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Abstract. We obtain the effective 4D action that arises from a 6D free gauge action in the space-
time metric RSI-1. Solving explicitly the 6D equations of motion we obtain the Kaluza-Klein de-
composition of the 6D gauge field. This work constitutes the first step towards the discussion of the
Gauge-Higgs Unification scenario in this background.
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INTRODUCTION

It is well known that the Higgs sector is still a lacking piece of the Standard Model.
This sector governs the electroweak symmetry breaking and gives masses of quarks
and leptons. Furthermore, the quadratic divergent correction to the Higgs mass strongly
suggest the existence of new physics at the TeV scale. For this purpose a lot of scenarios
beyond the Standard Model have been proposed, among them the so-called Gauge-
Higgs Unification (GHU) scenario, which predicts various interesting properties in the
Higgs couplings to the gauge and the fermion fields. The basic idea in the GHU is that
the Higgs arises from the internal components of a higher dimensional gauge field. A
crucial property of this scenario is that higher dimensional gauge invariance provides a
protection to the Higgs mass from quadratic divergence. When the extra coordinate is
not-simple connected, there are Wilson line phases associated with the extra dimensional
component of the gauge field. Their 4D fluctuation is identified with the Higgs.

In the case that the 5D spacetime is flat, it has been shown that the Higgs mass is
too small to satisfy the experimental lower bound and, trilinear couplings among the
W and the Z bosons substantially deviate from the standard model values, which is
inconsistent with experiments. The warped Randall-Sundrum spacetime [1] ameliorates
these problems predicting a enhanced Higgs mass by a factor κπr ' 35, compared to
the case of the flat spacetime and the couplings among the W and Z bosons are in good
agreement with those in the standard model [2].

Randall-Sundrum spacetime is a 5D theory compactified on S1/Z2, however although



all the nice properties of the GHU scenario in this background, it does not naturally
contain quartic couplings for the scalars in the gauge fields. Therefore one is compelled
to look at 6D theories where the quartic scalar couplings are generated by the higher
dimensional gauge interactions [3, 4, 5].

The 6D analysis in the GHU scenarios, have been considered for different types of
orbifolds, but not in the context of the Randall-Sundrum model. For these reasons it
would be interesting to investigate the GHU problem in a scenario that could mix both
properties, the 6D issue of the higher dimensional theory and the warped geometry. The
simplest model of this kind is the Randall-Sundrum scenario extended by one spatial
extra coordinate with S1 topology. This scenario is called in the literature the RSI-1
scenario. Because it is 6D, it must give origin to a quartic scalar coupling and because
it is of the Randall-Sundrum type, it must also contain all the nice properties discussed
above.

In this contribution we present the first step to discuss the GHU scenario in the RSI-1
background. We obtain the effective 4D action that arises from the 6D free gauge action
in this background. Generalization of these results to the Yang-Mills case are under
research [6].

FREE GAUGE ACTION IN A 6D WARPED GEOMETRY

The metric

The metric of the RSI-1 scenario describes a 6D non-factorizable geometry, based on
a slice of AdS6 spacetime

ds2 = Gµ̂ ν̂dxµ̂dxν̂ = e−2σ(x6)
(

ηµνdxµdxν − (dx5)2
)
− (dx6)2, (1)

where e−2σ(x6) ≡ e−2κ|x6| is the warping factor. Hatted indexes denote the 6D space-
time coordinates xµ̂ = (xµ ,x5,x6), while Greek indexes denote the 4D coordinates
xµ = (x0,x1,x2,x3), in a flat space-time of signature ηµν = diag(+,−,−,−). This metric
considers two spatial extra dimensions, both of them compact but with different topol-
ogy. The x6 coordinate has a S1/Z2 orbifold topology. This means it satisfies two prop-
erties, x6 = x6 + 2πr, and −x6 → x6. The x5 coordinate is associated to the compact
extra dimension which has topology S1, therefore it only satisfies the periodicity condi-
tion, x5 = x5 + 2πR. As can be noticed in (1), the x5 extra dimension together with the
coordinates describing flat 4D spacetime are multiplied by the warping factor.

This metric can be obtained as an asymptotic solution to the 6D Einstein equations
with negative bulk cosmological constant and two 4-branes, one being ‘visible’ with the
other being ‘hidden’, with opposite tensions rigidly reside at S1/Z2 orbifold fixed points,
taken to be x6 = 0, and, x6 = πr.



