Properties of Single and Double Charm Hadrons

Jürgen Engelfried

Instituto de Física Universidad Autónoma de San Luis Potosí Mexico

XIII Mexican School of Particles and Fields San Carlos, Sonora, Mexico, 2-11 October 2008

Outline

- Update on Double Charm Baryons
 - The Discovery of Double Charm Baryons
 - Features, Problems, and Solutions
 - Observation of $\Xi_{cc}^+ \to \Xi_c^+ \pi^+ \pi^-$
 - Observation of $\Xi_{cc}^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^+, \ \Xi_c^+ \pi^- \pi^+ \pi^+$
- 2 Hadro-Production of Charm
- \bigcirc Λ_c^+ Semi-leptonic Decay
- 4 Cabibbo-Suppressed Ξ_c^+ Decays
 - First Observation of $\Xi_c^+ \to \Sigma^+ \pi^- \pi^+, \Xi_c^+ \to \Sigma^- \pi^+ \pi^+$
 - Summary

< ロ > < 同 > < 回 > < 回 > < 回 >

Hadro-Production of Charm Λ_c^+ Semi-leptonic Decay Cabibbo-Suppressed Ξ_c^+ Decays Summary

The Discovery of Double Charm Baryons Features, Problems, and Solutions Observation of $\Xi_{cc}^+ \to \Xi_c^+ \pi^+ \pi^-$ Observation of $\Xi_{cc}^{++} \to \Lambda_c^+ K^- \pi^+ \pi^+, \Xi_c^+ \pi^- \pi^+ \pi$

SELEX Double Charmed Baryon States – 2003

Hadro-Production of Charm Λ_c^+ Semi-leptonic Decay Cabibbo-Suppressed Ξ_c^+ Decays Summary The Discovery of Double Charm Baryons **Features, Problems, and Solutions** Observation of $\Xi_{cc}^+ \to \Xi_c^+ \pi^+ \pi^-$ Observation of $\Xi_{cc}^{c+} \to \Lambda_c^+ K^- \pi^+ \pi^+, \Xi_c^+ \pi^- \pi^+ \pi^+$

Features and Problems in Original Analysis...

All Signals have very low statistics

- There is nearly no background (\rightarrow difficult to determine)
- Entries in histograms only from baryon (Σ^- , proton) beams
- Other experiments do not see the states (but: nobody else has baryon beams...)
- Lifetime is short (< 33 fs)

(日)

Hadro-Production of Charm Λ_c^+ Semi-leptonic Decay Cabibbo-Suppressed Ξ_c^+ Decays Summary

The Discovery of Double Charm Baryons **Features, Problems, and Solutions** Observation of $\Xi_{cc}^+ \to \Xi_c^+ \pi^+ \pi^-$ Observation of $\Xi_{cc}^{c+} \to \Lambda_c^+ K^- \pi^+ \pi^+, \Xi_c^+ \pi^- \pi^+ \pi^+$

Features and Problems in Original Analysis...

- All Signals have very low statistics
- There is nearly no background (\rightarrow difficult to determine)
- Entries in histograms only from baryon (Σ⁻, proton) beams
- Other experiments do not see the states (but: nobody else has baryon beams...)
- Lifetime is short (< 33 fs)

< ロ > < 同 > < 回 > < 回 > < 回 >

Update on Double Charm Baryons Hadro-Production of Charm A⁺ Semi-leptonic Decay

 Λ_c^+ Semi-leptonic Decay Cabibbo-Suppressed Ξ_c^+ Decays Summary The Discovery of Double Charm Baryons **Features, Problems, and Solutions** Observation of $\Xi_{cc}^+ \to \Xi_c^+ \pi^+ \pi^-$ Observation of $\Xi_{cc}^{c+} \to \Lambda_c^+ K^- \pi^+ \pi^+, \Xi_c^+ \pi^- \pi^+ \pi^+$

Features and Problems in Original Analysis...

