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Abstract. We analyze the masses and mixings of the isolated neutral andheavy Higgs fieldsH and
A of the Minimal Supersymmetric Standard Model (MSSM) with CPviolation, which have opposite
CPparities and nearly degenerate masses. At the degeneracy point, the hypersurfaces that represent
the physical masses as functions of the system parameters have a rank one algebraic branch point,
and the real and imaginary parts have branch cuts, both starting at the same exceptional point but
extending in opposite directions in parameter space. Associated with this singularity, the propagator
for the mixed neutral Higgs systemH−A has a double pole in the non-physical sheet of the squared
energy complex planes. The continuity of the transition amplitude matrix at the exact degeneracy
of the masses is examined.
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NEUTRAL AND HEAVY HIGGS BOSON SYSTEM H −A

The minimal supersymmetric standard model [1–3] has two complex Higgs doublets.
The most general two Higgs doubletSU(2) potential withCPviolation is
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After soft supersymmetry and electroweak gauge symmetry breaking, and considering
λ5 = λ6 = λ7 = 0 and all other coupligs real, the potential will lead to five physical Higgs
bosons: the neutral Higgs bosons, two of which are CP-even,h andH, and one CP-odd,
A, as well as a pair of charged Higgs bosonsH±, which corresponds to a CP-invariant
model.

At one-loop level it is possible to have complex couplings inLV of the form [4]
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Hence, at an order higher than tree level, the mixingH −A of neutral Higgses generates
new sources of CP violation (CPV) [5].

The spontaneous gauge symmetry breaking and the soft supersymmetry breaking
generate a first order 3×3 neutral Higgs bosons mass matrixM 2(s). In the decoupling



limit, M2
A >> |λi|v2, all couplings are at the electroweak scale [6]. Then, theM 2(s)

matrix is reduced to two block matrices, one for the light Higgs boson, and the other one
for the masses of the two statesH andA. The mass matrix of the coupled systemH −A
is a symmetric non-Hermitian 2×2 matrix
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The eigenvalues of this matrix are given by the zeroes of the det[M 2
HA−m21], as follows
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From (4) the degeneracy conditions can be calculated, and are R2 − 1

4Γ2 = 0, and
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The matrix elements are expressed as functions of the model parameters. In the
decoupling limit [4]
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where we have taken the magnitudes of allλi equal,|λi | = λ , φ is the CP violating
common phase ofλ5,6,7, ∆t = −12M2
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UNFOLDING OF THE EXCEPTIONAL POINT

Equation (4) defines the masses of the heavy neutral Higgs bosons as functions of the
parametersλ andφ . If we neglect the weaks dependence of the elements ofM 2

HA, this
function, eq. (4), gives the position of the pole of the HiggsH −A propagator in the
complexs−plane. The term under the square root in the right hand side ofeq. (4) is
a regular function of its arguments and may be expanded in a Taylor series around the
exceptional point. Keeping only the first order terms we get
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FIGURE 1. The figure shows the mass hypersurfaces representing (a) real and (b) imaginary parts of
µ2

2,3 as function of the parametersλ andφ in the neighbourhood of the exceptional pointλ ∗,φ∗.

where thec(1)
k ’s are the derivatives of the term in the square root in eq. (4). The real and

imaginary parts ofµ2
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Figure 1(a) shows the mass hypersurface representing the real part ofµ2
2,3 and figure

1(b) shows the imaginary part ofµ2
2,3, both as function of the parametersλ andφ in

the neighbourhood of the exceptional point. Its topological structure presents a rank one
branch point and branch cuts that start at the exceptional point but extend in opposite
directions. The surfaces are in orthogonal spaces [7, 8]. Byperforming a complete
excursion around the exceptional point on the hypersurfaces a double rotation in the
parameter space, 4π , is required to get to the original point.

Transition matrix and propagator

In the electroweak basis, the transition matrix between states with CP violation via a
resonant Higgs exchange contains a scalar field propagator of the form [9–12]∆(s) =
(s−M 2

HM)−1. We transformM 2
HA(s) to the mass basis by means of a complex ortogonal



matrix written in terms of a rotation by a complex mixing angle
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In this basis the resonant transition amplitude takes the form [13]
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Thus, it is evident that, at the degeneracyT res is continuous and has two terms, one
corresponding to a single pole and the other to a double pole in the complex variables.

SUMMARY AND CONCLUSIONS

We analized and displayed the behaviour of a degeneracy of the mass matrix of the
heavy neutral Higgs boson system of the MSSM in parameter space. We showed that
the transition matrix is continuous at the exact coalescence, allowing thus to calculate
the CP violation in a specific cross section at the exact degeneracy.
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