

Antonio Ortiz

Instituto de Ciencias Nucleares Universidad Nacional Autónoma de México

Seminario de promoción Octubre 5, 2017

nature International weekly journal of science

2

Comments on this story	Published online <u>19 April 2005</u> Nature doi:10.1038/news050418-5 News Early Universe was a liquid Quark-gluon blob surprises particle physicists. Mark Peplow						Related stories		
							28 July 2004		
ories by subject Physics Space and astronomy							Quark soup goes on the menu 15 February 2000		
nis article elsewhere	The Universe consisted of a perfect liquid in its first moments, according to						Naturejobs Recruitment of Faculty and Staff for t		
Blogs linking to this article	experiment. Scientists at the Relativistic Heavy Ion					•	Center for Stem Cell & Ageing of the Academy of Medical Sciences at Zhengzhou University The Academy of Medical Sciences of Zhengzhou		
Add to Digg Add to Facebook	Collider (RHIC) Laboratory on L have spent five	ven National New York, thing for the	Tintati		ology	University <u>Professor and Faculty Positions at the</u> <u>Academy of Medical Sciences (AMS),</u>			
Add to Newsvine Space Add to Del.icio.us	guark-gluon pla have filled our U microseconds of	thought to the first ce. Most of	Quarks	re Archaeolog s and gluons have	The Academy of Medical Sciences of Zhengzhou University				
Add to Twitter	them are now co found it. But, st a liquid rather t	onvinced th rangely, it s han the exp	ey have seems to be sected hot	liquid. (click here to see on. © RHIC/	'BN	 More science jobs Post a job 		

Big Bang primordial soup created by Cern's LHC shows early universe behaved like a liquid October 5, 2017 Antonio Ortiz, ICN-UNAM

The ALICE detector

Similarities among pp, p-Pb and Pb-Pb collisions

Hereafter, pp and p-Pb collisions are referred as small collisions systems

Particle production

Identified particle production vs multiplicity in pp, p-Pb and Pb-Pb collisions exhibits remarkable similarities

Mass dependent modification of the p_T spectral shapes going from low to high multiplicities

Particle production

Identified particle production vs multiplicity in pp, p-Pb and Pb-Pb collisions exhibits remarkable similarities

October 5, 2017

Antonio Ortiz, ICN-UNAM

A. Ortiz et al., ALICE-ANA-232

Particle production

Identified particle production vs multiplicity in pp, p-Pb and Pb-Pb collisions exhibits remarkable similarities

Two-particle correlations with inclusive charged particles

CMS, PLB 724 (2013) 213

CMS, PLB 765 (2017) 193

What is the nature of long-range correlations observed in small systems?

Instituto de Ciencias Nucleares Strangeness UNAM

First observation of a multiplicity dependent strangeness enhancement in high-multiplicity pp collisions
Enhancement is due to strangeness content and not due to mass
Multiplicity dependence of the enhancement is strikingly similar in pp and p-Pb, and approaches values similar to those measured in central Pb-Pb

QCD inspired MC generators fail to describe these observations

No jet quenching signatures Ciencias IN small Systems

No jet quenching signatures Ciencias IN small Systems

Small systems

Open questions

Thoughts and opportunities in the soft-QCD sector from high-energy nuclear collisions

Federico Antinori, Francesco Becattini, Peter Braun-Munzinger, Tatsuya Chujo, Hideki Hamagaki, John Harris, Ulrich Heinz, Boris Hippolyte, Tetsufumi Hirano, Barbara Jacak, Dmitri Kharzeev, Constantin Loizides, Silvia Masciocchi, Alexander Milov, Andreas Morsch, Berndt Müller, Jamie Nagle, Jean-Yves Ollitrault, **Guy Paić**, Krishna Rajagopal, Gunther Roland, Jürgen Schukraft, Yves Schutz, Raimond Snellings, Johanna Stachel, Derek Teaney, Julia Velkovska, Sergei Voloshin, Urs Achim Wiedemann, Zhangbu Xu, William Zajc

arXiv:1604.03310

Flow-like phenomena in small systems

Is there a minimum size for the onset of collective behavior?