- All Signals have very low statistics
- There is nearly no background (\rightarrow difficult to determine)
- Entries in histograms only from baryon (Σ^- , proton) beams
- Other experiments do not see the states (but: nobody else has baryon beams...)
- Lifetime is short (< 33 fs)

The Discovery of Double Charm Baryons **Features, Problems, and Solutions** Observation of $\Xi_{cc}^+ \to \Xi_c^+ \pi^+ \pi^-$ Observation of $\Xi_{cc}^{c+} \to \Lambda_c^+ K^- \pi^+ \pi^+, \Xi_c^+ \pi^- \pi^+ \pi^+$

Features and Problems in Original Analysis...

- All Signals have very low statistics
- There is nearly no background (\rightarrow difficult to determine)
- Entries in histograms only from baryon (Σ^- , proton) beams
- Other experiments do not see the states (but: nobody else has baryon beams...)
- Lifetime is short (< 33 fs)

< ロ > < 同 > < 回 > < 回 > < 回 >

The Discovery of Double Charm Baryons **Features, Problems, and Solutions** Observation of $\Xi_{cc}^+ \to \Xi_c^+ \pi^+ \pi^-$ Observation of $\Xi_{cc}^{c+} \to \Lambda_c^+ K^- \pi^+ \pi^+, \Xi_c^+ \pi^- \pi^+ \pi^+$

Features and Problems in Original Analysis...

- All Signals have very low statistics
- There is nearly no background (\rightarrow difficult to determine)
- Entries in histograms only from baryon (Σ^- , proton) beams
- Other experiments do not see the states (but: nobody else has baryon beams...)
- Lifetime is short (< 33 fs)

< ロ > < 同 > < 回 > < 回 > < 回 > <

Hadro-Production of Charm Λ_c^+ Semi-leptonic Decay Cabibbo-Suppressed Ξ_c^+ Decays Summary The Discovery of Double Charm Baryons **Features, Problems, and Solutions** Observation of $\Xi_{cc}^+ \to \Xi_c^+ \pi^+ \pi^-$ Observation of $\Xi_{cc}^{c+} \to \Lambda_c^+ K^- \pi^+ \pi^+, \Xi_c^+ \pi^- \pi^+ \pi^+$

... and Possible Solutions

Look for other decay modes to confirm DCB hypothesis

- Develop new method for background determination
- Include single-charm in vertex fit of double-charm vertex
- Redo full analysis chain to increase statistics

ヘロン 人間と 人間と 人間と

Hadro-Production of Charm Λ_c^+ Semi-leptonic Decay Cabibbo-Suppressed Ξ_c^+ Decays Summary The Discovery of Double Charm Baryons **Features, Problems, and Solutions** Observation of $\Xi_{cc}^+ \to \Xi_c^+ \pi^+ \pi^-$ Observation of $\Xi_{cc}^{c+} \to \Lambda_c^+ K^- \pi^+ \pi^+, \Xi_c^+ \pi^- \pi^+ \pi^+$

... and Possible Solutions

- Look for other decay modes to confirm DCB hypothesis
- Develop new method for background determination
- Include single-charm in vertex fit of double-charm vertex
- Redo full analysis chain to increase statistics

< ロ > < 同 > < 回 > < 回 > < 回 >

Hadro-Production of Charm Λ_c^+ Semi-leptonic Decay Cabibbo-Suppressed Ξ_c^+ Decays Summary The Discovery of Double Charm Baryons **Features, Problems, and Solutions** Observation of $\Xi_{cc}^+ \to \Xi_c^+ \pi^+ \pi^-$ Observation of $\Xi_{cc}^{c+} \to \Lambda_c^+ K^- \pi^+ \pi^+, \Xi_c^+ \pi^- \pi^+ \pi^+$

... and Possible Solutions

- Look for other decay modes to confirm DCB hypothesis
- Develop new method for background determination
- Include single-charm in vertex fit of double-charm vertex
- Redo full analysis chain to increase statistics

