XXXII RADPYC

High Spins as Lorentz and Spinor Tensors Carrier Spaces of the Lorentz Group and a Road toward Quantization

Víctor Miguel Banda Guzmán, May 28, 2018. PhD. Student, Instituto de Física, UASLP.

Between 1930-1950, appear the first articles on the description of high spin matter fields.

Publication date

Since 1960, several authors have adressed the inconsistencies of the high spin theories.

Publication date

1930	1950	1970	1990	2010

Johnson y Sudarshan.
Quantization problems
■ Velo y Zwanzinger. Acausality \qquad
■ Shay. Non physical solutions

- Kobayashi y Shamaly. Acausality

There are mainly three difficulties on classical high spin theories.

Difficulties:

- Acausality.
- Undesirable propagation of degrees of freedom.

Here I present a new approach which avoids these problems.

■ Non physical solutions.

Spins described by quantum fields are embedded in finite representation of $S L(2, \mathbb{C})$, which are labeled by two numbers.

Labels for the irreducible representations of $S L(2, \mathbb{C})$
$\left(j_{1}, j_{2}\right)$

- Integer
- Half-integer

Spin :

$$
\left|j_{1}-j_{2}\right|,\left|j_{1}-j_{2}\right|+1, \ldots,\left|j_{1}+j_{2}\right|
$$

Examples for single and multiple spins

Dirac spinors $\quad(1 / 2,0) \oplus(0,1 / 2) \quad$ Irred. rep. Spin $1 / 2$
Ψ_{a}

Antisymmetric tensor $\quad(1,0) \oplus(0,1) \quad$ Irred. rep. Spin 1
$F_{[\mu \nu]}$
Symmetric tensor-spinor
$\psi_{a b}$
Column-vector

Four-vector
$(1 / 2,1 / 2)$
Irred. rep. Spin 0 and 1 A_{μ}

The formalism that we developed puts all irreducible representations into Lorentz and/or spinor tensor basis.

(i) Lorentz Tensors $A_{\mu \nu \ldots}$
(ii) Spinor tensors $\Psi_{a b \ldots}$

Lorentz projector $\mathcal{P}_{F}^{\left(j_{1}, j_{2}\right)}$

We obtain any field which
transforms according to
the irreducible representation
$\left(j_{1}, j_{2}\right) \oplus\left(j_{2}, j_{1}\right)$

The Lorentz projectors are constructed by one of the Casimir operators of the Lorentz algebra.

Casimir operator
of the Lorentz algebra

$\mathcal{P}_{F}^{\left(j_{1}, j_{2}\right)}=\prod_{k l \neq j_{1} j_{2}}\left(\frac{F-c_{\left(j_{k} j_{l}\right)}}{c_{\left(j_{1} j_{2}\right)}-c_{\left(j_{k} j_{l}\right)}}\right)$	
Lorentz projectors (Momentum independent)	$F \Psi=c \Psi, \quad \Psi \sim\left(j_{1}, j_{2}\right)$ $c=j_{1}\left(j_{1}+1\right)+j_{2}\left(j_{2}+1\right)$

Example

$$
\begin{aligned}
\Psi_{\mu} \sim & (1 / 2,1 / 2) \otimes[(1 / 2,0) \oplus(0,1 / 2)] \\
& {[(1 / 2,0) \oplus(0,1 / 2)] \oplus[(1,1 / 2) \oplus(1 / 2,1)] }
\end{aligned}
$$

The Lorentz projectors separate:

$$
\begin{array}{cl}
(1 / 2,0) \oplus(0,1 / 2) & \text { from } \\
\text { One pure spin } & \text { Multiple spins } \\
1 / 2 & 1 / 2,3 / 2
\end{array}
$$

We see that we encounter either simple single spin or multiple spins sectors

We can isolate single spin only from two-spin irrep by using the Poincaré projectors.

Poincaré projectors
Casimir operator
of the Poincaré algebra

$$
\mathcal{P}_{W^{2}}^{(m, 1 / 2)}(p)=\frac{p^{2}}{m^{2}} \frac{W^{2}-\epsilon_{3 / 2}}{\epsilon_{1 / 2}-\epsilon_{3 / 2}}
$$

$$
\left[W^{2}\right]_{\beta}^{\alpha} \Psi^{\beta}=\epsilon_{s} \Psi^{\alpha}
$$

$$
\epsilon_{s}=-p^{2} s(s+1), \quad s=1 / 2,3 / 2
$$

Napsuciale, Kirchbach and Rodriguez, 2006

Applying this method to ψ_{μ} allows to separately write three equations, two for spin $1 / 2$ and one for spin $3 / 2$.

