Radion stabilization from the vacuum
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Abstract. When translational invariance is spontaneously brokewdheme stabilization in mod-
els with flat extra dimension could follow from vacuum energgiding in the extra dimensional
space. We study a simple toy model that exemplifies this meshmawhich considers a massive
scalar field with non trivial boundary conditions at the ermdnps of the compact space, and in-
cludes contributions from brane and bulk cosmological taomts. We perform our analysis in the
conformal frame where the radion field, associated to voluar@tions, is defined, and present
a general strategy for building stabilization potentialg of those ingredients. We also provide
working examples for the interval and tfé/Z, orbifold configuration.
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INTRODUCTION

Models with space-like extra dimensions may have a noratrodanfiguration and topol-
ogy, and be characterized by a variety of sizes, that, aswptd some speculations [1],
may even be as large as few micrometers, in contrast with thehremaller Planck
length,¢p ~ 10733 cm. The idea seems to find some motivation from the study of the
non-perturbative regime of tHes x Eg theory by Witten and Horava [2], where one of
these extra dimensions appears to be larger than the naxphcted Planck size for
quantum gravity physics. The possibility that there cowdsich extra dimension has
renewed the interest in a class of models once inspired byvirks of Kaluza and
Klein [3]; and lately suggested by several authors [4, 5].

Of particular interest are the so called brane models, irclwbur observable world
is constrained to live on a four dimensional hypersurfabe {irane) embedded in a
flat higher dimensional space (the bulk), such that the ektreensions can only be
tested by gravity, and perhaps standard model singlets,ugpdbat resembles D-brane
theory constructions. These models have the extra feabatethiey may provide an
understanding of the large difference among PlaMk, and electroweakyey, scales
almost by construction. Her®lp is replaced by the truly fundamental gravity scale,
M,, associated to quantum gravity in the-4 dimensional theory. Both scales are then
related by the volume of the compact manifaldl,, through out the expression [1]

M3 = M™2vol, (1)



which indicates that the so far unknown valuebrcould lay anywhere withimg,, and
Mp. If it happens to be in the TeV range there would be no big hiérg but a rather
large volume is required.

Most phenomenological models built on this scenario uguedsume that the extra
dimensions are stable, which typically becomes a fundamheaquirement since most
effects of extra dimensions on low energy physics depeihgiedn the effective size of

the compact spad® ~ volrl,/ " or the effective Planck scale. However, since the compact
space is dynamical those become time dependent in gengaahsa observations [6].
Understanding the stability of the compact space can bagaesifinding the mechanism
that provides the force which keeps the radion, a moduloilgsdgsociated to the extra
volume, fixed at its zero value. Thus, in order to have a stabllevolume, there has to
be a potential which provides such a force. The last can geavpurely from vacuum
energy [7], as we shall discuss in this work.

THE RADION IN THE EINSTEIN FRAME

We start the discussion by assuming that Einstein graviysia the complet¢4+n)D
theory, and proceed with dimensional reduction to intredihe definition of the radion
field and its couplings. Thus we first write down the Einstdiibert action

MZHn
S=—%— / d*xd"y\/[g(a+m [ Rian @)

whereR 4., stands for the 4-nD dimensional scalar curvature, afgjs, | is the
absolute determinant of thi@+ n)D metric. We then consider the background metric
parameterizatiods? = gagdX*dx& = gy, dx*dx’ — hypdy2dyP, that is conformally con-
sistent with 4D Poincare invariance, and describes a congmatflat extra space. So
we assum@? as dimensionless coordinates on a unitary and closed nhdnffious,hy,
has length dimension two. Here we use for the indices theasdionA, B = u,a where
u=0,...,3anda=5,...,4+n. Notice we are not considering the usual vector-
connection pieces. This is so because we want to conceningten the variations of
the metric along the transverse directions for the rest ofi@cussion.

