Instituto de Física de la Universidad de Guanajuato

## Introduction

Recenly，a new formalism for the descripion of paricices with spin was proposed in
11．The special case of spin 12 shows advanamages with respect to the commonly used Rarita－Schwinger（RS）formal ism．Unike the RS method，in the formalism of Ref．II） NKR tormalism herc on）one gets a causul theory in the presence of an electromagnetic field．

In a previous work we calculated Compton Scattering off spin $3 / 2$ paricicles in the NKR

 wnitarity．In this work we calculate the electromagnetic moments of a NKR particle．

## NKR Formalism

In the NKR formalism，the cquation of motion for a particle with spin $s$ is the
projection cuation onto the cigensubspaces of the Casimin operatars of the Poincare


Th the simplest case of an irrep of the HLG containing only two Poincare invarian
 $\mathrm{P}=(p)=\frac{P^{2}}{m^{2}} \mathrm{P}^{(s)}=\frac{P^{2}}{m^{2}}\left[\frac{1}{2 s}\left(-\frac{W^{2}}{m^{2}}-s(s-1) \frac{p^{2}}{m^{2}}\right)\right]$ ，
with $\quad\left[W_{i}\right]_{c c}=\frac{1}{2} \varepsilon_{k \rho p / k}\left[M^{\infty}\right]_{c c} P^{\mu}$ ．


Spin 1 case
The simplest case in which hisis lormalism can be applice is hthe spin I case，here one bblains the cquation of motion as $\left[\Gamma_{a \in \mu_{m}} p^{\mu} p^{\nu}-m^{2} g_{\alpha q}\right] V^{\beta}=0$,
otice that we have the freedom to choose the antisymmetric part of the $\Gamma_{a \beta \mu v}$ tensor， eneral construction of $t$ teads to

here，the $M_{\mu w}^{v}$ are the generators of the $\left(\frac{1}{2}, \frac{1}{2}\right)$ representation space．The Lagrangian here，the $M_{w w}$ arc ethe generators of the
associated wint hhe cquation of motion is
$L=\left(\partial^{\alpha} V^{\alpha}\right) \Gamma_{\alpha f\left(m^{2}\right.} \partial^{r} V^{\beta}-m^{2} V^{\alpha} V_{a}$

Spin 3／2 Case
Here we are interested in the $\left(\frac{1}{2}, \frac{1}{2}\right) \otimes\left[\left(\frac{1}{2}, 0\right) \oplus\left(0, \frac{1}{2}\right)\right]$ representation and the equation of
motion is
$\left[\tilde{\Gamma}_{a \beta \beta \mu} p^{\mu} p^{\nu}-m^{2} g_{a \beta}\right] \psi^{\beta}=0, \quad$ or $\quad\left(p^{2} P_{a \beta}^{(3 / 2)}-m^{2} g_{a \beta}\right) \psi^{\beta}=0$,

$\mathbb{P}_{\alpha \beta}^{(3 / 2)}=-\frac{1}{3}\left(\frac{W^{2} \alpha \beta}{p^{2}}+\frac{3}{4} g_{\alpha \beta}\right)$
This equation implies the following constrictions：
$\left(p^{2}-m^{2}\right) \psi_{\alpha}=0, \quad \gamma^{a} \psi_{\alpha}=0, \quad p^{\alpha} \psi_{\alpha}=0$.
 $\Pi_{a \beta}(p)=\frac{\mathbb{P}_{\alpha \beta}^{(3 / 2)}}{p^{2}-m^{2}} \frac{\mathbb{P}_{a \beta}^{(1 / 2)}}{m^{2}}=\frac{\left.\mathbb{P}_{a \beta}^{(13)}\right) \frac{-p^{2} m^{2}}{m^{2}} \mathbb{m}_{a \beta}^{(102)}}{p^{2}-m^{2}} \equiv \frac{\Delta_{a p}(p)}{p^{2}-m^{2}}$
where the spin $1 / 2$ projector in $\psi_{\mu}$ is

$$
\mathbf{P}_{a \beta}^{(1 / 2)}=g_{a \beta}-\mathbf{P}_{a \beta}^{(3 / 2)}=\frac{W^{2} a \beta}{3 p^{2}}+\frac{5}{4} g_{a \beta}
$$