Equations for $1 / 2 \mathrm{in}$:
$\begin{array}{ll}(1 / 2,0) \oplus(0,1 / 2): & {\left[\mathcal{P}_{F}^{(1 / 2,0)}\right]_{\beta}^{\alpha}\left[\mathcal{P}_{W^{2}}^{(m, 1 / 2)}\right]_{\delta}^{\beta} \Psi^{\delta}=\Psi^{\alpha}} \\ (1 / 2,1) \oplus(1,1 / 2): & {\left[\mathcal{P}_{F}^{(1 / 2,1)}\right]_{\beta}^{\alpha}\left[\mathcal{P}_{W^{2}}^{(m, 1 / 2)}\right]_{\delta}^{\beta} \Psi^{\delta}=\Psi^{\alpha}}\end{array}$
Equation for $3 / 2$ in:
$(1 / 2,1) \oplus(1,1 / 2): \quad\left[\mathcal{P}_{F}^{(1 / 2,1)}\right]_{\beta}^{\alpha}\left[\mathcal{P}_{W^{2}}^{(m, 3 / 2)}\right]_{\delta}^{\beta} \Psi^{\delta}=\Psi^{\alpha}$

The two spin $1 / 2$ equations lead to two particles with different characteristics, as manifest upon gauging.

Spin $1 / 2$ in
$(1 / 2,0) \oplus(0,1 / 2)$

Spin $1 / 2$ in
$(1,1 / 2) \oplus(1 / 2,1)$

Equations minimally coupled
with the electromagnetic field
They rewrite as:

$$
\begin{aligned}
& {\left[D^{\mu} D_{\mu}+\left(\frac{g}{2}\right)\left(\frac{e}{2}\right) \sigma_{\mu \nu} F^{\mu \nu}+m^{2}\right] \Psi=0} \\
& \text { Generalized Feynman-Gell-Mann equation } \\
& g=2 \\
& g=-2 / 3
\end{aligned}
$$

The two spin $1 / 2$ equations lead to two particles with different characteristics, as manifest upon gauging.

Spin $1 / 2$ in $(1 / 2,0) \oplus(0,1 / 2) \quad$ Spin $1 / 2$ in $(1,1 / 2) \oplus(1 / 2,1)$
■ $g=2$
■ $g=-2 / 3$
■ Its equation bi-linearize to the Dirac equation

- Its equation do not bi-linearize to the Dirac equation (New specie of $1 / 2$ particle)

The two spin $1 / 2$ equations lead to two particles with different characteristics, as manifest upon gauging.

For the general case of any single spin j

 in $(j, 0) \oplus(0, j)$, we write the equation below.Our free field equation
$\left(\partial_{\mu} \partial^{\mu} \mathcal{P}_{F}^{(j, 0)}-m^{2}\right)_{\{\ldots\}} \Psi^{\{\cdots\}}=0$

Properties:
■ $\mathcal{P}_{F}^{(j, 0)}$ picks up the corresponding space to the representation $(j, 0) \oplus(0, j)$.

- It guarantees the mass-shell condition.

■ Ψ is a pure spin field, with spin j.

Our formalism has the advantage to avoid the three main difficulties of classical high spin theories.

- We do not have non-physical solutions

The solutions correspond only to pure spin fields

Our formalism has the advantage to avoid the three main difficulties of classical high spin theories.

■ It propagates the correct number of degrees of freedom
Our equation coupled with the electromagnetic field

$$
\left(\Gamma_{\mu \nu} D^{\mu} D^{\nu}+m^{2}\right) \Psi=0
$$

■ $\Gamma_{\mu \nu} \partial^{\mu} \partial^{\nu}=\mathcal{P}_{F} \partial^{2}$
■ $\mathcal{P}_{F} \Gamma_{\mu \nu}=\Gamma_{\mu \nu}$

$$
\begin{gathered}
\longrightarrow \mathcal{P}_{F} \Psi=\Psi \\
\downarrow \\
\Psi \sim(j, 0) \oplus(0, j)
\end{gathered}
$$

Our formalism has the advantage to avoid the three main difficulties of classical high spin theories.