< ロ > < 同 > < 回 > < 回 > < 回 >

Hadro-Production of Charm Λ_c^+ Semi-leptonic Decay Cabibbo-Suppressed Ξ_c^+ Decays Summary The Discovery of Double Charm Baryons **Features, Problems, and Solutions** Observation of $\Xi_{cc}^+ \to \Xi_c^+ \pi^+ \pi^-$ Observation of $\Xi_{cc}^{c+} \to \Lambda_c^+ K^- \pi^+ \pi^+, \Xi_c^+ \pi^- \pi^+ \pi^+$

... and Possible Solutions

- Look for other decay modes to confirm DCB hypothesis
- Develop new method for background determination
- Include single-charm in vertex fit of double-charm vertex
- Redo full analysis chain to increase statistics

< ロ > < 同 > < 回 > < 回 > < 回 > <

Update on Double Charm Baryons Hadro-Production of Charm

 Λ_c^+ Semi-leptonic Decay Cabibbo-Suppressed Ξ_c^+ Decays Summary The Discovery of Double Charm Baryons **Features, Problems, and Solutions** Observation of $\Xi_{cc}^{+} \rightarrow \Xi_{c}^{+}\pi^{+}\pi^{-}$ Observation of $\Xi_{cc}^{cc+} \rightarrow \Lambda_{c}^{+}K^{-}\pi^{+}\pi^{+}, \Xi_{c}^{+}\pi^{-}\pi^{+}\pi^{+}$

Other Decay Modes of Double Charm Baryons

Cabibbo allowed decay of Ξ_{cc}^+ :

In Final State:

- Baryon
- Quarks csdud plus pairs from sea
- Cascaded decay chain

Easily accessible in SELEX:

$$\begin{split} \Xi_{cc}^{+} &\to \Lambda_{c}^{+} K^{-} \pi^{+} \\ \Xi_{cc}^{+} &\to p D^{+} K^{-} \\ \Xi_{cc}^{+} &\to \Xi_{c}^{+} \pi^{-} \pi^{+} \end{split}$$

- $$\begin{split} \Xi_{cc}^{++} &\to \Lambda_c^+ K^- \pi^+ \pi^+ \\ \Xi_{cc}^{++} &\to p D^+ K^- \pi^+ \ (?) \\ \Xi_{cc}^{++} &\to \Xi_c^+ \pi^+ \\ \Xi_{cc}^{++} &\to \Xi_c^+ \pi^+ \pi^+ \pi^- \end{split}$$
- $\begin{array}{l} \Omega_{cc}^+ \to \Xi_c^+ K^- \pi^+ \\ \Omega_{cc}^+ \to \Xi_c^+ K^- \pi^+ \pi^+ \pi^- \end{array}$

Update on Double Charm Baryons Hadro-Production of Charm

 Λ_c^+ Semi-leptonic Decay Cabibbo-Suppressed Ξ_c^+ Decays Summary The Discovery of Double Charm Baryons **Features, Problems, and Solutions** Observation of $\Xi_{cc}^{+} \rightarrow \Xi_{c}^{+}\pi^{+}\pi^{-}$ Observation of $\Xi_{cc}^{cc+} \rightarrow \Lambda_{c}^{+}K^{-}\pi^{+}\pi^{+}, \Xi_{c}^{+}\pi^{-}\pi^{+}\pi^{+}$

Other Decay Modes of Double Charm Baryons

Cabibbo allowed decay of Ξ_{cc}^+ :

In Final State:

- Baryon
- Quarks csdud plus pairs from sea
- Cascaded decay chain

Easily accessible in SELEX:

- $$\begin{split} \Xi_{cc}^+ &\to \Lambda_c^+ K^- \pi^+ \\ \Xi_{cc}^+ &\to \rho D^+ K^- \\ \Xi_{cc}^+ &\to \Xi_c^+ \pi^- \pi^+ \end{split}$$
- $$\begin{split} \Xi_{cc}^{++} &\to \Lambda_c^+ K^- \pi^+ \pi^+ \\ \Xi_{cc}^{++} &\to \rho D^+ K^- \pi^+ \ (?) \\ \Xi_{cc}^{++} &\to \Xi_c^+ \pi^+ \\ \Xi_{cc}^{++} &\to \Xi_c^+ \pi^+ \pi^+ \pi^- \end{split}$$
- $\begin{array}{l} \Omega_{cc}^+ \to \Xi_c^+ K^- \pi^+ \\ \Omega_{cc}^+ \to \Xi_c^+ K^- \pi^+ \pi^+ \pi^- \end{array}$