Do the systematic variations across beam energies, collision centralities, system size and transverse and longitudinal momentum support a fluid dynamical interpretation?

October 5, 2017

Instituto de $\sqrt{s} dependence of \pi/K/p in pp collisions}$ Nucleares

The evolution of the "particle ratios" with \sqrt{s} is consistent with the expected behaviour driven by the change in $\langle N_{ch} \rangle$

October 5, 2017

Antonio Ortiz, ICN-UNAM

Ciencias

UNAM

Hardening of the p_T spectra with increasing \sqrt{s}

October 5, 2017

Inclusive charged pt VS Nch

Ratios to INEL>0

October 5, 2017

Ratios to MB exhibit two common features Little or no p_{T} dependence is observed for $p_T < 1 \text{ GeV}/c$ Strong p_{T} dependence for larger transverse momenta The trends are well described by PYTHIA 8.212 tune Monash 2013

Instituto de

Nucleares

Ciencias

UNAM

October 5, 2017

How can we isolate the new physics?

High multiplicity pp collisions

October 5, 2017

How can we isolate the new physics?

Goal: study the extreme high multiplicity events → multiplicity selection should be done at midrapidity Known
physics
jets +
underlying
event

October 5, 2017

A. N_{ch} and Jet

Idea: implement a double-differential analysis, i.e., make a selection based on the multiplicity and leading jet transverse momentum (p_T^{leading}) both determined at mid-rapidity

A. Ortiz, G. Bencedi and H. Bello, JPG 44 (2017) no.6, 065001

EPOS 3.117

corona: string segments with high p_T escape **core:** lower p_T string segments used for initial conditions for hydro

PYTHIA 8.212 jets + **underlying event** (UE = MPI color reconnected with beam remnants, ISR, FSR)

Testing the idea (p/π)

Low N_{ch} behave very similar in EPOS and PYTHIA High N_{ch}: PYTHIA gives little or no dependence on p_Tleading. Whereas EPOS 3 gives a remarkable increase of the ratio with decreasing p_Tleading

A. Ortiz, G. Bencedi and H. Bello, JPG 44 (2017) no.6, 065001

Instituto de

Nucleares

Ciencias

UNAM

B. N_{ch} and spherocity

Event shapes measure the geometrical properties of the energy flow in QCD events and, notably, its deviation from that expected based on pure lowest order partonic predictions

A. Banfi et al., JHEP 1006 (2010) 038 At hadron colliders, the event shape axis lies in the plane perpendicular to the beam axis (X)

Instituto de

Nucleares

Ciencias

A. Ortiz, arXiv:1705.02056 (chapter of a book on multiple-partonic interactions. *In preparation*)

B. N_{ch} and spherocity

Event shapes measure the geometrical properties of the energy flow in QCD events and, notably, its deviation from that expected based on pure lowest order partonic predictions

A. Banfi et al., JHEP 1006 (2010) 038 At hadron colliders, the event shape axis lies in the plane perpendicular to the beam axis (X)The radiation perpendicular to the plane defined by the event shape axis and the beam one should be sensitive to soft physics

Instituto de

Nucleares

Ciencias

A. Ortiz, arXiv:1705.02056 (chapter of a book on multiple-partonic interactions. *In preparation*)

Definition

Transverse spherocity is an event shape which measures the radiation perpendicular to the plane formed by the beam axis and that of the main partonic scattering (~spherocity axis, **n**s)

$$S_0 \equiv \frac{\pi^2}{4} \left(\frac{\sum_{i}^{N_{\rm ch}} |\vec{p}_{{\rm T},i} \times \hat{\mathbf{n}}_{\rm s}|}{\sum_{i}^{N_{\rm ch}} p_{{\rm T},i}} \right)^2$$

Spherocity axis (**n**s) is that which minimises the ratio above
 For the calculation of spherocity we consider primary charged particles, *p*_T>0.15 GeV/*c*, |η|<0.8
 We proposed for the first time the use of event shapes for soft physics studies