■ Causal propagation of the solutions of the coupled equations Can be shown using the Courant-Hilbert criterion
E. G. Delgado Acosta, V. M. Banda Guzman and M. Kirchbach, 2015
V. M. Banda Guzman and M. Kirchbach, 2016

Applying our formalism to the field $\Psi_{[\mu \nu]}$, we predict a new spin $3 / 2$ particle whose $g=2 / 3$.

Our spin-3/2 equation coupled with the electromagnetic field

$$
\left[\Gamma_{\mu \nu}^{\left(\frac{3}{2}, 0\right)}\right]_{[\alpha \beta][\gamma \delta]} D^{\mu} D^{\nu}\left[\Psi^{\left(\frac{3}{2}, 0\right)}(x)\right]^{[\alpha \beta]}=-m^{2}\left[\Psi^{\left(\frac{3}{2}, 0\right)}(x)\right]^{[\gamma \delta]}
$$

$$
\left[\Gamma^{\left(\frac{3}{2}, 0\right) \mu_{\nu}}\right]_{[\gamma \delta]}^{[\alpha \beta]}=4\left[\mathcal{P}_{F}^{\left(\frac{3}{2}, 0\right)}\right]^{[\alpha \beta][\sigma \mu]}\left[\mathcal{P}_{F}^{\left(\frac{3}{2}, 0\right)}\right]_{[\sigma \nu][\gamma \delta]}
$$

Besides applying our formalism to Lorentz tensors, we can equally apply it to spinor-Dirac tensors.

Example: Spin 1 in $\Psi_{a_{1} a_{2}}$

$$
\begin{aligned}
\Psi_{a_{1} a_{2}} & \sim[(1 / 2,0) \oplus(0,1 / 2)] \otimes[(1 / 2,0) \oplus(0,1 / 2)] \\
& =[(1,0) \oplus(0,1)] \oplus 2(0,0) \oplus 2(1 / 2,1 / 2)]
\end{aligned}
$$

$\mathcal{P}_{F}^{(1,0)}$ picks up only the degrees of freedom of $(1,0) \oplus(0,1)$

Comparing our formalism with the Bargmann-Wigner (BW), we observe that solutions of BW do not transform irreducibly.

BW method

■ Simmetric Dirac tensors $\Psi_{b_{1} \ldots b_{n}}$

■ Particles with spin $j=n / 2$

■ Field equations

$$
\left(i \gamma_{\mu} \partial^{\mu}-m\right)^{a_{i} b_{i}} \Psi_{b_{1} \ldots b_{i} \ldots b_{n}}=0
$$

Comparing our formalism with the Bargmann-Wigner (BW), we observe that solutions of BW do not transform irreducibly.

Espín 1

Our formalism
$\Psi \sim(1,0) \oplus(0,1)$

Correct number of d.o.f

+ irreducibility

BW formalism: $\mathcal{P}_{F}^{(1 / 2,1 / 2)} \Psi \neq 0$
$\Psi \sim(1,0) \oplus(0,1) \oplus(1 / 2,1 / 2)$

Correct number of d.o.f, but not irreducibles (Implies unphysical properties and high spin problems)

The mixture of irreducible representations can be avoided by using Weyl spinor fields.

Symmetric Weyl spinor tensor fields:

$$
\begin{aligned}
& \chi_{\alpha \beta \ldots} \sim(j, 0) \\
& \bar{\eta}^{\dot{\alpha} \dot{\beta} \ldots} \sim(0, j)
\end{aligned}
$$

By means of these fields we can describe any spin.
(Laporte and Uhlenbeck,1931.
Friedrich Cap and Hermann Donnert, 1954)

So far I have presented a new approach at the level of classical field theory. Now, we would like to move at the quantum level.

Goal: Construction of a suitable Lagrangian as the starting point to elaborate high spin quantum field theories

Conditions:
\square Scalar action
\square Hermitian Lagrangian
\square Quadratic Lagrangian in the fields and its derivatives
\square Diagonal Hamiltonian without negative terms

Idea: Formulate the theory in Weyl-spinor tensor basis
Advantages \quad Just by indices simmetrization we can obtain the irreducible representations $(j, 0) \oplus(0, j)$, which we use in our fomalism at the classical level.