Update on Double Charm Baryons Hadro-Production of Charm

 Λ_c^+ Semi-leptonic Decay Cabibbo-Suppressed Ξ_c^+ Decays Summary The Discovery of Double Charm Baryons **Features, Problems, and Solutions** Observation of $\Xi_{cc}^{+} \rightarrow \Xi_{c}^{+}\pi^{+}\pi^{-}$ Observation of $\Xi_{cc}^{cc+} \rightarrow \Lambda_{c}^{+}K^{-}\pi^{+}\pi^{+}, \Xi_{c}^{+}\pi^{-}\pi^{+}\pi^{+}$

Other Decay Modes of Double Charm Baryons

Cabibbo allowed decay of Ξ_{cc}^+ :

In Final State:

- Baryon
- Quarks csdud plus pairs from sea
- Cascaded decay chain

Easily accessible in SELEX:

- $$\begin{split} \Xi_{cc}^+ &\to \Lambda_c^+ K^- \pi^+ \\ \Xi_{cc}^+ &\to p D^+ K^- \\ \Xi_{cc}^+ &\to \Xi_c^+ \pi^- \pi^+ \end{split}$$
- $$\begin{split} \Xi_{cc}^{++} &\to \Lambda_c^+ K^- \pi^+ \pi^+ \\ \Xi_{cc}^{++} &\to \rho D^+ K^- \pi^+ \ (?) \\ \Xi_{cc}^{++} &\to \Xi_c^+ \pi^+ \\ \Xi_{cc}^{++} &\to \Xi_c^+ \pi^+ \pi^+ \pi^- \end{split}$$
- $\Omega_{cc}^{+} \to \Xi_{c}^{+} K^{-} \pi^{+}$ $\Omega_{cc}^{+} \to \Xi_{c}^{+} K^{-} \pi^{+} \pi^{+} \pi^{-}$

Hadro-Production of Charm Λ_c^+ Semi-leptonic Decay Cabibbo-Suppressed Ξ_c^+ Decays Summary The Discovery of Double Charm Baryons **Features, Problems, and Solutions** Observation of $\Xi_{cc}^+ \to \Xi_c^+ \pi^+ \pi^-$ Observation of $\Xi_{cc}^{++} \to \Lambda_c^+ K^- \pi^+ \pi^+, \Xi_c^+ \pi^- \pi^+ \pi^-$

$\Xi_{cc}^+ o \rho D^+ K^-$ (PLB628 (2005) 18)

Jürgen Engelfried

16/38

Hadro-Production of Charm Λ_c^+ Semi-leptonic Decay Cabibbo-Suppressed Ξ_c^+ Decays Summary The Discovery of Double Charm Baryons **Features, Problems, and Solutions** Observation of $\Xi_{cc}^+ \to \Xi_c^+ \pi^+ \pi^-$ Observation of $\Xi_{cc}^{c+} \to \Lambda_c^+ K^- \pi^+ \pi^+, \Xi_c^+ \pi^- \pi^+ \pi^+$

Background Determination: Event Mixing

- First decay vertex close to primary vertex: assume all bkgd is combinatoric
- Make combinatoric bkgd by taking first decay vertex from one event, second from other
- Use each single-charm event 25 times to increase statistics

Resulting combinatoric bkgd is absolutely normalized \Rightarrow Bkgd shape known

PLB628 (2005) 18

< 口 > < 同 >

The Discovery of Double Charm Baryons **Features, Problems, and Solutions** Observation of $\Xi_{cc}^+ \to \Xi_c^+ \pi^+ \pi^-$ Observation of $\Xi_{cc}^{c+} \to \Lambda_c^+ K^- \pi^+ \pi^+, \Xi_c^+ \pi^- \pi^+ \pi^+$

$\Xi_{cc}^+ \rightarrow \Lambda_c^+ K^- \pi^+ - \text{New Analysis}$

Re-analysis of full data set \Rightarrow More Λ_c cands (1630 \rightarrow 2450)

- Refit Ξ_{cc}^+ vertex using $\vec{p}_{\Lambda_c^+}$ together with $K^-\pi^+$ tracks \Rightarrow Better *L*1 resolution
- Use event mixing for background

< □ > < 同 >

Hadro-Production of Charm Λ_c^+ Semi-leptonic Decay Cabibbo-Suppressed Ξ_c^+ Decays Summary The Discovery of Double Charm Baryons **Features, Problems, and Solutions** Observation of $\Xi^+_{cc} \to \Xi^+_c \pi^+ \pi^-$ Observation of $\Xi^+_{cc} \to \Lambda^+_c K^- \pi^+ \pi^+, \Xi^+_c \pi^- \pi^+ \pi^+$

$\Xi_{cc}^+ \to \Lambda_c^+ K^- \pi^+, \Lambda_c^+ \to p K^- \pi^+ - \text{New Analysis}$

Jürgen Engelfried

Hadro-Production of Charm Λ_c^+ Semi-leptonic Decay Cabibbo-Suppressed Ξ_c^+ Decays Summary The Discovery of Double Charm Baryons **Features, Problems, and Solutions** Observation of $\Xi_{cc}^+ \to \Xi_c^+ \pi^+ \pi^-$ Observation of $\Xi_{cc}^{c+} \to \Lambda_c^+ K^- \pi^+ \pi^+, \Xi_c^+ \pi^- \pi^+ \pi^+$

Features of new Analysis

- Re-Analysis and Relaxing Cuts on Single Charm:
 - some more background, but shape is well understood from combinatoric analysis
 - more signal

Improved sec. vertex resolution:

- Cleaner Signals, access to other modes
- Possibility (but challenging) to measure lifetime (is around 1 σ)

Hadro-Production of Charm Λ_c^+ Semi-leptonic Decay Cabibbo-Suppressed Ξ_c^+ Decays Summary The Discovery of Double Charm Baryons Features, Problems, and Solutions **Observation of** $\Xi_{cc}^+ \rightarrow \Xi_c^+ \pi^+ \pi^-$ Observation of $\Xi_{cc}^{c+} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^+, \Xi_c^+ \pi^- \pi^+ \pi^+$

$\Xi_{cc}^+ \rightarrow \Xi_c^+ \pi^+ \pi^- -$ First Observation

FIRST OBSERVATION: $\Xi_{cc}^+ \rightarrow \Xi_c^+ \pi^+ \pi^-, \Xi_c^+ \rightarrow \rho K^- \pi^+$

< ロ > < 同 > < 回 > < 回 > < 回 >

Hadro-Production of Charm Λ_c^+ Semi-leptonic Decay Cabibbo-Suppressed Ξ_c^+ Decays Summary

The Discovery of Double Charm Baryons Features, Problems, and Solutions **Observation of** $\Xi_{cc}^{+} \rightarrow \Xi_{c}^{+}\pi^{+}\pi^{-}$ Observation of $\Xi_{cc}^{+} \rightarrow \Lambda_{c}^{+}K^{-}\pi^{+}\pi^{+}, \Xi_{c}^{+}\pi^{-}\pi^{+}\pi^{+}$

Comparing the Mass of the Three Decay Modes

Hadro-Production of Charm Λ_c^+ Semi-leptonic Decay Cabibbo-Suppressed Ξ_c^+ Decays Summary

The Discovery of Double Charm Baryons Features, Problems, and Solutions Observation of $\Xi_{cc}^+ \to \Xi_c^+ \pi^+ \pi^-$ Observation of $\Xi_{cc}^{++} \to \Lambda_c^+ K^- \pi^+ \pi^+, \Xi_c^+ \pi^- \pi^+ \pi^+$

Observation of $\Xi_{cc}^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^+$

- If we have a ccd state (Ξ⁺_{cc}), there has to be a ccu state as well (Ξ⁺⁺_{cc})
- Look in $\Xi_{cc}^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^+$
- Use same cuts as before
 - Use same code
 - Just ask for one more π^+

Green: Absolutely-normalized background Gaussian with fixed width (MC)

New Ξ_{cc}^{++} at 3452!

