- 4 同 6 4 日 6 4 日 6

æ

Observing the coupling constant of stringy Z'

Omar Pérez, Ricardo Pérez and Saúl Ramos-Sánchez

Institute of Physics, UNAM

XXXII Annual Meeting, 2018

- 4 回 2 - 4 回 2 - 4 回 2 - 4

æ

Outline

3 Unification and Z'

・回 ・ ・ ヨ ・ ・ ヨ ・

æ

Aim

• To analyze the resulting RGE running of couplings of additional U(1) appearing in MSSM-like models coming from orbifold compactifications of the $E_8 \times E_8$ heterotic string.

▲圖▶ ★ 国▶ ★ 国▶

æ

Abelian orbifold models

• Compactification of the Heterotic String $\textit{E}_8 \times \textit{E}_8$ in the \mathbb{Z}_8 orbifold

· < @ > < 글 > < 글 > · · 글

Abelian orbifold models

- Compactification of the Heterotic String $\textit{E}_8 \times \textit{E}_8$ in the \mathbb{Z}_8 orbifold
- We perform a scan looking for promising models using the Orbifolder
- $E_8 \otimes E_8 \longrightarrow SU(3)_C \otimes SU(2)_L \otimes U(1)_Y \otimes U(1)'$

.

Abelian orbifold models

- Compactification of the Heterotic String $\textit{E}_8 \times \textit{E}_8$ in the \mathbb{Z}_8 orbifold
- We perform a scan looking for promising models using the Orbifolder
- $E_8 \otimes E_8 \longrightarrow SU(3)_C \otimes SU(2)_L \otimes U(1)_Y \otimes \frac{U(1)'}{U(1)'}$
- Results

Orbifold models	MSSM-like models
\mathbb{Z}_8 -l $(1,1)$	268
\mathbb{Z}_8 -I $(2,1)$	246
\mathbb{Z}_8 -I $(3,1)$	389
$\mathbb{Z}_{8} ext{-II}\left(1,1 ight)$	1978
\mathbb{Z}_8 -II (2,1)	495

Table: Results of our MSSM-like models search on $\mathbb{Z}_8\text{-I}$ and $\mathbb{Z}_8\text{-II}$ orbifolds.

• We compute the one-loop beta functions to obtain the values of the coupling constant of the additional Z' in the unification scale M_{GUT} and Z' breaking scale $\Lambda_{Z'}$, both as functions of M_{GUT} .

э

- We compute the one-loop beta functions to obtain the values of the coupling constant of the additional Z' in the unification scale M_{GUT} and Z' breaking scale $\Lambda_{Z'}$, both as functions of M_{GUT} .
- We assume $\Lambda_{Z'}=1.5~\text{TeV}$ and 2 TeV with

•
$$\Lambda_{SUSY} = \Lambda_{Z_2}$$

• $\Lambda_{SUSY}=10^{12}~\text{GeV}$ and $10^{17}~\text{GeV}$

向下 イヨト イヨト

- We compute the one-loop beta functions to obtain the values of the coupling constant of the additional Z' in the unification scale M_{GUT} and Z' breaking scale $\Lambda_{Z'}$, both as functions of M_{GUT} .
- We assume $\Lambda_{Z'}=1.5~\text{TeV}$ and 2 TeV with
 - $\Lambda_{SUSY} = \Lambda_{Z'}$
 - $\Lambda_{SUSY}=10^{12}~\text{GeV}$ and $10^{17}~\text{GeV}$
- We do not have a dynamical mechanism for the breaking of the Z'.

・ 同 ト ・ ヨ ト ・ ヨ ト

◆□ → ◆□ → ◆注 → ◆注 → ○注 ○

General process

Omar Pérez, Ricardo Pérez and Saúl Ramos-Sánchez Observing the coupling constant of stringy Z'

General process

• Compute M_{GUT} from the intersection of $\alpha_i^{-1}(M_{GUT}) = \alpha_j^{-1}(M_{GUT})$ where i, j = 1, 2, 3 correspond to the gauge couplings of $U(1)_Y, SU(2)_L$ and $SU(3)_C$.