Upon dimensional reduction and with in order to get a propavity action one has to
go to a different frame. Thus, we perform the conformal tfamsationg,,, — e?? Ouv

with €% = vol,//[h|, to obtain the 4D gravity in canonical form

M3 1 1
S= 7P /d“x,/ 9(a)| {R(4) - Zﬁuhaba“hab+ éhabﬁuhab-thﬁ”hcd} , (3

that we shall refer as the conformal (or Einstein) frame.tNgy, can be assumed to be
the standard metric for a Poincaré invariant brane Univertiee Friedmann-Robertson-
Walker metric for cosmology. Nevertheless, to simplify, stall takeh,, = b23,p, such
thatb represents the actual size of the compact space.

In the desired stable configuration, the physical size oe#tea dimension would be
given byb = by. So, in the conformal frame the effective Planck scale id defined




and constant. Volume variation effects appear as the rdiloh(see for instance [6])

o(t) =Mpy/n(n+2)/2In(b/bg) . (4)

An active radion means a variable bulk, a potetially unwdiated harmful scenario.
Radion couplings to other fields are fixed from te structurthefhigher dimensional

action that describe the last. Consider for instance a begias field, ¢(x,y). The

corresponding action, before performing the conformatdfarmation on the metric,

goes as
1
S = /d4anY\/ 9.4 VIh| léGABdA(p(?B(p—U((p) : (5)

Without lost of generality, we can always assume thdias a proper Kaluza Klein
(KK) mode decomposition, which should be defined for eactemjitopology of the
compact space. In the efective four dimensional theory,iarttle Einstein frame the
general form of the potential for the KK modes has the farmfio/Mp Ugs (@) where

a=+/2n/(n+2)and
Ustt =voh- [ (Eye- Bye/ (267 +U(9)) . (6)

with ﬁy the gradient on the compact space coordinates. Last expmessually corre-
sponds to the potential enerdyy,i, one calculates in the initial frame, but for the global
factor vol, instead of the physical volumg/|h|. In the case of a bulk cosmological
constant, the action in Einstein frame becomes

Sy = / d*x, /la| Ane=@ /Mo 7)

with the effective cosmological constafv = vol, - A. In contrast for a 3-brane cosmo-

logical constant), one has
[a/lale oA ®)

RADION STABILIZATION BY VACUUM ENERGY

As we already mentioned, some ideas on how to generate atzstiatn potential for
the radion can be found already in the literature (see faante Refs. [8, 9, 10]). In
particular, for a single extra dimension, it is has been fgairout [9, 10] that a radion
potential can be produced if translational invariance akbn in the bulk by the vacuum
expectation value of a scalar field. Here, we will furtherlexg this idea for flat extra
dimensions on the conformal frame where the radion has losttified. The basics of
the mechanism we are exploring are rather simple. We conbidk energy densities
that break translational invariance along bulk coordisatehich provide a radious
potential energyJ,aq(b). Of course, if there is a non trivial minimum fakaq(b), this
would be identified afy. Curiously enough, such a potenial can be build out of only
cosmological constants, as we discuss next.



0.2\\\\
0.15F 4
= n=6
6‘ L 4
"80.1* =4 1
)
0.05- - :
Lo N T
0—1 0 1 2 3 4 5
GO/MP

FIGURE 1. Radion potential profile generated by cosmological constimn as indicated.

For any individual cosmological constant the radion poéns just an exponen-
tially decaying function without non trivial minimum. Hower, the combination
of both, brane and bulk csmological constants, do work. Fiegs. (7) and (8),
the most general radion potential one can build with a mimmin this case is [7]
UL4(0) = A e 99/Mp(g=a0/Me _ 2y where A, + 21 = 0 fixes the stable radius to
bo = (—2A //\)1/”. From this potential one gets a Planck suppressed effexdnien

mass at the minimumy, = av/2A /Mp, which may also imply a too light radion
potential, against observational limits on gravity stitengpupled scalars, that indicate
me > 1073 eV, which would require thad > TeV*. This mechanism can be extended
to more dimensions [7] as it is shown in figure 1.

Next simplest example one can provide igdependent vacuum. That arises in mod-
els where non trivial boundary conditions are imposed onlk $calar field configu-
ration. Consider a massive scalar fiedgd,described by the action given in Eq. (5) for
U () = imP¢?. Therefore, the vacuum configuration in the initial framéthva given

volume of sizeb, should be a solution to the equation of mot[e{ﬂﬁ +k2{(p)(y) =0,
wherek = mh. Boundary conditions fofg) induce a non trivial profile for the vev
along the bulk. By setting the vev back into the Lagrangi&h,at any given radiub,

one formally gets, in the Einstein frame, the radion potdmntribution [7]:

U2, (b) = (bo/b)*"Uini (b) , (9)

here written in terms of the radius, and where we have usegdtential as it is read
in the initial frameUjpi(b) = —b"- [d"y £ ({¢)). By written the potential this way,
it becomes clear that in general a minimum B is not a minimum inrqg . The
conformal factor deforms the potential, and may even comjse stabilization in some
cases. Let us discuss next some examples.



On the interval it is straightforward to calculate the diiahtion potential, which on
the initial frame gets the form

2 1 \2
m (V5 -+ Vv4) coshk — 2vpvq

wherey; are the boundary conditons. This potential has a sizablémam atmh =
arccoshva +v2)/(2vovy). Particularly, for larges/vy ratios one gets the approximate
expressiommiy = [In(vp/v1)]?. At the minimum we geUi,i (b)) = ||V —V2||, and so
the potential is always positive. Notice also that the ptigigoes asymptotically to a
constantUini(b — ) = m(v3 +Vv2) /2, and for smalb behaves like~ (vo — v1)?/2D,
providedbg # 0. Clearly,vo = v1 is not a favored scenario. First of all, it implibs= 0,
where the potential vanishes. The¢bf squared modulation on the actual potential
removes this minimum and kills the asymptotic behaviorhstiat the only possible
minimum in the Einstein frame becombs— «. Ths problem is cured by adding a
proper combination of bulk and brane cosmological constastit is shown in Ref. [7].
As the first approximation we add a brane cosmological cohdta= —m(v3 —v2)/2,
and takeA = 0. Thus, the resulting radion potenti&lyaq(b) = (bp/b)?[Uini(b) 4 A],
keeps the minimum dlp, and fixedJ,,4(bo) to zero.

Next, we consider &"/Z, orbifold, whereZ, : y — —y on the symmetrid " torus
with common radiib. We analize only the volumetric radion, such that the metric
on the compact space remains of the foui@ompact: b2&jdydy!. In this orbifold,
there are 2 fixed points which correspond to the vertices of the unitaypencube
S5 = o x --- x S, whereSy = [0,1]. This orbifold has a residual discrete symmetry
9?2/2, given as the set of rotations Isg/2 around any; coordinate axis, which indicates
that onlyn+ 1 boundary conditions on equal classes of fixed points carltoees to
be different. Thus we can work out our analysis considerimy the contribution of the
vacuum that resides on the hypercubic slig®. Total potential energy on the orbifold
shall be just a 2! multiple of this. The vacuum can be factored@§) = MPi(yi),
wheredi (yi) = ¢ (vi) = AdY + Be K, with the global constants = (v; — vge¥)/ sinhk
and B = (Voe K — vq)/sinhk, and nk?> = k? = m?b?, with the boundary conditions
$i(0) = vp and ¢i(1) = vy, are indepent of the index due to t%r‘[/z symmetry. Thus,
in this scenario different directions along any coordirates look alike for the scalar
field. That is the reason why volume varies as a whole whild#sic geometry stands
still. The potential energy from this vacuum, as calculatethe initial frame is given

now by the general expressidi};(b) = 2" x 1b™2 [gdy [n(¢'(y))? + k2¢3(y)] -
~1
[foldyd)z(y)] " . After some algebra, one gets the rather complicated esipref7]

Ul (b) = N2 [ (Vg+v2) coshk —2vov;
th 2mh—2 sinhk

<2VOV1 (kcoshk — sinhk) + (V3 +2) (coshk sinhk — k>>n1 -
Sinhz k y



FIGURE 2. Radion stabilization potentials generated for ¢ Z, orbifold, in arbitrary units.