Hadro-Production of Charm Λ_c^+ Semi-leptonic Decay Cabibbo-Suppressed Ξ_c^+ Decays Summary

The Discovery of Double Charm Baryons Features, Problems, and Solutions Observation of $\Xi_{cc}^+ \to \Xi_c^+ \pi^+ \pi^-$ Observation of $\Xi_{cc}^{ee} \to \Lambda_c^+ K^- \pi^+ \pi^+, \Xi_c^+ \pi^- \pi^+ \pi^+$

Observation of $\Xi_{cc}^{++} \rightarrow \Xi_{c}^{+} \pi^{-} \pi^{+} \pi^{+}$

• Now look in
$$\Xi_c^+ \pi^- \pi^+ \pi^+$$

• Same as before, ask for additional π^+

• Only use
$$\Xi_c^+ \to p K^- \pi^+$$

- Add data from both modes
- Significance 6.5σ
- Mixed event background describes sidebands

Hadro-Production of Charm Λ_c^+ Semi-leptonic Decay Cabibbo-Suppressed Ξ_c^+ Decays Summary

The Discovery of Double Charm Baryons Features, Problems, and Solutions Observation of $\Xi_{cc}^+ \to \Xi_{c}^+ \pi^+ \pi^-$ Observation of $\Xi_{cc}^{++} \to \Lambda_c^+ K^- \pi^+ \pi^+, \Xi_c^+ \pi^- \pi^+ \pi^+$

$$\Xi_{cc}(3780)^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^+$$

- Re-Analyzed Data
- Restrict to Σ⁻–Beam
- Peak wider than Resolution
- Half decay to $\Xi_{cc}^+(3520)$
- Still working on Details

Hadro-Production of Charm

- Usual parametrization of material dependend cross section: $\sigma \propto A^{\alpha}$
- From Λ -Production: $\alpha = \alpha(x_F, p_t)$
- Charm: Published *α* vary between 2/3 and 1, different(?) for open and hidden charm.
- Usually experiments only give one *α* averaged over their (*x_F*, *p_t*) acceptance
- No model on first principle exists, even less for double charm
- Still problems calculating double-double-charm production in $e^+e^- \rightarrow J/\Psi \eta_c !!!$
- Important input for other fields like Heavy-Ion Collisions

Hadro-Production of Charm in SELEX

- SELEX has charm signals with decent statistics in 13 particles and modes, in several x_F and p_t bins.
- 2 Copper and 3 Carbon Targets
- 4 different beam particles: Σ^- , π^- , p, π^+
- Cross check results with Λ and K^0 production
- Average results in different categories: beams, charm/anticharm, leading/nonleading
- Results shown in Poster by Alex Blanco

Λ_c^+ Semi-leptonic Decay

History:

- Mark II (1982): $\Gamma(\Lambda_c^+ \to e^+ X) / \Gamma = (4.5 \pm 1.7) \%$
- CLEO (1994): $\Gamma(\Lambda_c^+ \rightarrow \Lambda e^+ \nu) / \Gamma(\rho K \pi) = 0.43 \pm 0.08$

• PDG:
$$\Gamma(\Lambda_c^+ \rightarrow \rho K^- \pi^+)/\Gamma = 5\%$$

What are the rest of the modes?

