
Radion stabilization from the vacuum
Elí Santos∗,†, A. Pérez-Lorenzana∗∗, L. O. Pimentel† and Omar Pedraza∗∗,∗

∗Centro de Estudios en Física y Matemáticas Básicas y Aplicadas, UNACH
4a. Oriente Norte 1428. , C.P. 29000, Tuxtla Gutiíerrez, Chiapas, México

†Departamento de Física, Universidad Autónoma Metropolitana.
Apdo. Post. 55-534, C. P. 09340 México, D.F., México

∗∗Departamento de Física, Centro de Investigación y de Estudios Avanzados del I.P.N.
Apdo. Post. 14-740, 07000, México, D.F., México

Abstract. When translational invariance is spontaneously broken thevolume stabilization in mod-
els with flat extra dimension could follow from vacuum energyresiding in the extra dimensional
space. We study a simple toy model that exemplifies this mechanism which considers a massive
scalar field with non trivial boundary conditions at the end points of the compact space, and in-
cludes contributions from brane and bulk cosmological constants. We perform our analysis in the
conformal frame where the radion field, associated to volumevariations, is defined, and present
a general strategy for building stabilization potentials out of those ingredients. We also provide
working examples for the interval and theTn/Z2 orbifold configuration.
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INTRODUCTION

Models with space-like extra dimensions may have a non trivial configuration and topol-
ogy, and be characterized by a variety of sizes, that, according to some speculations [1],
may even be as large as few micrometers, in contrast with the much smaller Planck
length,ℓP ∼ 10−33 cm. The idea seems to find some motivation from the study of the
non-perturbative regime of theE8×E8 theory by Witten and Horava [2], where one of
these extra dimensions appears to be larger than the naivelyexpected Planck size for
quantum gravity physics. The possibility that there could be such extra dimension has
renewed the interest in a class of models once inspired by theworks of Kaluza and
Klein [3]; and lately suggested by several authors [4, 5].

Of particular interest are the so called brane models, in which our observable world
is constrained to live on a four dimensional hypersurface (the brane) embedded in a
flat higher dimensional space (the bulk), such that the extradimensions can only be
tested by gravity, and perhaps standard model singlets, a set up that resembles D-brane
theory constructions. These models have the extra feature that they may provide an
understanding of the large difference among Planck,MP, and electroweak,mew, scales
almost by construction. HereMP is replaced by the truly fundamental gravity scale,
M∗, associated to quantum gravity in the 4+n dimensional theory. Both scales are then
related by the volume of the compact manifold,voln, through out the expression [1]

M2
P = Mn+2

∗ voln , (1)



which indicates that the so far unknown value forM∗ could lay anywhere withinmew and
MP. If it happens to be in the TeV range there would be no big hierarchy, but a rather
large volume is required.

Most phenomenological models built on this scenario usually assume that the extra
dimensions are stable, which typically becomes a fundamental requirement since most
effects of extra dimensions on low energy physics depend either on the effective size of
the compact spaceb0 ∼ vol1/n

n or the effective Planck scale. However, since the compact
space is dynamical those become time dependent in general, against observations [6].
Understanding the stability of the compact space can be seeing as finding the mechanism
that provides the force which keeps the radion, a modulous field associated to the extra
volume, fixed at its zero value. Thus, in order to have a stablebulk volume, there has to
be a potential which provides such a force. The last can provided purely from vacuum
energy [7], as we shall discuss in this work.

THE RADION IN THE EINSTEIN FRAME

We start the discussion by assuming that Einstein gravity holds in the complete(4+n)D
theory, and proceed with dimensional reduction to introduce the definition of the radion
field and its couplings. Thus we first write down the Einstein-Hilbert action

S=
M2+n

∗
2

∫

d4xdny
√

|g(4+n)|R(4+n) (2)

whereR(4+n) stands for the 4+ nD dimensional scalar curvature, and|g(4+n)| is the
absolute determinant of the(4+ n)D metric. We then consider the background metric
parameterizationds2 = gABdxAdxB = gµνdxµdxν −habdyadyb, that is conformally con-
sistent with 4D Poincarè invariance, and describes a compact and flat extra space. So
we assumeya as dimensionless coordinates on a unitary and closed manifold. Thus,hab
has length dimension two. Here we use for the indices the conventionA,B= µ,a where
µ = 0, . . . ,3 anda = 5, . . . ,4+n. Notice we are not considering the usual vector-likeAa

µ
connection pieces. This is so because we want to concentrateonly on the variations of
the metric along the transverse directions for the rest of our discussion.

Upon dimensional reduction and with in order to get a proper gravity action one has to
go to a different frame. Thus, we perform the conformal transformationgµν → e2ϕ gµν
with e2ϕ = voln/

√

|h|, to obtain the 4D gravity in canonical form

S=
M2

P

2

∫

d4x
√

|g(4)|
{

R(4)−
1
4

∂µhab∂ µhab+
1
8

hab∂µhab ·hcd∂ µhcd

}

, (3)

that we shall refer as the conformal (or Einstein) frame. Next, gµν can be assumed to be
the standard metric for a Poincaré invariant brane Universeor the Friedmann-Robertson-
Walker metric for cosmology. Nevertheless, to simplify, weshall takehab = b2δab, such
thatb represents the actual size of the compact space.

