Perturbative and Non-Perturbative Phenomena in QED:

The Scattering by a Solenoidal Magnetic Field

Gabriela Murguía Romero gmr@fciencias.unam.mx

Departamento de Física, Facultad de Ciencias, UNAM
Matías Moreno Yntriago (matias@fisica.unam.mx)
Manuel Torres Labansat (torres@fisica.unam.mx)
Instituto de Física, UNAM

Motivation

Motivation

■ For Coulomb scattering, the differential cross section in lowest order in perturbation theory, equals the classical Rutherford's result. What about the scattering by magnetic fields?

Motivation

- For Coulomb scattering, the differential cross section in lowest order in perturbation theory, equals the classical Rutherford's result.
What about the scattering by magnetic fields?

■ Scattering by a solenoidal magnetic field of raduis $R \rightarrow 0 \equiv$ pure quantum phenomenon.
Aharonov-Bohm effect
Aharonov and Bohm, Phys. Rev. 115, 485 (1959)

Motivation

- For Coulomb scattering, the differential cross section in lowest order in perturbation theory, equals the classical Rutherford's result.
What about the scattering by magnetic fields?

■ Scattering by a solenoidal magnetic field of raduis $R \rightarrow 0 \equiv$ pure quantum phenomenon.
Aharonov-Bohm effect
Aharonov and Bohm, Phys. Rev. 115, 485 (1959)

■ Why it is important?
Magnetic fields confine charged particles (pQCD?)

Classical regime

Solenoid of radius R
Magnetic field: $\mathbf{B}=B_{0} \mathbf{z}$
Magnetic flux (constant):
$\Phi=\pi R^{2} B_{0}$
Impact parameter:
$\rho_{b}=b / R \in[-1,1]$
Larmor radius:
$r_{L}=\frac{p c}{e B}, \rho_{L} \equiv r_{L} / R$
Scattering angle: $\theta \in[0,2 \pi)$

Non-radiation assumption

Classical regime 2

From classical mechanics:

$$
\theta\left(\rho_{b}\right)=2 \arctan \left(\frac{\sqrt{1-\rho_{b}^{2}}}{\rho_{b}+\rho_{L}}\right)
$$

Classical regime 2

From classical mechanics:

$$
\theta\left(\rho_{b}\right)=2 \arctan \left(\frac{\sqrt{1-\rho_{b}^{2}}}{\rho_{b}+\rho_{L}}\right)
$$

Two solutions for $\rho_{b}\left(\theta, \rho_{L}\right)$:

$$
\rho_{b}^{ \pm}\left(\theta, \rho_{L}\right)=-\rho_{L} \sin ^{2}(\theta / 2) \pm \cos (\theta / 2) \sqrt{1-\rho_{L}^{2} \sin ^{2}(\theta / 2)}
$$

Classical regime 2

From classical mechanics:

$$
\theta\left(\rho_{b}\right)=2 \arctan \left(\frac{\sqrt{1-\rho_{b}^{2}}}{\rho_{b}+\rho_{L}}\right)
$$

Two solutions for $\rho_{b}\left(\theta, \rho_{L}\right)$:

$$
\begin{aligned}
& \rho_{b}^{ \pm}\left(\theta, \rho_{L}\right)=-\rho_{L} \sin ^{2}(\theta / 2) \pm \cos (\theta / 2) \sqrt{1-\rho_{L}^{2} \sin ^{2}(\theta / 2)} \\
& \rho_{b}\left(\theta, \rho_{L}<1\right)= \rho_{b}^{+}\left(\theta, \rho_{L}\right) \text { for } \theta \in[0,2 \pi) \\
& \rho_{b}\left(\theta, \rho_{L} \geq 1\right)= \rho_{b}^{ \pm}\left(\theta, \rho_{L}\right) \text { for } \theta \in\left[0, \theta_{\max }\right], \\
& \sin \left(\theta_{\max } / 2\right)=1 / \rho_{L}
\end{aligned}
$$