## Spin 3／2 Lagrangian

 $\leftrightarrow \leftrightarrow$ mutctre anti－symmetric pated from is arbitray inveriants and the involved free parameters were fixed requiring hermiticicty and the suppression of the $3 / 2-1 / 2$ transitions in the presence of cectromagnetic interactions introduced via the gauge
principle $\partial^{\alpha} \rightarrow D^{\alpha}=\partial^{\alpha}$－ieA．Under these constraints，the antisymmetric part depends principled $\alpha^{\alpha} \rightarrow D^{\alpha}=\partial^{\alpha}-$ ie $A^{\alpha}$ Under these constraints，the antisymmetric part depends
only on two parameters．
and $g$ ，which fixes the magnetic moment and higher multipoles．Sudying the propagation of the spin $3 / 2$ waves in an electromagnetic background，it is shown in $[1]$ that the only values of $g$ Ileading to causal propagation
are $g=0,2$ ．The latter value is chosen as appropriate for the description of charged are $g=0,2$ ．The latter value is chosen as appropriate for the description of charged
particles and a striking connection between causality and the gyromagnetic ratio $g=2$ is established this way．In terms of this two parameters we have
$\Gamma_{\alpha \beta \beta v}=\frac{1}{3}\left(i \sigma_{\alpha \beta}+2 g_{\alpha \beta}\right) g_{\mu v}+\frac{1}{3}\left(i \sigma_{\beta v}-2 g_{\beta v}\right) g_{a p}-\frac{1}{3} i \sigma_{\alpha u} g_{\beta v}-i g\left[M_{\mu v}\right]_{u \beta}-i f \gamma^{5} \varepsilon_{\alpha \beta \beta v}$
The Lagrangian density associated with the equation of motion is

$$
L=\left(\partial^{\mu} \boldsymbol{\psi}^{\alpha}\right) \Gamma_{a \beta \beta \mu} \partial^{\nu} \psi^{\beta}-m^{2} \psi^{\alpha} \psi_{\alpha} .
$$

Gauging this Lagrangian we get the interacting part as $\underset{-i p x}{L_{n+x}}=j_{\mu} A^{\mu}+e^{2} \Psi^{\alpha} \Gamma_{\alpha \beta \beta_{\mu}} \psi^{\beta} A^{\mu} A^{\nu}$.
Using $\psi_{\alpha}=u_{\alpha}(p) e^{-i p x}$ ，we find the transition current in momentum space as $j_{\mu}=e \bar{u}^{\alpha}\left(p^{\prime}\right)\left(\Gamma_{a p p u} p^{\prime \prime}+\Gamma_{a \beta \mu u} p^{\prime}\right) u^{\beta}(p)=\bar{u}^{\alpha}\left(p^{\prime}\right) O\left(p^{\prime}, p\right)_{a p \mu} u^{\beta}(p)$.

Compton Scattering
This is the simplest process in which an clectromagnetic field interacts with a charged
particle．At the tree level，a particle with zero spin interacts only with its charge，unlike particle．At the tree level，a particle with zero spin interacts only with its charge，unlike a particle with spin $1 / 2$ that interacts also with its magnetic dipole moment．Ssing the
Dirac＇s equation of motion one can find the form of the interaction and the Feymman es involved．The anguar distrils 1 ．


Angular distribution for the
Compton scattering off Compton scatering off spin
$1 / 2$ particles in the lab frame． The symmetric
corresponds to the classica
cone limit $\eta=0$ ，the other curves
correspond to $\eta=0.12$ and
$\eta=0.3$

One can use the Compton Scattering process to get more information about the pin $3 / 2$ above．However，in the spin $3 / 2$ case，we do not consider odd parit contributions for simplicity．In the classical limit，the cross section in the lab frame for his process is independent of undetermined parameter

$$
\left.\sigma_{x=1}(g, \xi)\right|_{\eta \rightarrow 0}=\frac{8 \pi}{3} r_{0}^{2} \equiv \sigma_{T},\left.\quad \sigma_{x=3 / 2}(f, g)\right|_{\eta \rightarrow 0}=\frac{8 \pi}{3} r_{0}^{2} \equiv \sigma_{T}
$$

Where $\eta=\omega / m, \omega$ being the energy of the incident photon，$r_{0}=\alpha / m$ is the so called
classical radius of the particle and $\sigma_{\tau}$ the Thompson cross section．This result is what classical radius of the particle and $\sigma_{T}$ the Thompson cross section．This result is what
one expects since at low energies the particle interacts only with its lower moment，the charge．Higher moments become relevant with increasing energy．

In the case of spin 1 ，at very high energies one gets a divergent cross section for
bitrary parameters $g$ and $\xi$ ，in order to determine whether there are any values to pitrary paritarity $g$ and $\varsigma$ ，in order the differential cross section from $x=-1+\epsilon$ $x=1-\epsilon$ ，where $x=\cos \theta_{\text {lab }}$ ．In this limit we find［2］：

$$
\sigma_{s=1}(g, \xi)_{n \rightarrow \infty}=\frac{8 \pi r_{0}^{2}}{3}\left[\frac{1}{128} 2(1-\varepsilon)\left(g^{2}+4 g-4+\xi^{2}\right)^{2}\right.
$$

$$
+2\left((g-2)^{2}+\xi^{2}\right)\left(7 g^{2}-12 g+12+7 \xi^{2}\right)\left(\frac{1}{\varepsilon-2}+\frac{1}{\varepsilon}\right)
$$

$$
+2\left((g-2)^{2}+\xi^{2}\right)\left(3 g^{2}+8 g+-4+3 \xi^{2}\right) \log \left(\frac{1}{\varepsilon}-1\right)
$$

$$
\begin{aligned}
& \text { Looking at this expression one can conclude that the only values that preserve unitarit } \\
& \text { at high energies when } \in \text { goes to zero are }
\end{aligned}
$$

$$
g=2, \quad \xi=0 .
$$

This is a result that agres whit the usual value of the gyromagnetic ratio $g$ ，we also
confirm our assumption that odd parity terms must not contribute to the electromagnetic interaction．



Now we are interested in the high energy limit of the Compton Scatering cross section in the spin $3 / 2$ case．Here we obtain also a divergent cross section for arbitrary
parameters $f$ and $g$ ，but applying the same procedure as before we find that the partially integrated cross section is

$$
\left.\sigma_{r=3 / 2}(f, g)\right|_{\eta \rightarrow \infty}=\frac{\operatorname{sign}\left(f^{2}+f g+g^{2}\right)^{2} \operatorname{sign}(\varepsilon-1)}{\operatorname{sign}(\varepsilon-2)} \times \infty
$$

（result given by the Feyncalc package）This expression means that still with this procedure we find that independently of the choice of parameters，the cross section will diverge．At low energies，we get a good behavior of the cross section，in the region
dominated by the lowest multipole moments．If we make $g=2$ and $f=0$ we obtain a well behaved angular distribution at low energies：


In the region of high energy，the cross section must be dominated by the higher moments．The main objective of this work is to calculate these electromagnetic
multipole moments，aiming to understand the high energy behavior of the Compton eross section．
Electromagnetic moments of vector particles in NKR Formalism
The NKR Lagrangian for vector particles in the presence of an electromagnetic field is

## $L=\left(D^{\mu} V^{\alpha}\right) \Gamma_{\alpha \beta \beta \mu} D^{\nu} V^{\beta}-m^{2} V^{\alpha} V_{\alpha}$,

where $D^{\alpha}=\partial^{\alpha}-i e A^{\alpha}$ ．The interaction Lagrangian is
In momentum space the current can be written as
$j_{\mu}=e \eta^{* \alpha}\left(p^{\prime}\right)\left(\Gamma_{a \beta_{p}} p^{\prime \prime}+\Gamma_{\alpha \beta \beta_{\mu}} p^{v}\right) \eta^{\beta}(p)$.
We can make a Gordon decomposition of the current：
$j_{\mu}\left(p^{\prime}, p\right)=e \eta^{* \alpha}\left(p^{\prime}, \lambda^{\prime}\right)\left(g_{\alpha \beta}\left(p^{\prime}+p\right)_{\mu}-i g\left[M_{\mu \nu}^{v}\right]_{\alpha \beta}\left(p^{\prime}-p\right)^{v}+\xi \xi_{\alpha \beta \beta, \mu}\left(p^{\prime}-p\right)^{v}\right) \eta^{\beta}(p, \lambda)$ ．

```
Here we can identify g as the gyromagnetic factor, since a current of this form has a
    \hat{\mu}=-\frac{ge}{2m}\hat{S},
*)
direction we have
            \langle\lambda|\hat{\mu}|\lambda\rangle=-\lambda\frac{ge}{2m}.
This value and the expectation values for all nonzero multipole moments at this order
can also be obtained from this current by its classical definition [3], for example, the
E1= 殒的位q)=-e
\, (a)
```



```
M2= 䙵 ( }\frac{i}{2}\frac{\partial}{\partial\mp@subsup{q}{3}{}}(\frac{\partial}{\partialq}\cdot(j\timesq))),M4=\mp@subsup{\operatorname{lim}}{q->0}{}(\frac{1}{3}(\frac{\mp@subsup{\partial}{}{2}}{\partial\mp@subsup{q}{1}{2}}+\frac{\mp@subsup{\partial}{}{2}}{\partial\mp@subsup{q}{2}{2}}-2\frac{\mp@subsup{\partial}{}{2}}{\partial\mp@subsup{q}{3}{2}})\frac{\partial}{\partialq}\cdot(j\timesq)
Where E2 (M2) is the electric (magnetic) dipole moment and E4 (M4) is the electric
(magnetic) quadrupole moment. The charge and current densities are defined in term
\rho(\vec{q})=\mp@subsup{j}{}{0}(\mp@subsup{p}{}{\prime},p),\quad\mp@subsup{j}{}{i}(\vec{q})=\mp@subsup{j}{}{i}(\mp@subsup{p}{}{\prime},p),\quad\mp@subsup{p}{}{\prime}=(\omega/2,\vec{q}/2),\quadp=(\omega/2,-\vec{q}/2)
The results oblained for the multipole moments of a vector particle between states of
\[
\begin{array}{ll}
E 2=\lambda \frac{e \xi}{2 m}, & M 2=\lambda \frac{e g}{2 m}, \\
E 4=\left(3 \lambda^{2}-2\right) \frac{e(g-1)}{m^{2}}, & M 4=\left(3 \lambda^{2}-2\right) \frac{e \xi}{m^{2}},
\end{array}
\]
```

reproducing the expected result for the dipole magnetic moment．Higher moments are of unitarity of Compton scattering in the high energy limit［21．These values reproduc the structure of the $W^{+}$and is consistent with the fact that the contribution of the
term，which gives rise to clectric dipole and a magetic
then term，which gives rise to electric dipole and a magnetic quadrupole moments，is parity