Event classification based on spherocity percentiles → now adopted by ALICE

Characteristics of the events selected using spherocity

October 5, 2017

October 5, 2017

Core-corona separation Ciencias UNAM

The study was conducted using pp collisions at $\sqrt{s} = 7$ TeV simulated with EPOS 3.117

October 5, 2017

October 5, 2017

Data analysis

A. Ortiz, ALICE-ANA-3321

H. Bello, A. Fernández, A. Ortiz

Implementation, PhD thesis of Héctor Bello and G. Paić ALICE-ANA-3959

October 5, 2017

Implementation, PhD thesis of Héctor Bello and G. Paić ALICE-ANA-3959

October 5, 2017

Implementation, PhD thesis of Héctor Bello and G. Paić ALICE-ANA-3959

October 5, 2017

$\langle \rho_T \rangle$ vs N_{ch}) vs S_0

The average p_T is calculated considering low p_T particles, in that regime, most of MC generators describe well the data. However, for jetty events we observe some discrepancies

Implementation, PhD thesis of Héctor Bello and G. Paić ALICE-ANA-3959

October 5, 2017

Antonio Ortiz, ICN-UNAM

Instituto de

Nucleares

Ciencias

UNAM

40

First attempt using TPC and TOF

High multiplicity events selected using the VZERO detector

October 5, 2017

Antonio Ortiz, ICN-UNAM

42

October 5, 2017

Antonio Ortiz, ICN-UNAM

43

More about small systems

October 5, 2017

Some comments

The results using the new tool, S_0 , show interesting features. For the story to be completed, further studies are needed (check the S_0 dependence at fix $\langle N_{ch} \rangle$, use the full statistics)

Some comments

The results using the new tool, S_0 , show interesting features. For the story to be completed, further studies are needed (check the S_0 dependence at fix $\langle N_{ch} \rangle$, use the full statistics)

One needs to check the consistency with results for different \sqrt{s} . We know that the increase of \sqrt{s} is accompanied by an increase of $\langle N_{ch} \rangle$. One consequence is, for example, the increase of the strangeness with \sqrt{s}

ALI-PREL-107393

Antonio Ortiz, ICN-UNAM

Instituto de

Nucleares

Ciencias

UNAM

In the context of event simulation the Underlying Event (UE) refers to everything that does not originate from the hard scatter outgoing partons

Vs dependence of UE UNAM

Experimentally we measure quantities which are sensitive to UE, however, it is difficult to isolate this component (e.g. interaction among coloured objects before the hadonization)

October 5, 2017

ATLAS results

Multiplicity density of primary charged-particles (number density) as a function of the largest transverse momentum (leading charged particle) of the event

ATLAS results

October 5, 2017

ATLAS results (scaled) Instituto de Ciencias Nucleares UNAM

Interesting scaling of the number density as a function of the leading *p*_T. The effect is unveiled once the number density is scaled according with the change variation of multiplicity wrt pp at √s = 0.9 TeV
 Same factor for regions sensitive to different physics

In collaboration with Lizardo Valencia (UNACH, UNISON)

ATLAS results (scaled) Instituto de Ciencias Nucleares UNAM

Instituto de Ciencias Nucleares UNAM PYTHIA 8.212 (scaled)

Some comments

• The observed scaling is achieved by considering the change in the inclusive average multiplicity. Since we consider low p_T charged particles ($p_T > 0.5 \text{ GeV}/c$) to calculate the scaling factor, we are dominated by soft physics

Within 15%, the scaling is well reproduced by PYTHIA
 We can test the scaling properties of UE by running an event shape analysis

About the importance of PID

Charged particles in the intermediate momentum range are identified in ALICE by the Time Of Flight (TOF) detector. The time measurement with the TOF, in conjunction with the momentum and track length measured by the tracking detectors is used to calculate the particle mass

Each TOF module contains a total of 1638 detector elements (MRPC strips), covering an area of 160 m2 with 157248 readout channels (pads)