• • = • • = •

æ

General process

• Compute M_{GUT} from the intersection of $\alpha_i^{-1}(M_{GUT}) = \alpha_j^{-1}(M_{GUT})$ where i, j = 1, 2, 3 correspond to the gauge couplings of $U(1)_Y, SU(2)_L$ and $SU(3)_C$.

Summary

通 とう ほう とう マン・

3

• Assuming $\alpha_4^{-1}(M_{GUT})$ equals the previous intersection, where α_4 is the gauge coupling of Z', we use the RGEs to compute $\alpha_4^{-1}(M_{GUT}) \longrightarrow \alpha_4^{-1}(\Lambda_{Z'})$.

伺い イヨン イヨン

3

General process

- Compute M_{GUT} from the intersection of $\alpha_i^{-1}(M_{GUT}) = \alpha_i^{-1}(M_{GUT})$ where i, j = 1, 2, 3 correspond to the gauge couplings of $U(1)_Y$, $SU(2)_I$ and $SU(3)_C$.
- Assuming $\alpha_{I}^{-1}(M_{GUT})$ equals the previous intersection, where α_4 is the gauge coupling of Z', we use the RGEs to compute $\alpha_{A}^{-1}(M_{GUT}) \longrightarrow \alpha_{A}^{-1}(\Lambda_{Z'}).$
- We also select models that present unification, $\alpha_i \sim \alpha_4$, at the M_{GUT} scale.

Aim	Abelian orbifold models	Unification and Z'	Results	Summary
Results				

Case $\Lambda_{Z'} = \Lambda_{SUSY} = 1.5 \text{ TeV}$

◆ロ > ◆母 > ◆臣 > ◆臣 > ○臣 - のへで

Case $\Lambda_{Z'} = \Lambda_{SUSY} = 1.5 \text{ TeV}$

The main expressions are

$$\alpha_i^{-1}(M_{GUT}) = \alpha_i^{-1}(\Lambda_{Z'}) - \frac{b_i}{2\pi} ln\left(\frac{M_{GUT}}{\Lambda_{Z'}}\right),$$
$$\alpha_i^{-1}(\Lambda_{Z'}) = \alpha_i^{-1}(M_Z) - \frac{b_i^{SM}}{2\pi} ln\left(\frac{\Lambda_{Z'}}{M_Z}\right),$$
$$i = 1, 2, 3.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

We get

$$M_{GUT} = \Lambda_{Z'} \exp[2\pi f(b_i - b_j)],$$

$$\alpha_4^{-1}(M_{GUT}) = \alpha_i^{-1}(\Lambda_{Z'}) - b_i f(b_i - b_j),$$

$$\alpha_4^{-1}(\Lambda_{Z'}) = \alpha_i^{-1}(\Lambda_{Z'}) - (b_i - b_4) f(b_i - b_j),$$

where

$$f(b_i - b_j) = \left(\frac{\alpha_i^{-1}(\Lambda_{Z'}) - \alpha_j^{-1}(\Lambda_{Z'})}{b_i - b_j}\right),$$
$$i, j = 1, 2, 3.$$

Observations

- The most frequent combination (b_1, b_2, b_3, b_4) is (33/5, 1, -3, 0) i.e. the MSSM. $b_4 = 0$ is the most frequent value. This happens in all cases.
- Then the majority of the models with unification have the MSSM spectrum in natural form.
- These models have uncharged particles under Z', hence we focus in all the other models (those with $b_4 \neq 0$).

(4月) イヨト イヨト

æ

< ∃⇒

Results for $\Lambda_{Z'} = \Lambda_{SUSY} = 1.5$ TeV and M_{GUT} determined from the intersection of $U(1)_Y$ and $SU(2)_L$.