The action

We start our analysis considering the 6D free gauge field action

S =−1
4

∫
d 4x

∫ 2πR

0
dx5

∫ πr

−πr
dx6√−GGµ̂ρ̂Gν̂ δ̂ Fµ̂ ν̂Fρ̂ δ̂ +Lg. f ., (2)

in the background metric (1). Here G = det(Gµ̂ ν̂), Fµ̂ ν̂ is the 6D field strength tensor
given by Fµ̂ ν̂ = ∂µ̂Aν̂ −∂ν̂Aµ̂ and Lg. f . is the gauge fixing action1, given by

Lg. f . =−1
2

∫
d 6x

(
e−σ (∂αAα)2 +2∂αAα∂6

(
e−3σ A6

)
+ eσ

(
∂6

(
e−3σ A6

))2
)

. (3)

Applying the Hamilton principle to the action (2) we obtain as usual both boundary
conditions and equations of motion. Regarding boundary conditions, it can be shown that
the conditions for vanishing boundary terms are related to the Z2-orbifold projections of
the gauge fields. These conditions are of two types, for the Aµ and A5 components of the
gauge field, we obtain Neumann-type conditions [7]

∂6Aµ(xν ,x5,x6 = 0) = ∂6Aµ(xν ,x5,x6 = πr) = 0, (4)

∂6A5(xν ,x5,x6 = 0) = ∂6A5(xν ,x5,x6 = πr) = 0, (5)

whereas for the A6 component we obtain Dirichlet-type conditions [7]

A6(xν ,x5,x6 = 0) = A6(xν ,x5,x6 = πr) = 0. (6)

The analysis of the boundary terms implies also that the Z2-orbifold projection of Aµ and
A5 should be different from the one for A6. This conclusion can be obtained from the
analysis of the gauge transformations as well. It can be shown that in order to preserve
gauge invariance A6 must have an opposite sign relative to Aµ and A5 under parity
transformations. It is usual [8, 7] to assume that A6 is Z2-odd whereas Aµ and A6 are
Z2 even

Aµ(xν ,x5,−x6) = +Aµ(xν ,x5,x6), A5(xν ,x5,−x6) = +A5(xν ,x5,x6)

A6(xν ,x5,−x6) =−A6(xν ,x5,x6). (7)

This choice of Z2 parity ensures that A6 does not have a zero mode in the effective 4D
theory whereas Aµ and A5 do have. We stress at this point that the similar properties of
the gauge components Aµ and A5 are a direct consequence of the metric (1), where the
coordinates xµ and x5 are considered by the warping factor at the same level.

1 The gauge fixing term resembles Lorentz gauge fixing, but it has a different structure in the x6 dimension.
This term is necessary in order to decouple the equations of motion associated to the gauge action in a
covariant gauge.



The 6D field equations that follows from the action (2) are

1√−G
∂µ̂

(√−GGµ̂ρ̂Gν̂ δ̂ Fρ̂ δ̂

)
+δLg. f . = 0. (8)

The standard form to solve these equations of motion is to apply the separation of
variables method. One proposes a separable solution of the gauge fields in the form
Aµ̂(xν ,x5,x6) = Aµ̂(xν)Φ(x5)Ψ(x6). Since we separate the 6D equations of motion in
three parts, in principle we should have 2 separation constants, but due to the fact that
the component A6 behave in a different way respect to the components Aµ and A5, we
shall have tree different separation constants. The equations of motion for the fields
depending on the x6 coordinate are

d
dx6

(
e−3σ(x6) d

dx6 χ(x6)
)

+m2
αe−σ(x6)χ(x6) = 0, (9)

d
dx6

(
eσ(x6) d

dx6

(
e−3σ(x6)ξ (x6)

))
+m2

6 ξ (x6) = 0, (10)

where m2
α and m2

6 are separation constants. The equations of motion for the fields
depending on the fifth coordinate all have the same form and correspond to the ones
of a scalar field in a circle

(
∂ 2

5 +
m2

R2

)
Φ(x5) = 0, subject to the condition Φ(x5 +2πR) = Φ(x5). (11)

In this equation m is also a separation constant. For the 4D fields the equations of motion
are

(
∂µ∂ µ +

m2

R2 +m2
α

)
Aρ(xν) = 0,

(
∂µ∂ µ +

m2

R2 +m2
α

)
A5(xν) = 0. (12)

and (
∂µ∂ µ +

m2

R2 +m2
6

)
A6(xν) = 0. (13)

Kaluza-Klein expansion

Let’s discuss briefly the solution to the different equations of motion. By performing
the change of variable z ≡ m