MRPC

The MRPC is a stack of resistive glass plates. A high voltage is applied to the external surfaces of the stack. Further out there are pickup electrodes. A charged particle ionises the gas and the high electric field amplifies this ionization by an electron avalanche. The resistive plates stop the avalanche development in each gap; they are however transparent to the fast signal induced on the pickup electrodes by the movement of the electrons. So the total signal is the sum of the signals from all gaps (the reason for many gaps is to achieve high efficiency), whereas the time jitter of the signal depends on the individual gap width (the reason for narrow gaps is to achieve good time resolution)

Installation

October 5, 2017

Coincidences with scintillation counter counters

The characterisation of the chamber is in progress

In parallel we are building our own chambers at ICN Arlette Melo, Nelly Solano, Viridiana González, Luis Díaz, Alejandro Sánchez, Brandon Patiño, Diana Solano, Diego Garzón, José Reyes, Vladimir Ruiz, Josef Guy, Eleazar, Enrique

Summary and outlook UNAM

- Results from small systems show similarity to those in Pb-Pb collisions
- Still under debate if the hot QGP matter has been produced in small systems
- Precise characterization of pp and p-Pb collisions is ongoing
- New tools have been proposed in order to understand the new phenomena
- New measurements are coming!

October 5, 2017

Multiplicity classes, pp $\sqrt{s} = 7 \text{ TeV}$

Table 1: Event multiplicity classes used in the analysis, their corresponding fraction of the INEL>0 cross-section $(\sigma/\sigma_{\text{INEL}>0})$ and their corresponding $\langle dN_{\text{ch}}/d\eta \rangle$ in $|\eta| < 0.5$. The value of $\langle dN_{\text{ch}}/d\eta \rangle$ in the inclusive INEL>0 class is 5.96 ± 0.23. The uncertainties are the quadratic sum of statistical and systematic contributions.

Class name	Ι	II	III	IV	V
$\sigma/\sigma_{ m INEL>0}$	0-0.95%	0.95-4.7%	4.7-9.5%	9.5-14%	14-19%
$\langle \mathrm{d}N_\mathrm{ch}/\mathrm{d}\eta angle$	21.3 ± 0.6	16.5 ± 0.5	13.5 ± 0.4	11.5 ± 0.3	10.1 ± 0.3
Class name	VI	VII	VIII	IX	Х
$\sigma/\sigma_{ m INEL>0}$	19-28%	28-38%	38-48%	48-68%	68-100%
$\langle \mathrm{d}N_\mathrm{ch}/\mathrm{d}\eta angle$	8.45 ± 0.25	6.72 ± 0.21	5.40 ± 0.17	3.90 ± 0.14	2.26 ± 0.12

Time:0.08

October 5, 2017

Radial and eliptic flow UNAM

Change from pp to Pb-Pb: Increase in mean *p*_T Larger effect for larger mass

First indication of collective behaviour

Pressure leads to radial flow Same Lorentz boost (β) gives larger momentum for heavier particles ($m_p < m_K < m_\pi$)

Transverse momentum distribution ALICE, PLB 736, 196

Azimuthal anisotropy

Initial state spatial anisotropies ε_n are transferred into final state momentum anisotropies v_n by pressure gradients, flow of the QGP October 5, 2017 Antonio Ortiz, ICN-UNAM

Instituto de

Nucleares

Ciencias

UNAM

The heavy-ion physics program

October 5, 2017
Heavy-ion collisions

10-5 seconds: protons are formed minutes: light nuclei 3 3 10⁵ years: atoms

The main argument to convince Herwing Shopper (Director General of CERN, 1981-1988) to bring the heavy-ion program to CERN was the following: "...find the theoretically predicted Quark-Gluon Plasma (QGP) which played an important role in the development of the Universe..."

Instituto de

Nucleares

Ciencias

UNAM

October 5, 2017

The LHC era

October 5, 2017

dN/dy

The intriguing success of the Thermal model to describe dozens of particle yields (even nuclei) with very few parameters

- Thermal production of nuclei (d, 3He)?
- ©Little Bang Nucleosynthesis?
- Strangeness enhancement

natare to tem enough that NO more elastic interactions occur: kinetic freeze-out

The intriguing success of the Thermal model to describe dozens of particle yields (even nuclei) with very few parameters

Thermal production of nuclei (d, 3He)?