Classical regime 3

The differential cross section: $\quad \frac{d \sigma(\theta)}{d \theta}=\sum_{i}\left|\frac{d b_{i}(\theta)}{d \theta}\right|$

$$
\begin{aligned}
& \frac{1}{R} \frac{d \sigma(\theta)}{d \theta}=\left|\frac{\sin \theta}{2}\left(\rho_{L}+\frac{1+\rho_{L}^{2} \cos \theta}{2 \cos (\theta / 2) \sqrt{1-\rho_{L}^{2} \sin ^{2}(\theta / 2)}}\right)\right| \\
& +\left|\frac{\sin \theta}{2}\left(\rho_{L}-\frac{1+\rho_{L}^{2} \cos \theta}{2 \cos (\theta / 2) \sqrt{1-\rho_{L}^{2} \sin ^{2}(\theta / 2)}}\right)\right| \Theta\left(\left|\rho_{L}\right|-1\right) \\
& \quad \theta \in[0,2 \pi) \text { if } \rho_{L}<1 \text { and } \theta \in\left[0, \theta_{\max }\right] \text { if } \rho_{L} \geq 1
\end{aligned}
$$

Classical regime 3

The differential cross section: $\quad \frac{d \sigma(\theta)}{d \theta}=\sum_{i}\left|\frac{d b_{i}(\theta)}{d \theta}\right|$

$$
\begin{gathered}
\frac{1}{R} \frac{d \sigma(\theta)}{d \theta}=\left|\frac{\sin \theta}{2}\left(\rho_{L}+\frac{1+\rho_{L}^{2} \cos \theta}{2 \cos (\theta / 2) \sqrt{1-\rho_{L}^{2} \sin ^{2}(\theta / 2)}}\right)\right| \\
+\left|\frac{\sin \theta}{2}\left(\rho_{L}-\frac{1+\rho_{L}^{2} \cos \theta}{2 \cos (\theta / 2) \sqrt{1-\rho_{L}^{2} \sin ^{2}(\theta / 2)}}\right)\right| \Theta\left(\left|\rho_{L}\right|-1\right) \\
\theta \in[0,2 \pi) \text { if } \rho_{L}<1 \text { and } \theta \in\left[0, \theta_{\max }\right] \text { if } \rho_{L} \geq 1 \\
\rho_{L} \rightarrow-\rho_{L} \equiv \theta \rightarrow 2 \pi-\theta
\end{gathered}
$$

Classical regime 4

Action-dimension parameters:

$$
\begin{aligned}
& \hbar s_{p}=p R \\
& \hbar s_{\Phi}=\frac{e \Phi}{c}
\end{aligned}
$$

Relevant classical parameter:

$$
\rho_{L}=\frac{r_{L}}{R}=\pi \frac{s_{p}}{s_{\Phi}}
$$

Classical regime 5

Rigid solenoid case

$\rho_{L} \ll 1$
$\left.\frac{d \sigma}{d \theta}\right|_{\rho_{L} \rightarrow 0}=\frac{R}{2}|\sin (\theta / 2)|$

Weak field limit

$$
\begin{aligned}
& \rho_{L} \gg 1 \\
& \left.\frac{d \sigma}{d \theta}\right|_{s_{\Phi} \ll 1} \approx 2 \pi R \frac{s_{p}}{s_{\Phi}} \frac{u}{\sqrt{1-u^{2}}}
\end{aligned}
$$

Classical regime 5

Rigid solenoid case

$\rho_{L} \ll 1$
$\left.\frac{d \sigma}{d \theta}\right|_{\rho_{L} \rightarrow 0}=\frac{R}{2}|\sin (\theta / 2)|$

Weak field limit

$\rho_{L} \gg 1$
$\left.\frac{d \sigma}{d \theta}\right|_{s_{\Phi} \ll 1} \approx 2 \pi R \frac{s_{p}}{s_{\Phi}} \frac{u}{\sqrt{1-u^{2}}}$
Perturbative analysis implies:
$\hbar_{s_{\Phi}} \ll 1 \equiv \rho_{L} \gg 1\left(s_{\Phi}=e \Phi / \hbar c\right)$

Q-Perturbative Analysis

Relativistic quantum perturbative analysis
Murguia and Moreno, J. