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Abstract. The traditional method [1] to compute the square of transition amplitudes involving spin
1/2 particles is particularly difficult to use for spin polarized amplitudes. We present here an alterative
method to calculate directly the Feynman amplitude through trace evaluation. This method is not
constrained to a special type of polarization or particle mass.
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STANDARD METHOD

The usual method to compute the transition probability between fermions i and f from
the Feynman amplitude [1]

M = u f Γui (1)

is first to take its square

|M|2 = u f Γui ui Γu f = Tr[Pf ΓPi Γ] (2)

with Px = 1
4mx

(/px +mx)(1+ γ5 /sx).
Since |M|2 is a probability and not a probability amplitude this expression can be used

to sum over polarizations. For a non polarized probability the the projector operator is
Px = 1

2mx
(/px +mx), which considerably simplifies the computation.

When one considers a physical process with two or more external fermion lines the
generalization is immediate. If a single Feynman amplitude

M = u3 ΓA u1 u4 ΓB u2 (3)

contributes, the computation proceeds for each fermionic line using the same procedure.
There are several limitations to this approach, the most important is the case in which

many exchange amplitudes participate in the physical process. On the other hand, the
most simple case of this nature is the electron-electron scattering. In this case there are
two amplitudes that connect different fermions, for which the generic form is

M = M1 +M2

M1 = u3 ΓA u1 u4 ΓB u2

M2 = u4 ΓC u1 u3 ΓD u2



Figure 1. Basic Amplitude.

If one squares this there are four terms to be computed

|M|2 = |M1|2 + |M2|2 +(M1 M∗
2 +M∗

1 M2); (4)

the trace expressions for the crossed term are difficult even in the zero polarization
amplitude.

For amplitudes of more than two fermion lines (like the multiparton processes that
appear in QCD), the situation only gets worse. This renders the analysis of the spin
dependence cumbersome to say the least. Indeed

M1 M∗
2 = Tr[P3 ΓA P1 ΓC P4 ΓB P2 ΓD]. (5)

which any reasonable person would prefer not to compute by hand.
The above discussion has been the origin of several attempts to produce the Feynman

amplitudes directly without squaring them [2, 3]. The idea is to circumvent the crossed
terms and to diminish the burden of computation, this last point may not be obvious for
the passing observer but is in fact crucial. Indeed if one begins with N amplitudes taking
the square in the first place renders N2 traces. Instead if the N amplitudes are computed
first the only cost is that one cannot use the density matrix for the Dirac spinor projectors.
All the direct amplitude calculation methods, to our knowledge, require at some point
the selection of specific polarization directions for the fermion spin [4, 5]. In this work
we present a method that does not suffer from this constraint.

AMPLITUDE MODULUS CALCULATION

We now introduce a procedure that determines immediately the modulus of any non
interchange amplitude. To illustrate it, let us consider the case of a single fermion line
process, i.e. consider the amplitude in Eq. (1) and multiply it by unity in the following
form

M = u f Γui×
ui ΓS u f

ui ΓS u f
(6)

clearly for this to make sense, the factor ui ΓS u f must be non null. The ΓS can be selected
in the simplest possible way consistent with this requirement. Usually we can take ΓS = 1
or, in quiral conservation processes, ΓS = (1±γ5)/2. The numerator of Eq. (6) is

u f Γui ×ui ΓS u f = Tr[Pf ΓPi ΓS] (7)



where Px is a complete spinor projector (energy and polarization projectors)provided in
the first section. This may not look simple but it is certainly less frightening than Eq. (5).

The denominator of Eq. (6) is the most simple non null Dirac amplitude. Its modulus
is, as will be shown here, almost trivial to compute in a covariant way, the same cannot
be said of its phase. Let us compute the modulus of

|ui ΓS u f |2 = Tr[Pf ΓS Pi ΓS] (8)

Thus up to the phase eiφ of ui ΓS u f we have calculated

M = u f Γui =
Tr[Pf ΓPi ΓS]√
Tr[Pf ΓS Pi ΓS]

(9)

which reduces to

M = u f Γui =
Tr[Pf ΓPi]√

Tr[Pf Pi]
(10)

if ΓS can be selected has 1.

CONCLUSIONS

We have developed a (for us) new method to compute spin dependent Feynman am-
plitudes. The method relies on a simple (intelligent) multiplication by one. We presented
here the computation of a non exchange amplitude, i.e. up to a phase factor. We have
already evaluated this phase using either a Lorentz transformation or the Kleiss and Stir-
ling method [2]. This as well as explicit applications will be presented elsewhere.

After finishing this work we became aware of the the work of A. L. Bondarev [6] that
contains Eq. (6).
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