D mesons: ground state and p-wave (K*(892))
 ~ 85 % of total semileptonic rate

SELEX observed
$$\Lambda_c^+ \rightarrow \Lambda(1520)e^+\nu$$

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Measure $\Gamma(\Lambda_c^+ \to \Lambda(1520)e^+\nu)/\Gamma(\Lambda_c^+ \to \rho K^-\pi^+)$

- Use all features of SELEX: tracking, RICH, eTRD, BTRD, Pb glass
- eTRD separates *e* from π up to 120 GeV/*c*, momentum dep. efficiency measured with Pb glass
- Look for 3-prong vertices, *pK⁻e⁺*, *pK⁻π⁺*, *L/σ* > 8, RICH id for *p*, *K⁻*, *M*(*pKe*) < *M*(Λ⁺_c)
- Combinatoric Background via event mixing

< D > < P > < P > < P >

The pK^- Mass Spectrum from pK^-e^+ vertex

Fit to $\Lambda(1520)$ with fixed width (PDG) and MC resolution: Yield: 132 ± 26 $pK^-\pi^+$ yield: 1544 ± 34

Λ_c^+ Branching Ratios

- correct for eTRD Efficiency (~ 93 %), relative acceptence (~ 1.2), $\Lambda(1520) \rightarrow pK^-$ BR
- $\Gamma(\Lambda_c^+ \to \Lambda(1520)e^+\nu)/\Gamma(\Lambda_c^+ \to pK^-\pi^+) = 0.47 \pm 0.010$ SELEX Preliminary
- $\Gamma(\Lambda_c^+ \to pK^-\pi^+)/\Gamma = 0.05 \pm 0.013$ (PDG) (Can this be measured well by BES or Panda?)
- $\Rightarrow (\Gamma(\Lambda e^+ \nu) + \Gamma(\Lambda(1520)e^+ \nu))/\Gamma = (4.5 \pm 1.3)\%$
- These two semileptonic modes saturate the Mark II measurement

PhD Thesis Jorge Amaro-Reyes

ヘロト 人間 ト イヨト イヨト

First Observation of $\Xi_c^+ o \Sigma^+ \pi^- \pi^+$, $\Xi_c^+ o \Sigma^- \pi^+ \pi^+$

Cabibbo-Suppressed Weak Decay of Charm

- Cabibbo-Suppressed weak decay of charm $(c \rightarrow s \text{ vs } c \rightarrow d)$: Expect (phase space corrected) ratio of $\sim \tan^2 \Theta_c = 0.05$ *if* rescattering effects are not important
- Results from D mesons: rescattering is important
- Need to measure as many channels as possible to understand rescattering effects

< ロ > < 同 > < 回 > < 回 > < 回 > <

First Observation of $\Xi_c^+ o \Sigma^+ \pi^- \pi^+, \Xi_c^+ o \Sigma^- \pi^+ \pi^+$

Cabibbo Suppression for Charmed Baryons

From PDG:

•
$$\Lambda_c^+$$
:
• $\Lambda K^+/\Lambda \pi^+ = 0.047 \pm 0.009$
• $\Sigma^+ K^+ \pi^-/\Sigma^+ \pi^+ \pi^- = 0.047 \pm 0.015$
• $p\pi^- \pi^+/pK^- \pi^+ = 0.07 \pm 0.04$
• Ξ_c^+ :
• $pK^- \pi^+/\Sigma^+ K^- \pi^+ = 0.22 \pm 0.03$
• $\Sigma^+ K^+ K^-/\Sigma^+ \pi^+ K^- = 0.16 \pm 0.06$
• Generally not close to 0.05

First Observation of $\Xi_c^+ \to \Sigma^+ \pi^- \pi^+, \Xi_c^+ \to \Sigma^- \pi^+ \pi^+$

First Observation of $\Xi_c^+ \to \Sigma^+ \pi^- \pi^+, \Xi_c^+ \to \Sigma^- \pi^+ \pi^+$

Can cross check analysis method with Λ_c^+ modes

PhD Thesis Eric Vázquez-Jáurequi

 $\overrightarrow{\text{First Observation of } \Xi_c^+ \to \Sigma^+ \pi^- \pi^+, \Xi_c^+ \to \Sigma^- \pi^+ \pi^+}$

