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Abstract. The simplest B-L extension of the minimum supersymmetric standard model (MSSM)
may change some of the conceptions about the path for gauge unification as well as to affect the
predicted spectrum of the supersymmetric particles at low energy. We present our results for the
running of gauge coupling constants and mass parameter in this context.
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RGE. Including the gauge group U(1)B−L to the SM group, the general superpotential
that can be written wich conserves the symmetry is,

W = ŪYuQHu + D̄YdQHd + ĒYeLHd + N̄YD
NLHu +NYM

N Nσ1 + µHdHu + µ ′σ1σ2,

where besides standard superfields we have additional fields, which under the symmetry
group SU(3)c× SU(2)L×U(1)Y ×U(1)B−L, have the following representation, N̄ =
(1,1,0,1) ,σ1 = (1,1,0,−2) ,σ2 = (1,1,0,2).

The soft breaking terms that involve the new fields are

LSB = 1/2MB−LZ̃B−LZ̃B−L + ˜̄NhD
N L̃H̃u + Ñ†m2

NÑ.

And finally, the scalar potential has as the only new terms,

V (σ1,σ2) = m′2σ1
|σ1|2 +m′2σ2

|σ2|2− (B′σ1σ2 + c.c.)+g′′(|σ1|2−|σ2|2)2/8,

where m2
j = m′2j + µ ′2 for j = σ1,σ2. For a general superpotential and soft break-

ing terms, the beta functions could be calculated, using the representations of the
superfields[1]. The notation is ∆β f = β f − β

MSSM
f , where β f = 16π

2(d f /dt), with
t = ln(Q/Q0). We present the RGE for the gauge couplings, Yukawa couplings, gaugino
mass, µ and µ ′ term,

βgi = cig3
i , βMi = 2cig2

i Mi, ∆βyt = yt
{
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,

where i = 1,2,3,B − L, and we had made the following approximations, Yu =
diag(0,0,yt), Yd = diag(0,0,yb), Ye = diag(0,0,yτ), YD

N = diag(0,0,yD), YM
N =

diag(0,0,yM). For the corresponding anomalous dimensions to hi, it had been



used the approximations, hu = diag(0,0,at), hd = diag(0,0,ab), he = diag(0,0,aτ),
hD

N = diag(0,0,aD), hM
N = diag(0,0,aM). Then,

∆βat = at
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+ yt
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,
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.

For the mass anomalous dimensions the following approximations had been made,
m2
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Unification. The RGE for gi can be rewritten in terms of α
−1
i and, at one loop

order, the general solution is[2], α
−1
i (m) = ci

[
α
−1
i (mZ)+(2π)−1bi ln(m/mZ)

]
. The

Kac-Moody (c1,c2,c3,cB−L) are (3/5,1,1,3/8); and the bi are, (b1,b2,b3,bB−L) =
(−11,−1,3,−24). It’s know that α

−1
1 (mZ)≈ 98.33, α

−1
2 (mZ)≈ 29.57 and α

−1
3 (mZ)≈

8.4[3]. Supposing unification for α
−1
B−L(m), the RGE have the solution shown in the

figure below. Then α
−1
B−L(mZ)≈ 191.1, so, gB−L(mZ)≈ 0.2565.

Mass Spectrum. The RGE for the masses could be solved imposing initial conditions.
As it is customized, those are fixed at the unification scale, Q0 ≈ 2.5× 1016 GeV. The
already known solution for the MSSM[4] is recovered (for the β MSSM

f functions) as
depicted in the plot below. When B−L contributions are included, the initial conditions
are forced to be different due to the phenomenology at low-energies, if one desires to
have the SUSY breaking at the same scale, as it can be seen in the following figures. For
the squarks and sleptons, the solid lines correspond to the third family, while the dashed
lines do to the first and second families.
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FIGURE 1. Running of gauge couplings.
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FIGURE 2. Mass spectrum in MSSM and its B−L extension.

Conclusions. It had been calculated the RGE for the SU(3)c× SU(2)L×U(1)Y ×
U(1)B−L SUSY model. It had been shown that it is possible the unification of α

−1
B−L

at Q0 ≈ 2.5× 1016 GeV. Slight modifications should be done to the initial conditions
if the B− L symmetry is included in the standard model, in order to preserve the
phenomenology at low energies.
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