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Abstract. We analyze the masses and mixings of the isolated neutrddeand/ Higgs field$l and

A of the Minimal Supersymmetric Standard Model (MSSM) with@@tation, which have opposite
CP parities and nearly degenerate masses. At the degeneriatytpe hypersurfaces that represent
the physical masses as functions of the system parameterahrank one algebraic branch point,
and the real and imaginary parts have branch cuts, botlingtat the same exceptional point but
extending in opposite directions in parameter space. Aagatwith this singularity, the propagator
for the mixed neutral Higgs systelfh— A has a double pole in the non-physical sheet of the squared
energy complex plang The continuity of the transition amplitude matrix at theaexdegeneracy

of the masses is examined.
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NEUTRAL AND HEAVY HIGGSBOSON SYSTEM H —A

The minimal supersymmetric standard model [1-3] has twopexnHiggs doublets.
The most general two Higgs doubBt)(2) potential withCP violation is

Lv = HE(®]®1) + pE(DID2) +MEy(P]P2) + Aa(P]P1)% + Ao (PLD)?
+A3(P1 D) (D)D) + Aa(P1P2) (D;D1) + As(D]D2)? + [Ag(P1 Ps)
+A7(DID,)] (Pl dy) +hec.. (1)

After soft supersymmetry and electroweak gauge symmetghkang, and considering
As = Ag = A7 =0 and all other coupligs real, the potential will lead to fivgypical Higgs
bosons: the neutral Higgs bosons, two of which are CP-dvandH, and one CP-odd,
A, as well as a pair of charged Higgs bosétis, which corresponds to a CP-invariant
model.

At one-loop level it is possible to have complex coupling&ynof the form [4]

M2y = BB imd,  Aser= ARy, +iMer @

Hence, at an order higher than tree level, the mixinhg A of neutral Higgses generates
new sources of CP violation (CPV) [5].

The spontaneous gauge symmetry breaking and the soft gupeeiry breaking
generate a first orders33 neutral Higgs bosons mass matri?(s). In the decoupling



limit, M >> |Ai|v2, all couplings are at the electroweak scale [6]. Then, #é(s)
matrix is reduced to two block matrices, one for the lightdg#idposon, and the other one
for the masses of the two statdsandA. The mass matrix of the coupled system- A

is a symmetric non-Hermitian:2 2 matrix

M2 —iMuTl Y;
2 H HI H HA
Ain= ( D2 A Mg—iMArA)' (3)

The eigenvalues of this matrix are given by the zeroes ofell{e%q_'zA— n?1], as follows

mggzé[(lvl,ﬁ—iMHrH)+(M,§—iMArA)] + (ﬁ-i%?)z, 4)

whereR = (JeAf,,0,1/2(M3 —M32)) andl’ = (=2 OmAZ 4,0, (M —Mal a)).
From (4) the degeneracy conditions can be calculated, amdR%a+ %Fz =0, and
R-T=0.

The matrix elements are expressed as functions of the madalheters. In the
decoupling limit [4]

M3 —M32 ~ AvZcoso, (5)
327T[MH|_H—MAFA] ~~ [At-l—g)\ZVZCOSZP], (6)
Oedip ~ —%)\vzsin(p, (7)
32mOmA3, ~ —gx\zvzsinzw, (8)

where we have taken the magnitudes ofllequal, |Ai| = A, @ is the CP violating
common phase ofs g7, At = —12ME|/A(mt/v)2(l— B?)B; is the one loop contribution

of the top quarky = (V2 +V3)1/2 = [y/2Gg] /2 and tarB = v, /v1.

UNFOLDING OF THE EXCEPTIONAL POINT

Equation (4) defines the masses of the heavy neutral Higgmbass functions of the
parameterd andg. If we neglect the weak dependence of the elements/@ﬁA, this
function, eq. (4), gives the position of the pole of the Higtjs- A propagator in the
complexs—plane. The term under the square root in the right hand sig®0{4) is
a regular function of its arguments and may be expanded iry®Tseries around the
exceptional point. Keeping only the first order terms we get

1
1a0, @) = /e (A -A) + Y (0 ), ©)
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FIGURE 1. The figure shows the mass hypersurfaces representing (gme#b) imaginary parts of
u§3 as function of the parameteisand@ in the neighbourhood of the exceptional polrit ¢*.

where th&:l((l) 's are the derivatives of the term in the square root in eq.T@¢ real and

imaginary parts ofi2 , are

1 . — — L2

ey — iz—ﬂm”zW(%-ou(ﬂ-ou(%-o] . Qo)
. S S oo 1/2

Om2s = iz—lfzml/z W(%-o%(ﬂ-oz—(%-o} (11)

with

%= (ned?.0ed”), 7= (omd”,om¢), 7= ( ?p:?ﬂ: ) (12)

Figure 1(a) shows the mass hypersurface representing dhpagd ofu§,3 and figure

1(b) shows the imaginary part qn‘22’3, both as function of the parameteXsand ¢ in
the neighbourhood of the exceptional point. Its topoloiggtaicture presents a rank one
branch point and branch cuts that start at the exceptionat pat extend in opposite
directions. The surfaces are in orthogonal spaces [7, 8]p&yorming a complete
excursion around the exceptional point on the hypersusfacdouble rotation in the
parameter spaceygis required to get to the original point.

Transition matrix and propagator
In the electroweak basis, the transition matrix betweetestaith CP violation via a

resonant Higgs exchange contains a scalar field propagbtoe dorm [9-12]A(s) =
(s—.#3) L. We transform#2 , (s) to the mass basis by means of a complex ortogonal



matrix written in terms of a rotation by a complex mixing aag|

c0s6 = (5 — M) /2{1/2(mb — mB) + [1/4(mB — mB)® — AF 7).

In this basis the resonant transition amplitude takes tira {@3]

gres rr%v2 +V3 n%
whereV,” = (VPO); andV? = (OVP);. A straightforward computation shows that, at
the degeneracy limit, i.ens? = mg? = m3

dF F
lim .7'es— d <F<mz)> oo = 1 (m§> _ (mé) . (14)
mB—m2 dn? \s— g s—m dng  (s—mj)?

Thus, it is evident that, at the degenera&y®® is continuous and has two terms, one
corresponding to a single pole and the other to a double pdleeicomplex variable.

V7, (13)

SUMMARY AND CONCLUSIONS

We analized and displayed the behaviour of a degeneracyeomtiss matrix of the
heavy neutral Higgs boson system of the MSSM in parameterespile showed that
the transition matrix is continuous at the exact coaleseealtowing thus to calculate
the CP violation in a specific cross section at the exact dagey.
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