A minimum exist only forn = 1, which reduces to the case we discussed above.
Nevertheless in the Einstein frame the addition of cosmoddgonstants do provide
a way to generate the desired minimum, through out the gatent

o= (2)' () [(2) "o

where a proper selection of constants has to be made [7]. $aaraple results are
ploted in figure 2.

‘|‘/\n 9 (12)

CONCLUSIONS

Summarizing, our present work pin points a clear conclugt@combination of cosmo-
logical constant configurations, with bulk vacuum energyrfrscalar fields, do provides
successful and manageable scenarios for the understaoidthg stabilization of the
radion field, within the context of the four dimensional effee theory, in flat extra di-
mension models. We have developed some basic strategiesdiberand build radion
potentials, with local minima and zero effective cosmotagiconstant, out of these two
minimal ingredients. The analysis has to be done in the &im§tame, where the radion
is defined, showing that conformal factors play an key roleleining the minimum of
the potentials. Our results are an indication that it is Wwelsible to built phenomeno-
logical stabilization potentials, out of the most commogredients that any bulk-brane
theory could have: brane and bulk cosmological constant$ balk scalar degrees of
freedom with non trivial bulk configurations. As a note we @h® that since cosmolog-
ical constants contribute non trivially to the radion paiginthe problem of managing
its quantum corrections may be worth to study.



ACKNOWLEDGMENTS

ES and APL acknowledges CINVESTAV and CEFyYMAP-UNACH, regpely, for the
warm hospitality and support along their many visits dutimgrealization of this work.
Authors would like to thank SIINV-UNACHO7 for partial suppoAPL, OP and ES
work is partially supported by CONACyT, México, under gmb#576 and 78910.

REFERENCES

1. N. Arkani-Hamed, S. Dimopoulos and G. Dvali, Phys. LB#29, 263 (1998); |. Antoniadist al,,
Phys. LettB436, 257 (1998); I. Antoniadis, S. Dimopoulos, G. Dvali, Nuchy®.B516, 70 (1998).

2. E. Witten, Nucl. PhysB 471, 135 (1996); P. Horava and E. Witten, Nucl. Phgd60, 506 (1996);
idemB475, 94 (1996).

3. Th. Kaluza, Sitzungober. Preuss. Akad. Wiss. Berlin, 6 91921); O. Klein, Z. Phys37, 895
(1926).

4. V. A.Rubakovand M. E. Shaposhnikov, Phys. LBft52 (1983) 136; K. Akama, in Lecture Notes in
Physics, 176, Gauge Theory and Gravitation, Proceedintp&dhternational Symposium on Gauge
Theory and Gravitation, Nara, Japan, August 20-24, 198&aby K. Kikkawa, N. Nakanishi and
H. Nariai, (Springer-Verlag, 1983), 267; M. Visser, PhysttiB159 (1985) 22; E.J. Squires, Phys.
Lett B167 (1986) 286; G.W. Gibbons and D.L. Wiltshire, Nucl. PhB287 (1987) 717.

5. I Antoniadis, Phys. Lett3246 (1990) 377; I. Antoniadis, K. Benakli and M. Quirés, PhysttlLe

B331 (1994) 313.

A. Mazumdar, R.N. Mohapatra and A. Pérez-Lorenzana, J@G5AP04 (2004).

E. Santos, A. Pérez-Lorenzana, L.O. Pimentel, Phys.[R&v025023 (2008).

S. Tsujikawa, JHEB0O7, 024 (2000); S. Kachru, R. Kallosh, A. Linde, S.P. TrivediyR. Rev. 38

046005 (2003); G. von Gersdorff, M. Quiros, A. Riotto, Nuehys.B689, 76 (2004); N. Maru and

N. Okada, Phys. Rev. 20, 025002 (2004).

9. W.D. Goldberger and M. B. Wise, Phys. Rev. L&8, 4922 (1999).

10. Z.Chacko and E. Perazzi, Phys. Rew6&)115002 (2003).

oONO®



