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Abstract. We propose a reduction method of classical phase space of high order derivative theories
in singular and non singular cases. The mechanism is to reduce the high order phase space by
imposing suplementary constraints, such that the evolution takes place in a submanifold where high
order degrees of freedom are absent. The reduced theory is ordinary and is cured of the usual high
order theories diseases, it approaches well low energy dynamics.
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INTRODUCTION

In quantum field theory the high order derivative theories (HODT) are usually consid-
ered in three common contexts: (i) they appear in effective low-energy Lagrangians; ii)
they can be introduced to regularize a theory in the ultraviolet; iii) or for instance they
are unavoidable because of the non locality for example in string theory field theory or
noncommutative theories. However, high order derivative theories have no trivial techni-
cal problems, specially in the path of quantizing them. First, Noether energy associated
to HODT by Ostrogradsky formalism is not bounded from below which implies that
HODT are instable. Even at classical level this systems have badly behaved solutions
and runaways, usually this fact implies at the quantum level that the S matrix is not uni-
tary and in consequence physically unacceptable. However, in literature there are some
attempts to deal with these difficulties, namely: 1.[Eliezer-Woodard] and 2.[Cheng-Ho]
get a reduced theory which doesn’t have high order derivatives. In both cases the proce-
dure has been done in configuration space and for non singular cases. In this work on the
one hand, we have generalized the method to phase space, in this hamiltonian scheme
we consider singular and non singular theories, and the aim of the work is to consider
gauge high order theories.



HIGH ORDER DERIVATIVE THEORIES

Local an Non Local Theories

A local theory action has as integrand a functional of the degrees of freedom evaluated
at the same parameter point, hence it depends on finite number N of qi time derivatives

S[qi] =
∫

dtL(qi, q̇i, ...,q
(N)
i )

N is usually called the degree of the theory. In turn, the most general non local theory
is such that the functional L depends on q’s evaluated at different values of t. We
shall restrict ourselves on theories whose non local dependence appears in analytical
expressions, hence we can take such theory as a limit of a local one when N goes infinity.

In order to build the Hamiltonian the Ostrogradsky formalism has to be used. Under
such formalism q(N−1)

i are proposed to be generalized coordinates each has its conju-
gated momentum defined by

pi
n ≡

N

∑
k=n

(− d
dt

)k−n ∂L
∂q(k) (1)

n = 0, ...,N−1

In non singular case, when the relation between pi
N and q(N) is invertible the hamiltonian

is defined by

H =
K,N−1

∑
i,n

pi
nq(n+1)

i −L(qi, q̇i, ..,q
(N−1)
i , pi

N−1) (2)

The simplectic form which generates the hamiltonian flux is

Ω =
K,N−1

∑
i,n

d pi
n∧dq(n)

i (3)

associated with the usual Poisson brackets.

PERTURBATIVE APPROACH IN HAMILTONIAN SCHEME

The aim of this approach is to get a reduced theory with no high order degrees of freedom
as dynamical variables. In order of such aim, the classily way is to restrict the underlying
phase space to a subspace where high order degrees of freedom are absent, this can
be done through in the Dirac way. The method sight is to build up such "perturbative
constraints" (Cp) order to order from Hamilton-Ostrogradski equations.

We begin from a given subyacent theory (Gamma(ξo,ξh),H,Ω) where



Non Singular Case

• Γ → T ∗Q , whose independent coordinates are classified as following: ξo lowest
order in derivatives canonical coordinates and momenta,ξh high order derivative
variables.

• Ω Poisson simplectic form
• H evolution generator

H =
N,na−1

∑
a,sa=0

pmaqma+1
a + H̃(qra

a , pa
sa

).

H̃ =−1
2
(q̇0

a)
2 +

ω2

2
(q0

a)
2 +V (qsa

a , pa
na−1).

where high order derivative terms are perturbations while they are heightened by
α ¿ 1.

Construction of Supplementary Constraints

From Hamilton fundamental equations the following recurrence relation is derived

[q2
a]n+1 +ω2q0

a =
na−1

∑
ka=0

(−1)ka+1
[

dka

dtka

( ∂V

∂qka
a

)]

n
(4)



[ṗa
1]n+1 =−pa

0 + q̇0
a−

[
∂V
∂q1

a

]

n
(5)

Notation [X ]n → X order n in α .
From which one gets the following constraints

Φn
a = q2

a−Λ1(pa
0,q

0
a)≈ 0 (6)

φ n
a = −pa

0 + q̇0
a +Λ2(pa

0,q
0
a)≈ 0. (7)

Together with the other Hamilton equations

ψn
sa

= pa
sa
−Σsa(pa

0,q
0
a) (8)

ψ̃sa = qsa
a − q̇sa−1

a (9)

• The mechanism is rewriting the underlying equations of motion iteratively, and
set them in some order in α , which are precisely (6) y (8). They can be imposed
as second class Dirac-like constraints. Cp = {Φ,φ ,ψ, ψ̃} in the underlying phase
space.

Reduction of the Underlying Theory

• After make Cp strongly null, the appropiate Dirac reduced theory correspond to the
effective theory we looked for, wich describes the dynamics in the low energy limit.

Ωr = (1+C)d pa
0∧dq0

a

C → are corrections dependent of Λ1,2 and Σsa

Singular Case

Second Class Constraints

Underlying Theory: (Γc(ξo,ξh),Hc,ΩD)

• Γc sub-manifold of T ∗Q defined by second class constraints (ξ ), whose non inde-
pendent frame of coordinates are classified as following: ξo lowest order in deriva-
tives canonical coordinates and momenta,ξh high order derivative variables.

• ΩD Dirac brackets simplectic form
• Hc evolution generator on Γc.

From the fundamental evolution equations

Ȧ = {A,Hc}D (10)

From these evolution scheme Cp are obtained.



CONCLUSIONS

• Through perturbative approach one gets a reduced theory without usual high order
(and non local) diseases.

• Perturbative approach performed in phase space shows clearly physical nature of
the reduced theory from a given underlying theory. In such scheme, generalization
for gauge theories is straightforward.

• Taking out high order degrees of freedom through perturbative method restrict the
predictive power of the reduced theory to describe just low energy phenomena.

• A significative advance is that unlike usual perturbative theory , through this
method structure from underlying simplectic form is recovered into reduced the-
ory.


