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Abstract. Weinberg has shown that massless fields of helicity ±1 (vector fields) do not transform
homogeneously under Unitary Lorentz Transformations (LT). We calculate explicitly the inhomo-
geneous term. We show that imposing strict invariance of the Lagrangian under LT for an iteracting
Dirac field requires the fermion field to transform with a space-time (and photon creation and an-
nihilation operators) dependent phase and dictates the interaction terms as those arising from the
conventional gauge principle.
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A unitary representation of the Poincaré group associates to each Poincaré trans-
formation bµ ,Λ1 (where bµ is a space time translation and Λ1 an homogeneous
Lorentz transformation) a unitary operator U(b,Λ1), satisfying the composition rule
U(b,Λ1)U(c,Λ2) = U(b + Λ1c,Λ2Λ1). The transformation properties of free particle
states under the Poincaré group is essentially included in the corresponding little group.
For massless particles this subgroup is given by the subset of Lorentz Transformations
(LT) leaving invariant light-like four vectors, i.e. given kµ light-like, R belongs to the
little group iff Rkµ = kµ . For the sake of simplicity we take a representative of light-like
vector as kµ = (k,0,0,k), k > 0. A massless free particle with helicity σ and momentum
p is described by the state |Ψp,σ 〉 transforming under unitary Lorentz transformation,
U(0,Λ) = U(Λ), as [2]

U(Λ)|Ψp,σ 〉=

√
(Λp)0

p0 exp(iσθ(R(Λ, p)))|ΨΛp,σ 〉, (1)

where θ is the Wigner angle [1].
The physical requirement of locality forces us to introduce creation and annihilation

operators for the particle states, |Ψp,σ 〉 = a†(p,σ)|0〉. The transformation rule for the
creation and annihilation operators of the states |Ψp,σ 〉, is dictated by Eq. (1) as

U(Λ)a†(p,σ)U−1(Λ) =

√
(Λp)0

p0 exp(iσθ(Λ, p)),a†(pΛ,σ). (2)

Our physical theories must also be causal, thus we must work in configuration space
leading us to the integration of creation and annihilation operators over all spatial mo-
menta p. This procedure configures a field which in order to produce a Lorentz covari-
ant S matrix must transform in the irreducible representations (non-necessarily unitary



thus finite-dimensional) of the Lorentz Group which is isomorphic to SU(2)A⊗SU(2)B
where A = J+ iK, B = J− iK and J, K denote the rotation and boost generators. These
irreps are labelled as (a,b). A field φ ab(x) of massless neutral particles is constructed as
linear combination of annihilation and creation operators

φ
ab(x) = ∑

{σ}

∫ d3 p√
(2π)3(2p0)

{
eip·xuab(p,σ)a(p,σ)+ e−ip·xvab(p,σ)a†(p,σ)

}
, (3)

where {σ} denotes the possible particle helicities. Weinberg [2] has shown that a mass-
less field of type (a,b) can be formed only from annihilation operators with helicity
σ , and creation operators with helicity −σ , where σ = b− a. In particular a pho-
ton field must have helicities ±1 thus we are only allowed to use fields of the type
(n,n− 1)⊕ (n− 1,n) for the photon. Weinberg [3] has also shown that in a Lorentz
invariant and perturbative S-matrix theory, these fields give amplitudes that vanish for
small photon momentum p→ 0 in contradiction with experiment. The classical pho-
ton field uses the (1

2 , 1
2) representation. However, Weinberg proved that is impossible to

construct a helicity ±1 massless vectorial field that transforms homogeneously under
LT [2]. The explicit calculation of the inhomogeneous term and its conexion with gauge
transformations is the aim of this work. For the (1

2 , 1
2) representation the field can be

recast in terms of Lorentz indices

Aµ(x) = ∑
{σ}

∫ d3 p

(2π)3/2
√

(2p0)

{
eip·xuµ(p,σ)a(p,σ)+ e−ip·xvµ(p,σ)a†(p,σ)

}
. (4)

Using Eq. (2) we obtain the transformation properties of this field as

U(Λ)Aµ(x)U−1(Λ) =
∫ d3(Λp)

(2π)3/2
√

2(Λp)0
{eip·xuµ(p,σ)exp(−iσθ(Λ, p))a(pΛ,σ)

+ e−ip·xvµ(p,σ)exp(iσθ(Λ, p))a†(pΛ,σ)}. (5)

Weinberg [3] has shown that the coefficients transform as[
(Λ(−1))µ

ν −Λ
0

ν

pµ

p0

]
uν(pΛ,σ) = exp(−iσθ(p,Λ))uµ(p,σ). (6)

the coefficient vµ transforming as the complex conjugate of this equation. Using these
transformation rules in Eq.(5) we obtain

U(Λ)Aµ(x)U−1(Λ) = (Λ(−1))µ

νAν(Λx)+ i
∂

∂ (Λx)µ

Ω(Λ,x), (7)

where Ω(Λ,x) is a function of space-time, linear in the photon annihilation and creation
operators given by

Ω(Λ,x)=
∫ d3(p)√

(2π)32p0

(Λ(−1))0
ν

(Λ−1 p)0

{
eip·Λxuν(p,σ)a(p,σ)− e−ip·Λxu∗ν(p,σ)a†(p,σ)

}
.

(8)



Under a LT Ω(Λ,x) transforms as

U(Λ2)Ω(Λ1,x)U(Λ2)−1 = Ω(Λ2Λ1,x)−Ω(Λ2,Λ1x), (9)

thus it not a scalar field. In order to exhibit the effect of this term for interacting theories
let us consider electromagnetic interactions of a Dirac field. The interacting term cannot
be constructed with derivatives of the field Aµ as discussed above thus the most general
lagrangian is

L (x) =−1
4

FµνFµν + Ψ̄(iγµ∂
µ −m)Ψ+ JµAµ . (10)

where Jµ denotes the (unknown) fermion current. With the conventional transformation
rules for fermions, under a LT this Lagrangian transforms as

U(Λ)L (x)U−1(Λ) = L (Λx)− iJ̃µ

∂

∂ (Λx)µ

Ω(Λ,x) (11)

The last term can be integrated by parts and using current conservation we get Lorentz
invariance up to a surface term related to Ω(Λ,x) which is harmless in perturbative
calculations. However this term must be considered for strongly coupled theories like
QCD. The cancellation of this term can be achieved if the Dirac field transforms under
LT with a phase related to Ω(Λ,x)

U(Λ)ΨlU−1(Λ) = e−iΩ(Λ,x)(ei/2w(Λ)µνJ µν

)l
mΨ

m(Λx) (12)

For two unitary LTs Λ1 and Λ2 acting on the Dirac field we get:

U(Λ2)U(Λ1)ΨlU−1(Λ1)U−1(Λ2) = e−iΩ(Λ2Λ1,x)(ei/2w(Λ2Λ1)µνJ µν

)l
mΨ

m(Λ2Λ1x),
(13)

thus Eq.(12) is indeed a representation of the Lorentz group. It can be easily proven
that with this transformation rule for the Dirac field the lagrangian is strictly invariant
whenever Jµ = q Ψ̄γµΨ, i.e. strict Lorentz invariance of the theory dictates the very
same interacting terms as those obtained using the gauge principle.
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