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Abstract. In this paper we study noncommutative black holes. In particular, we use a deform
Schwarzschild solution in noncommutative gauge theory of gravity. By means of euclidean quantum
gravity we obtain the entropy, temperatute and the time of evaporation of the noncommutative black
hole.
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INTRODUCTION

Recently there has been interest in the properties of black holes in noncommutative
space-time(see for example [1], and references there in), where several approaches
have been proposed, in particular in [2] the authors obtain a deformed Schwarzschild
solution for a noncommutative gauge theory of gravity. The solution is constructed
from a deformation of the gravitational fields by gauging the noncommutative de Sitter
SO(4,1) group and using the Seibeg-Witten map [3]. The new gauge fields are obtain up
to second order in the noncommutative parameters Θµν . Finally they calculte the new
gravitational gauge potentials by contracting the noncommutative gauge group SO(4,1)
to the Poincaré group ISO(3,1).

In this paper we will follow the approach as in [2] to calculate thermodynamical
properties. As we will show the temperature, entropy and time of evaporation get
corrected by the nature of the noncommutative solution.

Noncommutative Solutions: To calculate the thermodynamical properties of the
Schwarzschild black hole in the classical picture, one can use the euclidean quantum
gravity approach. In this formalism the path integral procedure is employed to obtain the
partition function of the system and then the thermodynamical properties of interest (for
details see for example [4]). In this work we proceed in the same manner to calculate
the temperature, entropy and time of evaporation for the noncommutative black hole.
As mentioned on the introduction, we start with a deformed Schwarzschild solution in
noncommutative gauge theory of gravity [2], where the non-zero components of the
metric have the following form
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where Θ is the noncommutative parameter and α = 2M (in units of c = G = 1). The
noncommutative action will be
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where ĝµν is the noncommutative metric, R̂ is the curvature scalar corresponding to the
noncommutative metric, ĥµν is the noncommutative metric induced in the boundary
and K̂ the noncommutative extrinsic curvature. In the limit Θ → 0 we recover the
commutative action. We know that the Schwarzschild space-time is asymptotically flat,
and so we can compute the action by using flat space-time as a reference background.
For both space-times, the Ricci scalar R = 0 hence R̂ = 0, so the first part of (5) vanish,
so we have
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−ĥK̂22ĝ22d3x +

√
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Finally the action takes the form
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where β = 1/T and R(r,α) is
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Having calculated the noncommutative action, lets proceed to calculate the temperature.
The problem of determening the temperature is reduced to removing the singularity in
the metric [4]. One way to achieve this is by calculating the poles of the metric (the
spatial part). So we have
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in the limit Θ→ 0 we obtain the commutative result.
Gathering the previous results, the energy is
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and the entropy
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The time of evaporation for the noncommutative black hole is
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where κ = σ h̄4c8/256π3G2k4 and Mi is the initial mass of the black hole.

CONCLUSIONS

We have show that thermodynamical properties such as the temperature, entropy and
time of evaporation using the deform Schwarzschild solution in noncommutative theory
of gravitation, leads to corrections in such quantities. This corrections are proportional
to the square of the noncommutative prameter Θ. In the limit when Θ→ 0 we recover
the classical results.
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