In the desired stable configuration, the physical size of theextra dimension would be
given byb = b0. So, in the conformal frame the effective Planck scale is well defined



and constant. Volume variation effects appear as the radionfield (see for instance [6])

σ(t) = MP

√

n(n+2)/2ln(b/b0) . (4)

An active radion means a variable bulk, a potetially unwanted and harmful scenario.
Radion couplings to other fields are fixed from te structure ofthe higher dimensional

action that describe the last. Consider for instance a bulk scalar field, φ(x,y). The
corresponding action, before performing the conformal transformation on the metric,
goes as

Sφ =

∫

d4xdny
√

|g(4)|
√

|h|
[

1
2

GAB∂Aφ ∂Bφ −U(φ)

]

. (5)

Without lost of generality, we can always assume thatφ has a proper Kaluza Klein
(KK) mode decomposition, which should be defined for each given topology of the
compact space. In the efective four dimensional theory, andin the Einstein frame the
general form of the potential for the KK modes has the forme−α σ/MP Ue f f(φ~n) where
α =

√

2n/(n+2) and

Ue f f = voln ·
∫

dny
(

~∇yφ ·~∇yφ/(2b2)+U(φ)
)

, (6)

with ~∇y the gradient on the compact space coordinates. Last expression actually corre-
sponds to the potential energy,Uini , one calculates in the initial frame, but for the global
factor voln instead of the physical volume

√

|h|. In the case of a bulk cosmological
constant, the action in Einstein frame becomes

SΛ =
∫

d4x
√

|g(4)| Λne−α σ/MP , (7)

with the effective cosmological constantΛn = voln ·Λ. In contrast for a 3-brane cosmo-
logical constant,λ , one has

∫

d4x
√

|g(4)|e−2α σ/MP λ . (8)

RADION STABILIZATION BY VACUUM ENERGY

As we already mentioned, some ideas on how to generate an stabilization potential for
the radion can be found already in the literature (see for instance Refs. [8, 9, 10]). In
particular, for a single extra dimension, it is has been pointed out [9, 10] that a radion
potential can be produced if translational invariance is broken in the bulk by the vacuum
expectation value of a scalar field. Here, we will further explore this idea for flat extra
dimensions on the conformal frame where the radion has been identified. The basics of
the mechanism we are exploring are rather simple. We consider bulk energy densities
that break translational invariance along bulk coordinates, which provide a radious
potential energy,Urad(b). Of course, if there is a non trivial minimum forUrad(b), this
would be identified asb0. Curiously enough, such a potenial can be build out of only
cosmological constants, as we discuss next.
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FIGURE 1. Radion potential profile generated by cosmological constants forn as indicated.

For any individual cosmological constant the radion potential is just an exponen-
tially decaying function without non trivial minimum. However, the combination
of both, brane and bulk csmological constants, do work. FromEqs. (7) and (8),
the most general radion potential one can build with a minimum in this case is [7]
Uλ

rad(σ) = λ e−α σ/MP(e−α σ/MP − 2), where Λn + 2λ = 0 fixes the stable radius to
b0 = (−2λ/Λ)1/n. From this potential one gets a Planck suppressed effectiveradion
mass at the minimum,mσ = α

√
2λ/MP, which may also imply a too light radion

potential, against observational limits on gravity strength coupled scalars, that indicate
mσ > 10−3 eV, which would require thatλ > TeV4. This mechanism can be extended
to more dimensions [7] as it is shown in figure 1.

Next simplest example one can provide is ay-dependent vacuum. That arises in mod-
els where non trivial boundary conditions are imposed on a bulk scalar field configu-
ration. Consider a massive scalar field,φ , described by the action given in Eq. (5) for
U(φ) = 1

2m2φ2. Therefore, the vacuum configuration in the initial frame, with a given
volume of sizeb, should be a solution to the equation of motion[−∇2

y +κ2]〈φ〉(y) = 0,
whereκ = mb. Boundary conditions for〈φ〉 induce a non trivial profile for the vev
along the bulk. By setting the vev back into the Lagrangian,L , at any given radiusb,
one formally gets, in the Einstein frame, the radion potential contribution [7]:

Uφ
rad(b) = (b0/b)2nUini(b) , (9)

here written in terms of the radius, and where we have used thepotential as it is read
in the initial frameUini(b) = −bn · ∫ dny L (〈φ〉). By written the potential this way,
it becomes clear that in general a minimum forUini is not a minimum ofUφ

rad. The
conformal factor deforms the potential, and may even compromise stabilization in some
cases. Let us discuss next some examples.



