

Universidad Autónoma de Sinaloa

Facultad de Ciencias Físico-Matemáticas

"Performance of AD detector in Beam-Test"

Solangel Rojas Torres

4/11/2017

AD detector

- Study of diffractive physics is of a great interest topic for LHC CERN.
- ALICE have an excellent tracking and particle identification, providing a good capabilities to investigate diffractive production as can be seen in [2] [3] ,proving that is possible to measure single and double diffractive processes.
- ALICE Diffractive was designed to improve the sensitivity of ALICE increasing the pseudorapidity coverage of the experiment.

Mechanical design and geometry

- Plastic scintillator: BC-404
- WLS bars: *ELJEN (EJ-280)*
- Optical fibers: Kuraray (PSM-Clear)
- PMTs: Hamamats- R5946 (16 dinodes)

Beam-test Setup

- Were used two kind of detectors for trigger:

- 1) Scintillator hodoscopes -> Black-Left and Black-Right
- 2) Cherenkov radiators \rightarrow **T0-end** and **T0-start**

- In a special run were measured the properties of the WLS bar using a pixel detector.

- The momentum of the beam is 1 GeV/c for all the runs except for the pixel run, was set at 1.5 GeV/c.

- Were used an ADA and ADC modules, labeled as AD1 and AD2 respectively.

Front End Electronics

The electronics used to measure the signals during the beam-test is the same that is installed in the ALICE experiment, which is currently been used by ALICE-Diffractive and V0 detectors.

Beam-test Setup (table positions)

- In the table below can be seen:
 - The table positions.
 - T0 detector overlap area.
 - Collimator aperture.
 - Beam momentum

-The fiber length used for the test was 47 cm.

-Were done scans along the Y and X axis respect to the points shown in the the draw shown at the right.

No.	Section	X position (mm)	Y position (mm)	T0 overlap (mm)	Collimator (mm)	Momentum (GeV/c)
1	Center	825	260	2	24	1
2	Border	827.5	348	1	40	1
3	Conn. 1	959.5	159.5	1	24	1
4	Conn. 2	959.5	340.5	1	24	1
5	Fibers	1355	245	1	24	1
6	PMT	1380	260	1	24	1
	Pix. Detector	827.5	152	1	5	1.5

Efficiency and charge plots **Scan a long the center**

Efficiency and charge plots Scan a long the center

	X-axis length (<i>mm</i>)	Y-axis length (<i>mm</i>)
Real	216	181
AD1	220 ± 0.35	192.32 ± 0.4
AD2	219.9 ± 0.35	192.49 ± 0.32

An estimation* of the beam size was calculated using the sigma information of the gaussian cumulative distribution function:

 $\sigma_x = 11.29 \pm 0.31 \text{ mm}$ $\sigma_y = 8.53 \pm 0.16 \text{ mm}$

*Average of four sigma, two sides and modules per axis.

8

Efficiency and charge plots **Scan a long Connectors**

Charge calculation :

- · Where selected Time≠0 events.
- · Was fitted a Landau+Gaussian distribution and MPV value was used.

X (mm)

Efficiency and charge plots **Scan a long the Fibers and PMT**

0

825

959.5

1355 1380

Border Analysis (Pixel detector)

Border analysis

* Povided by ITS group (arxiv:1607.01171)

AD1 → Charge vs Y (pixel position) Selection of event in WLS Bar and plastic scintillator

$AD2 \rightarrow Charge vs Y$ (pixel position) Selection of event in WLS Bar and plastic scintillator

04/11/17

*Due that in a single event triggered can be fired several pixels, was used an average pixel position per event.

Number of pixel fired VS RMS (of pixels positions)

The RMS value of the pixels position fired on every event was calculated in order to clean the data.

Charge correlation \rightarrow AD1 vs AD2

RMS ≤ 1

04/11/17

Charges selection events Pixel position Average

Selection: $Q(AD1) \le 3$ or $Q(AD2) \le 3$

AD1

AD2

WLS-bar efficiency analysis

Efficiency = (Black_Left ∧ Back_Right ∧ Pix ∧ **AD**) / (Black_Left ∧ Back_Right ∧ Pix)

- Time flags used to calculate the efficiency.
- RMS cut was applied.

