Martínez Mendoza LAr Energy Response to Nuclear Recoils May 29, 2018 17/24

Relative scintillation efficiency \mathcal{L}_{eff} from Lindhard and Hitachi models

Introduction

WIMPs Direct Detection SNOLAB DEAP

DEAP-3600

Neutron interaction in liquid argon

Energy Dependent Light Yield in LAr Lindhard Theory Model for reduced scintillation light at hight ionization density

Relative scintillation efficiency \mathcal{L}_{eff} from Lindhard and Hitachi models

Experimental results

Conclusions

In order to fully describe the luminescence quenching for noble liquid, Mei *et al.* arXiv:0712.2470, combined Lindhard theory f_n and Birk's saturation law f_l .

 $q_n = f_n \times f_l \qquad (4.1)$

where q_n is called the quenching factor or the total scintillation efficiency.

Relative scintillation efficiency \mathcal{L}_{eff} from Lindhard and Hitachi models

Introduction

WIMPs Direct Detection SNOLAB DEAP DEAP-3600

Neutron interaction in liquid argon

Energy Dependent Light Yield in LAr Lindhard Theory Model for reduced scintillation light at hight ionization density

Relative scintillation efficiency \mathcal{L}_{eff} from Lindhard and Hitachi models

Experimental results

Conclusions

The relative scintillation efficiency is usually denoted by \mathcal{L}_{eff} and is definded as the ratio of the scintillation yield of nuclear recoil to the scintillation yield of electron recoil from a photoabsorbed γ -source.

$$\mathcal{L}_{eff} = \frac{L_{y,nr}(E_{nr})}{Ly, er(E_{er})}$$
(4.2)

where the subscripts "nr" and "er" are used for nuclear and electron recoil.

Relative scintillation efficiency \mathcal{L}_{eff} from Lindhard and Hitachi models

Introduction

WIMPs Direct Detection SNOLAB DEAP DEAP-3600

Neutron interaction in liquid argon

Energy Dependent Light Yield in LAr Lindhard Theory Model for reduced

scintillation light at hight ionization density Relative scintillation

scintillation efficiency \mathcal{L}_{eff} from Lindhard and Hitachi models

Experimental results

Conclusions

Two techniques have been employed to measure \mathcal{L}_{eff} :

- Indirect measurement: Comparison between a continuum-energy source of neutrons with a simulated spectrum. \mathcal{L}_{eff} is obtained by applying iteratively a fit procedure until the best fit with the measured spectrum is achieved.⁵
- Direct measurement: Study of the measured response by recording at fixed angle the single elastic scattered from a monochromatic neutron source.⁶

⁵arXiv:1007.3746 ⁶PhysRevC.84.045805 & PhysRevC.85.065811 A. Michell Martinez Mendoza LAr Energy Response to Nuclear Recoils May 29, 2018 20/24

Experimental results

- WIMPs Direct Detection SNOLAB DEAP
- DEAP-3600

Neutron interaction in liquid argon

Energy Dependent Light Yield in LAr

Lindhard Theory Model for reduced scintillation light at hight ionization density

Relative scintillation efficiency \mathcal{L}_{eff} from Lindhard and Hitachi models

Experimental results

Conclusions

Figure 5.1: Measurements of the relative scintillation efficiency in LAr \mathcal{L}_{eff} as a function of recoil energy. arXiv:1203.0849v1 [astro-ph.IM]

A. Michell Martínez Mendoza LAr Energy Response to Nuclear Recoils May 29, 2018 21/24

Experimental results

- WIMPs
- Direct Detection
- DEAP
- DEAP-3600
- Neutron interaction in liguid argon
- Energy Dependent Light Yield in LAr
- Lindhard Theory Model for reduced scintillation light at hight ionization density

Relative scintillation efficiency \mathcal{L}_{eff} from Lindhard and Hitachi models

Experimental results

Conclusions

Figure 5.2: Measurements of the relative scintillation efficiency in LAr \mathcal{L}_{eff} as a function of recoil energy. ARIS, P.Agnes.

A. Michell Martínez Mendoza LAr Energy Response to Nuclear Recoils May 29, 2018 22/24

Conclusions

- Introduction
- Direct Detection SNOLAB
- DEAP
- DEAP-3600
- Neutron interaction in liquid argon
- Energy Dependent Light Yield in LAr
- Lindhard Theory Model for reduced scintillation light at hight ionization density
- Relative scintillation efficiency \mathcal{L}_{eff} from Lindhard and Hitachi models
- Experimental results
- Conclusions

- It is necessary to measure the scintillation efficiency down to the energy threshold so as to quantify the WIMP detection sensitivity.
- Plan to measure the LAr response at different NR energies from an AmBe source in the DEAP-3600 experiment (largest operating dark matter detector).

Thank You.

A. Míchell Martínez Mendoza