Branching Ratio Results: PLB666 (2008) 299; arXiv:0804.2298

Branching Ratio	This Analysis	Other Measurements
$B(\Xi_c^+ \to \Sigma^+ \pi^- \pi^+) /$	0.48 ± 0.20	_
$B(\Xi_c^+ \to \Xi^- \pi^+ \pi^+)$	$lpha=$ 6.4 \pm 2.7	
$B(\Xi_c^+ \rightarrow \Sigma^- \pi^+ \pi^+) /$	0.18 ± 0.09	_
$B(\Xi_c^+ \to \Xi^- \pi^+ \pi^+)$	$lpha=$ 2.5 \pm 1.2	
$B(\Xi_c^+ \rightarrow \Sigma^- \pi^+ \pi^+) /$	0.42 ± 0.24	_
$B(\Xi_c^+ o \Sigma^+ \pi^- \pi^+)$	$lpha=$ 0.43 \pm 0.25	
$B(\Xi_c^+ \rightarrow \rho K^- \pi^+) /$	0.194 ± 0.054	$0.234 \pm 0.047 \pm 0.022$
$B(\Xi_c^+ \to \Xi^- \pi^+ \pi^+)$	$lpha=$ 2.6 \pm 0.7	$0.20 \pm 0.04 \pm 0.02$
$B(\Lambda_c^+ \rightarrow \Sigma^- \pi^+ \pi^+) /$	0.314 ± 0.067	_
$B(\Lambda_c^+ ightarrow pK^-\pi^+)$	$lpha=$ 0.30 \pm 0.07	
$B(\Lambda_c^+ \rightarrow \Sigma^+ \pi^- \pi^+) /$	0.72 ± 0.14	$0.74 \pm 0.07 \pm 0.09$
$B(\Lambda_c^+ o ho K^- \pi^+)$	$lpha=$ 0.68 \pm 0.14	$0.54^{+0.18}_{-0.15}$
$B(\Lambda_c^+ \rightarrow \Sigma^- \pi^+ \pi^+) /$	0.38 ± 0.10	$0.53 \pm 0.15 \pm 0.07$
$B(\Lambda_c^+ \rightarrow \Sigma^+ \pi^- \pi^+)$	$lpha=$ 0.39 \pm 0.11	

Jürgen Engelfried Properties of Single and Double Charm Hadrons

What I whould have talked about too... Conclusions

What I whould have liked to talk about as well...

There are many more interesting results on strange and charm hadrons:

- Excited States of Λ_c^+ , Ξ_c^+
- The Pentaquarks are dying..., again...
- But the Tetraquarks are alive? The D_s^+ ? The X's, Y's, Z's
- ...

< ロ > < 同 > < 回 > < 回 > < 回 > <

What I whould have talked about too... Conclusions

Conclusions – Double Charm Baryons

• SELEX is still the only experiment observing Double Charm Baryons (until LHCb trigger upgrade?)

• Published results on
$$\Xi_{cc}^+ \to \Lambda_c^+ K^- \pi^+, \ \Xi_{cc}^+ \to p D^+ K^-$$

- SELEX is re-analyzing the data, with improved efficiency
- Presented $\Xi_{cc}^+ \to \Lambda_c^+ K^- \pi^+, \ \Xi_{cc}^+ \to \Xi_c^+ \pi^- \pi^+$
- Presented $\Xi_{cc}^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^+, \ \Xi_{cc}^{++} \rightarrow \Xi_c^+ \pi^- \pi^+ \pi^+$
- Working on determination of the Ξ_{cc} Lifetime
- Searching for Ω⁺_{cc}

・ロッ ・雪 ・ ・ ヨ ・ ・

What I whould have talked about too... Conclusions

- Working on Double Charm Baryons
- Study of Charm Hadro-Production
- Preliminary result on semi-leptonic decay of Λ⁺_c
- Study Cabibbo Suppressed Decays of charm baryons
 - First Observation of $\Xi_c^+ \to \Sigma^+ \pi^- \pi^+$, $\Xi_c^+ \to \Sigma^- \pi^+ \pi^+$
 - More modes to come...

< ロ > < 同 > < 回 > < 回 > < 回 >