κ eσ(x6) in equations (9) and (10) and f (z) ≡ e−
3
2 σ(z)χ(z) in

equation (9) and g(z) ≡ e−
5
2 σ(z)ξ (z) in equation (10), they can be rewritten as Bessel

equations

z2 d2 f (z)
dz2 + z

d f (z)
dz

+

(
z2−

(
3
2

)2
)

f (z) = 0, (14)

z2 d2g(z)
dz2 + z

dg(z)
dz

+

(
z2−

(
1
2

)2
)

g(z) = 0, (15)



whose solutions are respectively Bessel and Neumann functions of order 3/2 and 1/2. In
terms of the original functions χ and ξ , the solutions for n 6= 0 2 are

χn(x6) = e
3
2 kx6

[
a1J3

2

(mαn

κ
eκx6

)
+a2Y3

2

(mαn

κ
eκx6

)]
, (16)

ξ n(x6) = e
5
2 kx6

[
b1J1

2

(m6n

κ
eκx6

)
+b2Y1

2

(m6n

κ
eκx6

)]
. (17)

From the Sturm-Liouville theory we know that the eigenfunctions χn and ξ n form
complete sets and satisfy the orthonormality relations

1
πr

∫ πr

0
dx6e−kx6

χn(x6)χm(x6) = δnm, (18)

1
πr

∫ πr

0
dx6e−3kx6

ξ n(x6)ξ m(x6) = δnm. (19)

We want to stress here that the solution to the differential equation (9) is given in terms
of Bessel functions of order 3/2, in contrast to the standard 5D situation, where the
order of the analogous Bessel functions is 1 [8, 9, 7]. Also notice that solutions to the
differential equation (10) are Bessel functions of order 1/2, instead of order 0, as is the
case for the gauge action in the standard 5D RSI model [7, 10]. The reason for this
difference is the extra compact dimension x5. This situation is very similar to the one
occurring for a scalar field, where each warped extra compact dimension changes the
order of the Bessel functions by 1/2 [11, 12].

The solution to the equations of motion (11) are well known, they correspond to

Φ(x5)≈ ei m
R x5

with m an integer number. (20)

These solutions satisfy the orthogonality conditions

1
2πR

∫ 2πR

0
dx5ei x5

R (n−m) = δnm. (21)

Putting the solutions together, the Kaluza-Klein expansion of the 6D gauge fields Aµ̂ are
given by

Aµ(x,x5,x6) =
∞

∑
n=0

∞

∑
m=−∞

A(m,n)
µ (x)ei m

R x5
χ(n)(x6),

A5(x,x5,x6) =
∞

∑
n=0

∞

∑
m=−∞

A(m,n)
5 (x)ei m

R x5
χ(n)(x6),

A6(x,x5,x6) =
∞

∑
n=1

∞

∑
m=−∞

A(m,n)
6 (x)ei m

R x5
ξ (n)(x6),

where the 4D fields A(m,n)
µ (x) and A(m,n)

5 (x) satisfy the equations of motion (12) with

mα replaced by the eigenvalues mαn and A(m,n)
6 (x) satisfies the equation of motion (13)

2 The zero mode χ0 can be obtained easily from equation (9) setting mα = 0.



with m6 replaced by the eigenvalues m6n. Substituting the Kaluza-Klein expansion of
the gauge fields into the action (2) we obtain the 4D effective action

S4D = −1
4
(πr)(2πR)

∞

∑
n=0

∞

∑
m=−∞

∫
d4x

[
F(n,m)

µν Fµν(n,−m) +2∂µAµ(n,m)∂νAν(n,−m)

−2
(

m2

R2 +m2
αn

)
A(n,m)

µ Aµ(n,−m)
]

+
1
2
(πr)(2πR)

∞

∑
n=0

∞

∑
m=−∞

∫
d4x

[
∂µA(n,m)

5 ∂ µA(n,−m)
5 −

(
m2

R2 +m2
αn

)
A(n,m)

5 A(n,−m)
5

]

− 1
2
(πr)(2πR)

∞

∑
n=1

∞

∑
m=−∞

∫
d4x

[
∂µA(n,m)

6 ∂ µA(n,−m)
6 −

(
m2

R2 +m2
6n

)
A(n,m)

6 A(n,−m)
6

]

CONCLUSIONS

In this work we have obtained the 4D action that arises from the 6D free gauge action
in a Randall-Sundrum metric extended by one compact extra dimension. We obtained
the Kaluza-Klein spectrum. Regarding the eigenfunctions in the coordinate direction of
the S1/Z2 orbifold, we obtained a different order for the Bessel and Neumann functions
respect to the same problem in the standard 5D Randall-Sundrum scenario. The obtained
results here, can be directly generalized to the Yang-Mills case and therefore to the
Gauge-Higgs Unification scenario in this background [6].
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