- Possibility of constructing a family of kinetic terms in such a way to obtain a positive definite diagonal Hamiltonian.

Example: Spin 1 in $(1,0) \oplus(0,1)$ with Weyl-spinor tensors.

$$
\begin{aligned}
\mathcal{L}= & a \partial^{\mu} \psi^{\alpha \beta} \partial_{\mu} \psi_{\alpha \beta}+a \partial^{\mu} \psi_{\dot{\alpha} \dot{\beta}}^{\dagger} \partial_{\mu} \psi^{\dagger \dot{\alpha} \dot{\beta}} \\
& +b \partial_{\nu} \psi_{\dot{\alpha} \dot{\beta}}^{\dagger} \bar{\sigma}^{\nu \dot{\alpha} \alpha} \bar{\sigma}^{\mu \dot{\beta} \beta} \partial_{\mu} \psi_{\alpha \beta}+b \partial_{\mu} \psi_{\dot{\alpha} \dot{\beta}}^{\dagger} \bar{\sigma}^{\nu \dot{\alpha} \alpha} \bar{\sigma}^{\mu \dot{\beta} \beta} \partial_{\nu} \psi_{\alpha \beta} \\
& +c \partial_{\nu} \psi^{\gamma \beta} \sigma_{\gamma \dot{\alpha}}^{\nu} \bar{\sigma}^{\mu \dot{\alpha} \alpha} \partial_{\mu} \psi_{\alpha \beta}+c \partial_{\nu} \psi_{\dot{\alpha} \dot{\beta}}^{\dagger} \bar{\sigma}^{\nu \dot{\alpha} \alpha} \sigma_{\alpha \dot{\gamma}}^{\mu} \partial_{\mu} \psi^{\dagger \dot{\gamma} \dot{\beta}} \\
& -m^{2} \psi^{\alpha \beta} \psi_{\alpha \beta}-m^{2} \psi_{\dot{\alpha} \dot{\beta}}^{\dagger} \psi^{\dagger \ddot{\alpha}}
\end{aligned}
$$

a, b and c are real parameters

Work in progess...

Conclusions

\square Our second order formalism in the momenta avoid the three main problems of classical high spin theories.

Acausality
Undesired propagation of degrees of freedom

Non-physical solutions

Conclusions

- Combining the projectors $\mathcal{P}_{F}^{\left(j_{1}, j_{2}\right)}$ and $\mathcal{P}_{W^{2}}^{(j, m)}$ on the field Ψ_{μ}, we obtain two equations that describe particles with spin $1 / 2$.

Dirac particle $g=2$
$(1 / 2,0) \oplus(0,1 / 2)$ representation

New particle $g=-2 / 3$
$(1,1 / 2) \oplus(1 / 2,1)$ representation

Finite Compton cross sections in ultraviolet according to unitarity

Conclusions

\square Aplying our formalism to the field $\Psi_{[\mu \nu]}$, we describe a spin $3 / 2$ particle with $\mathrm{g}=2 / 3$, and thereby distinct from $3 / 2$ in Ψ_{μ} with $g=2$.

Therefore, particles with equal spin described by fields in distinct Lorentz irreducible reprsentations have different physical properties.

Conclusions

- We verify that the method of Bargmann-Wigner, although it predicts the right number of degrees of freedom for a spin j, they do not transform irreducibly.

Our formalism

Spin 1 in $(1,0) \oplus(0,1)$

Bargmann-Wigner formalism
Spin 1 in $(1,0) \oplus(0,1) \oplus(1 / 2,1 / 2)$

Conclusions

- We initiate the analysis to elaborate high spin quantum fields from the consrtuction of a Lagrangian based on four conditions.

1. Scalar action
2. Hermitian Lagrangian
3. Quadratic Lagrangian
4. Diagonal Hamiltonian without negative terms

- In addition to the four conditions, we use symmetric Weyl tensor fields to construct the Lagrangian.

Conclusions

- We make progress in constructing the Lagrangian for spin 1 particles using second rank symmetric Weyl tensor fields which could possibly guarantee the previous four conditions. We hope we can generalize it to any spin j.