Figure: $Log_{10}(M_{GUT})$ vs. $\alpha_4^{-1}(M_{GUT})$ for all \mathbb{Z}_8 -I (1, 1) models.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Orbifold model	$Log_{10}(M_{GUT})$	$\alpha_4^{-1}(M_{GUT})$	Frequency
$\mathbb{Z}_{8} ext{-l}\left(1,1 ight)$	12.5765	3.44521	69
	9.55496	21.6543	54
	13.0988	1.91411	48
	15.9336	26.3296	36
	11.2947	7.20334	30

Table: The first most frequent values for $(Log_{10}(M_{GUT}), \alpha_4^{-1}(M_{GUT}))$.

ヨト ヨ

Figure: $Log_{10}(M_{GUT})$ vs. $\alpha_4^{-1}(\Lambda_{Z'})$ for all \mathbb{Z}_8 -I (1,1) models.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Orbifold model	$Log_{10}(M_{GUT})$	$\alpha_4^{-1}(\Lambda_{Z'})$	Frequency
$\mathbb{Z}_{8} ext{-l}\left(1,1 ight)$	15.9338	27.4984	7
	15.71	57.4162	7
	15.9338	70.2774	5
	15.9338	40.3555	5
	15.9338	28.6672	5

Table: The first most frequent values for $(Log_{10}(M_{GUT}), \alpha_4^{-1}(\Lambda_{Z'}))$.

Э

Figure: Results $(Log_{10}(M_{GUT}), \alpha_4^{-1}(\Lambda_{Z'}))$ for the other geometries. Omar Pérez, Ricardo Pérez and Saúl Ramos-Sánchez Observing the coupling constant of stringy Z'

Figure: Results $(Log_{10}(M_{GUT}), \alpha_4^{-1}(M_{GUT}))$ for the other geometries. Omar Pérez, Ricardo Pérez and Saúl Ramos Sánchez Observing the coupling constant of stringy Z'

御 と く き と く き と

3

Geometry	$\alpha_4^{-1}(\Lambda_{Z'})$	$\alpha_4^{-1}(M_{GUT})$	$Log_{10}(M_{GUT})$
$\mathbb{Z}_{8} ext{-l}(1,1)$	[18.732, 95.853]	[0.0002, 28.823]	[8.429, 17.464]
\mathbb{Z}_{8} -I (2, 1)	[20.935, 74.641]	[0.0002, 28.893]	[8.429, 17.464]
\mathbb{Z}_{8} -I (3, 1)	[22.495, 81.622]	[0.0002, 28.667]	[8.429, 17.756]
\mathbb{Z}_8 -II $(1,1)$	[12.076, 71.284]	[0.459, 28.667]	[9.554, 17.756]
\mathbb{Z}_8 -II (2, 1)	[20.095, 76.445]	[0.202, 29.079]	[8.137, 17.756]

Table: Range of values for $\alpha_4^{-1}(\Lambda_{Z'})$, $\alpha_4^{-1}(M_{GUT})$ and $Log_{10}(M_{GUT})$ for the three and two geometries of \mathbb{Z}_8 -I and \mathbb{Z}_8 -II.

イロン 不同と 不同と 不同と

Э

Results for several cases with $\Lambda_{Z'}=1.5$ TeV.

a)
$$\Lambda_{SUSY} = \Lambda_{Z'}$$

b) $\Lambda_{SUSY} = 10^{12}$ GeV, $M_{GUT} < \Lambda_{SUSY}$
c) " ", $M_{GUT} > \Lambda_{SUSY}$
d) $\Lambda_{SUSY} = 10^{17}$ GeV, $M_{GUT} < \Lambda_{SUSY}$
e) " ", $M_{GUT} > \Lambda_{SUSY}$

Case	$\alpha_4^{-1}(\Lambda_{Z'})$	$\alpha_4^{-1}(M_{GUT})$	$Log_{10}(M_{GUT})$
a)	[18.732, 95.853]	[0.0002, 28.823]	[8.429, 17.464]
b)	[40.121, 75.775]	[20.274, 42.248]	[8.507, 11.96]
c)	[30.901, 78.3987]	[0.398, 40.522]	[12.038, 17.992]
d)	[10.851, 42.298]	[8.507, 16.915]	[9.554, 17.756]
e)	57.307	32.642	17.019

Table: Ranges obtained for the \mathbb{Z}_{8} -I (1,1) models in several cases.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 の久で

Unified models

Case $\Lambda_{Z'} = \Lambda_{SUSY} = 1.5$ TeV and 2 TeV.