Electromagnetic moments of spin $3 / 2$ particles in the NKR Formalism

The Gordon decomposition of the transition current for spin $3 / 2$ is：
$j_{\mu}\left(p^{\prime}, p\right)=e \overline{u^{\alpha}}\left(p^{\prime}, \lambda^{\prime}\right)\left(g_{\alpha \beta}\left(p^{\prime}+p\right)_{\mu}-i g\left[M_{\mu \nu}^{3 / 2}\right]_{\alpha \beta}\left(p^{\prime}-p\right)^{\gamma}+i f \gamma^{\gamma} \varepsilon_{\alpha \beta \mu \nu}\left(p^{\prime}-p\right)^{\nu}\right) \mu^{\beta}(p, \lambda)$ ．
Again，one can identify $g$ as the gyromagnetic factor，since it can be demonstrated that $\hat{\mu}=-\frac{\text { ge }}{2 m} \hat{S}$,
this case we expect our current to include higher all the multipole moments using the definitions above and［3］：

$$
\begin{aligned}
& E 8=\lim _{q \rightarrow 0}\left(-3 i \frac{\partial}{\partial q_{3}}\left(3 \frac{\partial^{2}}{\partial q_{1}^{2}}+3 \frac{\partial^{2}}{\partial q_{2}^{2}}-2 \frac{\partial^{2}}{\partial q_{3}^{2}}\right) \rho(\vec{q})\right) \\
& M 8=\lim _{q \rightarrow 0}\left(\frac{-3 i}{4} \frac{\partial}{\partial q_{3}}\left(3 \frac{\partial^{2}}{\partial q_{1}^{2}}+3 \frac{\partial^{2}}{\partial q_{2}^{2}}-2 \frac{\partial^{2}}{\partial q_{3}^{2}}\right) \frac{\partial}{\partial \bar{q}} \cdot(\vec{j} \times \bar{q})\right)
\end{aligned}
$$

Where $E 8$（M8）is the electric（magnetic）octupole moment．In this case，considering even parity contributions only，the multipole moments of a spin $3 / 2$ particle between
states of polarization $\lambda=3 / 2,1 / 2,-1 / 2,-3 / 2$ arc

$$
\begin{array}{ll}
E 2=0, & M 2=\lambda \frac{e g}{2 m}, \\
M 4=0, & E 4=\frac{1}{3}\left(3 \lambda^{2}-\frac{15}{4}\right) \frac{e(-f+g-1)}{m^{2}}, \\
E 8=0, & M 8=\lambda\left[\frac{15}{2} \lambda^{2}-\frac{123}{8}\right] \frac{e(2 f+g)}{m^{3}}
\end{array}
$$

## Conclusions

The new results in this work are the electromagnetic multipole moments of a spin $3 / 2$ particle in NKR formalism．We have found that this formulation produces an electromagnetic interaction that includes the expected number of nonzero multipole
moments of a spin $3 / 2$ particle．In this formalism，apart from the charge，particles moments of a spin $3 / 2$ particle．In this formalism，apart from the charge，particle interact with the electromagnetic field via its magnetic dipole moment，electric
quadrupole moment，and，in addition with respect to the vector case，via its octupole magnetic moment．
We found that the term in the current proportional to the generator

$$
e \bar{u}^{\alpha}\left(p^{\prime}, \lambda^{\prime}\right)\left(i g\left[M_{\mu \nu}^{3 / 2} l_{u \beta}\left(p^{\prime}-p\right)^{\nu}\right)_{u} \mu^{\beta}(p, \lambda) .\right.
$$

contain contributions to all the relevant multipole moments．We have also found the contain contributions to all the relevant multipo
the new term coming from a general formulation

$$
e \pi^{\alpha}\left(p^{\prime}, \lambda^{\prime}\right)\left(i f \gamma^{5} \varepsilon_{\alpha \beta \beta \mu}\left(p^{\prime}-p\right)^{v}\right) \mu^{\beta}(p, \lambda)
$$

can contribute to the electric quadrupole moment and the magnetic octupole moment of
the particle．
The next step in the Compton scattering problem is to study the origin of violatio unitarity of the scattering of a spin $3 / 2$ particle on the light of the present results．

## References

［1］M．Napsuciale，M．Kirchbach，S．Rodriguez，Eur．Phys．Jour A 29， 289

D77：014009（2008）
［3］F．Klecfeld，e－Print：nucl－th／0012076