Little Bang Nucleosynthesis?
Collective expansion of the system (radial and anisotropic flow)
How does the QCD perfect fluid emerges from the fundamental interactions of quarks and gluons?

Strangeness enhancement

more elastic interactions occur: **k**

October 5, 2017

The intriguing success of the Thermal model to describe dozens of particle yields (even nuclei) with very few parameters

Thermal production of nuclei (d, 3He)?

Little Bang Nucleosynthesis?
Collective expansion of the system (radial and anisotropic flow)
How does the QCD perfect fluid emerges from the fundamental interactions of quarks and gluons?

deposition of jets?

more elastic interactions occur: **k** freeze-out

The intriguing success of the Thermal model to describe dozens of particle yields (even nuclei) with very few parameters

Thermal production of nuclei (d, 3He)?

Solution Little Bang Nucleosynthesis?

 Collective expansion of the system (radial and anisotropic flow)
 How does the QCD perfect fluid

emerges from the fundamental interactions of quarks and gluons?

deposition of jets?

more elastic interactions occur: **k**

Event characterisation Nucleares UNAM

Geometrical quantities are calculated using a Glauber Monte Carlo, the different event classes are classified according to their impact parameter

Kinetic freeze-out

Simultaneous fit to π , K, p p_T spectra using the Boltzmann-Gibbs Blast-Wave model E. Schnedermann et al., PRC 48 (1993) 2462 Simplified hydrodynamics model with only three parameters: $\circ \beta_{T}$: radial expansion velocity \circ T_{kin} : temperature at the kinetic freeze-out **o** *n*: velocity profile

 $T_{kin} < T_{ch}$: consistent with the existence of the hadronic phase. Results depend on the fit range. However, we always observe an increase of β_{T} with increasing multiplicity

Instituto de

Nucleares

Ciencias

UNAM

October 5, 2017

80

Kinetic freeze-out

81

Simultaneous fit to π , K, p p_T spectra using the Boltzmann-Gibbs Blast-Wave model E. Schnedermann et al., PRC 48 (1993) 2462

Same color indicates ~same multiplicities:

Slightly higher radial flow in run II heavyion data

Small systems also compatible with hydrodynamic model Discussion about small collision systems (pp and p-Pb collisions) will be done at the end of the presentation

October 5, 2017

 $R_{AA} \sqrt{S_{NN}} = 5.02 \text{ TeV}$

Instituto de

Nucleares

Ciencias

UNAM

$R_{AA} \sqrt{s_{NN}} = 5.02 \text{ TeV}$

Instituto de

Nucleares

Ciencias

UNAM

 Within systematic uncertainties, all three species are equally suppressed at high p_T (p_T>8 GeV/c)
 Similar results obtained in run I, albeit a small energy dependence is observed at low p_T (ALICE, PRC 93 (2016) 034913) Antonio Ortiz, ICN-UNAM

Particle ratios (I)

• Shift to the maximum of p/π to higher p_T with respect to lower energies (ALICE, PRC 93 (2016) 034913)

October 5, 2017

Particle ratios (II)

ONo significant change between the two energies (ALICE, PRC 93 (2016) 034913)

October 5, 2017

Instituto de Ciencias Nucleares UNAM

October 5, 2017

The RPC detector

Resistive Plate Counters \rightarrow resistive parallel plate gaseous detector Developed around 1980 in Italy by R. Santonico et al. NIM 187 (1981) 377-380

- **1. Electrodes:** HPL made with melamine/phenol resins; Glass; Ceramic
- Resistive electrodes: 10^{10} $10^{12} \Omega cm$
- Internal electrode surface covered with a thin linseed oil layer ($\sim \mu m$)
- 2. Gap width: 2 mm
- **3. High Voltage contacts: graphite paint (~100 µm)**
- AAAA **Operating pressure: atmospheric pressure**
- Gas mixture: Ar, C₂H₂F₄, iC₄H₁₀, SF₆
- Gas flow: 0.2 vol/h
- **Dimensions: Surface:** ~ m², thickness: 1 cm
- **Read-out strip: Al/Cu, ~cm**