Geometry	# Models	# Models
	$(\Lambda_{Z'}=1.5 \text{ TeV})$	$(\Lambda_{Z'} = 2 \text{ TeV})$
\mathbb{Z}_{8} -l $(1,1)$	1	2
\mathbb{Z}_{8} -I (3, 1)	2	10
\mathbb{Z}_8 -II $(1,1)$	11	54
\mathbb{Z}_8 -II $(2,1)$	1	7

Table: Number of models with $\alpha_3 \sim \alpha_4 = \alpha_1 = \alpha_2$ in all \mathbb{Z}_8 orbifold geometries.

★ 문 ► ★ 문 ►

A ■

æ

Figure: Gauge coupling evolution for $U(1)_Y$, $SU(2)_L$, $SU(3)_C$ and U(1)' for the unified model of \mathbb{Z}_8 -I (1, 1) when $\Lambda_{Z'} = \Lambda_{SUSY} = 1.5$ TeV.

向下 イヨト イヨト

æ

Spectrum

The spectrum of unified models consists of: $\ensuremath{\mathsf{MSSM}}\xspace+$

- multi Higgses
- right-handed neutrinos
- colored exotics
- left(right)-handed leptons with fractional electric charge

▲圖▶ ★ 国▶ ★ 国▶

3

- Particles with fractional charge above $\Lambda_{Z'}$
- All exotic particles disappear when we assume the spontaneous breaking of Z'

Aim	Abelian orbifold models	Unification and Z'	Results	Summary
Summar	у			

• We predict a large set of values for the coupling constant of Z', e.g. [18.732, 95.853] for $\Lambda_{Z'} = 1.5$ TeV, which might influence future searches at colliders.

→ ∃ →

- We predict a large set of values for the coupling constant of Z', e.g. [18.732, 95.853] for $\Lambda_{Z'} = 1.5$ TeV, which might influence future searches at colliders.
- We find several models that show unification with spectrum consisting of MSSM + multi-Higgses, right handed neutrinos, quarks and leptons with fractional charge.

伺下 イヨト イヨト

- We predict a large set of values for the coupling constant of Z', e.g. [18.732, 95.853] for $\Lambda_{Z'} = 1.5$ TeV, which might influence future searches at colliders.
- We find several models that show unification with spectrum consisting of MSSM + multi-Higgses, right handed neutrinos, quarks and leptons with fractional charge.
- The most frequent spectrum is the MSSM in natural form.

・ 同 ト ・ ヨ ト ・ ヨ ト

- We predict a large set of values for the coupling constant of Z', e.g. [18.732, 95.853] for $\Lambda_{Z'} = 1.5$ TeV, which might influence future searches at colliders.
- We find several models that show unification with spectrum consisting of MSSM + multi-Higgses, right handed neutrinos, quarks and leptons with fractional charge.
- The most frequent spectrum is the MSSM in natural form.
- Outlook
 - Search for a dynamical mechanism of mass generation in these models.

イロト イポト イヨト イヨト

Aim	Abelian orbifold models	Unification and Z'	Results	Summary
Summar	у			

- We predict a large set of values for the coupling constant of Z', e.g. [18.732, 95.853] for $\Lambda_{Z'} = 1.5$ TeV, which might influence future searches at colliders.
- We find several models that show unification with spectrum consisting of MSSM + multi-Higgses, right handed neutrinos, quarks and leptons with fractional charge.
- The most frequent spectrum is the MSSM in natural form.
- Outlook
 - Search for a dynamical mechanism of mass generation in these models.

• Perform the analysis for the non-supersymmetric heterotic string $SO(16)\otimes SO(16)$.

・ロ・ ・ 日・ ・ 日・ ・ 日・

æ

Thanks!

Omar Pérez, Ricardo Pérez and Saúl Ramos-Sánchez Observing the coupling constant of stringy Z'