On the interval it is straightforward to calculate the stabilization potential, which on
the initial frame gets the form

Uini(b) =
m
2

(

v2
0+v2

1

)

coshκ −2v0v1

sinhκ
, (10)

wherevi are the boundary conditons. This potential has a sizable minimum atmbi =
arccosh(v2

0 + v2
1)/(2v0v1). Particularly, for largev0/v1 ratios one gets the approximate

expressionmb0 ≈ [ln(v0/v1)]
2. At the minimum we getUini(bi) = m

2‖v2
0− v2

1‖, and so
the potential is always positive. Notice also that the potential goes asymptotically to a
constant:Uini(b → ∞) = m(v2

0 + v2
1)/2, and for smallb behaves like∼ (v0− v1)

2/2b,
providedb0 6= 0. Clearly,v0 = v1 is not a favored scenario. First of all, it impliesbi = 0,
where the potential vanishes. The 1/b2 squared modulation on the actual potential
removes this minimum and kills the asymptotic behavior, such that the only possible
minimum in the Einstein frame becomesb → ∞. Ths problem is cured by adding a
proper combination of bulk and brane cosmological constants as it is shown in Ref. [7].
As the first approximation we add a brane cosmological constant λ = −m(v2

0− v2
1)/2,

and takeΛ = 0. Thus, the resulting radion potential,Urad(b) = (b0/b)2[Uini(b) + λ ],
keeps the minimum atb0, and fixesUrad(b0) to zero.

Next, we consider aTn/Z2 orbifold, whereZ2 :~y → −~y on the symmetricTn torus
with common radiib. We analize only the volumetric radion, such that the metric
on the compact space remains of the formds2

compact= b2δi j dyidyj . In this orbifold,
there are 2n fixed points which correspond to the vertices of the unitary hypercube
I n

0 = I0×·· ·×I0, whereI0 = [0,1]. This orbifold has a residual discrete symmetry
Rn

π/2, given as the set of rotations byπ/2 around anyyi coordinate axis, which indicates
that onlyn+ 1 boundary conditions on equal classes of fixed points can be allowed to
be different. Thus we can work out our analysis considering only the contribution of the
vacuum that resides on the hypercubic sliceI n

0 . Total potential energy on the orbifold
shall be just a 2n−1 multiple of this. The vacuum can be factored asφ(~y) = Πn

i ϕi(yi),
whereϕi(yi) = ϕ(yi) = Aekyi +Be−kyi , with the global constantsA = (v1−v0ek)/sinhk
and B = (v0e−k − v1)/sinhk, and nk2 = κ2 = m2b2, with the boundary conditions
ϕi(0) = v0 andϕi(1) = v1, are indepent of the index due to theRn

π/2 symmetry. Thus,
in this scenario different directions along any coordinateaxis look alike for the scalar
field. That is the reason why volume varies as a whole while thebasic geometry stands
still. The potential energy from this vacuum, as calculatedin the initial frame is given
now by the general expressionUn

ini(b) = 2n−1 × 1
2bn−2∫ 1

0 dy
[

n(ϕ ′(y))2+κ2ϕ2(y)
]

·
[

∫ 1
0 dyϕ2(y)

]n−1
. After some algebra, one gets the rather complicated expression [7]

Un
ini(b) =

nn/2

2mn−2

(

(

v2
0 +v2

1

)

coshk−2v0v1

sinhk

)

×

(

2v0v1 (kcoshk−sinhk)+
(

v2
0 +v2

1

)

(coshk sinhk−k)

sinh2 k

)n−1

, (11)
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FIGURE 2. Radion stabilization potentials generated for theTn/Z2 orbifold, in arbitrary units.

A minimum exist only forn = 1, which reduces to the case we discussed above.
Nevertheless in the Einstein frame the addition of cosmological constants do provide
a way to generate the desired minimum, through out the potential

Un
rad =

(

b0

b

)n
[

(

b0

b

)

[

(

b0

b

)n−1

Un
ini(b)+ τn

]

+Λn

]

, (12)

where a proper selection of constants has to be made [7]. Someexample results are
ploted in figure 2.

CONCLUSIONS

Summarizing, our present work pin points a clear conclusion: the combination of cosmo-
logical constant configurations, with bulk vacuum energy from scalar fields, do provides
successful and manageable scenarios for the understandingof the stabilization of the
radion field, within the context of the four dimensional effective theory, in flat extra di-
mension models. We have developed some basic strategies to handle and build radion
potentials, with local minima and zero effective cosmological constant, out of these two
minimal ingredients. The analysis has to be done in the Einstein frame, where the radion
is defined, showing that conformal factors play an key role ondefining the minimum of
the potentials. Our results are an indication that it is wellpossible to built phenomeno-
logical stabilization potentials, out of the most common ingredients that any bulk-brane
theory could have: brane and bulk cosmological constants, and bulk scalar degrees of
freedom with non trivial bulk configurations. As a note we observe that since cosmolog-
ical constants contribute non trivially to the radion potential, the problem of managing
its quantum corrections may be worth to study.
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