Results using pixel detector

Charges (ADC counts)

	WLS (mean)
AD1	0.34 ± 0.06
AD2	0.10 ± 0.03
AD	0.22 ± 0.08

Efficiency (%)

	WLS
AD1	3.69 ± 0.67
AD2	3.26 ± 0.32
AD	3.47 ± 0.74

Particle identification

- The composition of the beam in T10 beam facilities is mainly composed by pion and protons.
- Trough Time of flight technique is possible to identify particles

Theory
$$\rightarrow \Delta t = \frac{L}{pc^2} \left(\sqrt{p^2 c^2 + m_1^2 c^4} - \sqrt{p^2 c^2 + m_2^2 c^4} \right)$$

Experiment →

Charges of Pion and Protons (1 GeV/c)

Time-slewing correction

- We used a time difference correction using an exponential function adjusted to the charge and time correlation.
- The slewing effect is due the technique used to measure the time in the FEE.
- The leading time crossing the threshold depends on the charge.

$$t_{corrected} = t_{measured} - t(\mathbf{Q})$$

Slewing correction (1 GeV/c) Respect to **T0.end**

04/11/17

After Slewing correction (1 GeV/c) Respect to **T0.end**

26

Results

Momentum 1 GeV/c, Δt(π+,p+)=1.21 ns/m						
			No Slewing		Slewing Correction	
Detector	distance (cm)	∆t(pi,proton) (ns) Theoretical	Δt(pi,proton) (ns)	Error	Δt(pi,proton) (ns)	Error
AD2	305.5	3.684	4.54	0.02	3.85	0.02
AD1	302.5	3.648	4.45	0.02	3.72	0.02
T0.start	62	0.748	1.12	0.01	-	-
Black.Rigth	371	4.474	5.21	0.01	4.61	0.01
Black.Left	845	10.190	14.33	0.09	14.5	0.07

Time resolution → Momentum 1 GeV/c						
	Pion	Proton				
Detector	σ (ns)	Error	σ (ns)	Error		
AD2	1.1	0.01	0.89	0.06		
AD1	1.18	0.01	0.84	0.01		

After Slewing Time resolution → Momentum 1 GeV/c					
	Pion	Proton			
Detector	σ (ns)	Error	σ (ns)	Error	
AD2	0.93	0.01	0.72	0.01	
AD1	0.84	0.01	0.7	0.01	

Thanks !

Bibliography

- 1) Measurement of inelastic, single- and double-diffraction cross sections in proton-proton collisions at the LHC with ALICE, The ALICE Collaboration, Junio 8, 2013. *Eur.Phys.J.*
- 2) A Study of Diffractive Production in ALICE, O. Villalobos Baillie, 2012. Journal of Physics.
- 3) Diffractive Physics, A.D. Martin, H. Hoeth, et. al., Junio 12, 2012. PoS QNP2012 (2012) 017
- 4) Diffractive physics in ALICE at the LHC, Gerardo Herrera Corral. *AIP Conf. Proc.*
- 5) Diffraction physics with ALICE at the LHC, Sergey Evdokimov, Diciembre 24, 2014. *Conference C14-06-23.7.*
- 6) Diffraction and rapidity gap measurements with the ATLAS detector, Pauline Bernat, Octubre 20, 2012. ATL-PHYS-PROC 2012-233, ATL.PHYS-PROC-2012-1275.
- 7) Report of the Working Group on Diffractive Physics and Color Coherence, Michael Albrow, Andrew Brandt, Alfred Mueller, Carl Schmidt. *Inspire 541307.*
- 8) New Forward and Diffractive Physics at CMS, Alberto Santoro, 2011. J. Phys.
- 9) Pomeron Physics and QCD, O. Nachtmann, Diciembre 19, 2003. HD-THEP-03-63
- 10) O. V. Baillie, the Alice Collaboration, A study of diffractive production in 124 ALICE, Journal of Physics: Conference Series 381 (1) (2012) 012039.
- 11) S. Evdokimov, Difraction physics with ALICE at the LHCarXiv:1412.127.7300.
- 12) Front end electronics and first results of the ALICE V0 detector, Y. Zoccarato et. al., 6 October 2010, Nuclear Instruments and Methods in Physics Research A.

Appendix

Comparison on methods to clean up charge analysis with pixel detector

• There are not significant difference on the charge analysis by use the average position of the pixels fired every event.

AD1 Charges

04/11/17

AD2 Charges

WLS-bar -> Efficiency

Efficiency = (Black_Left ∧ Back_Right ∧ Pix ∧ **AD**) / (Black_Left ∧ Back_Right ∧ Pix)

- Time flags were used to calculate the efficiency.
- RMS cut was applied.

04/11/17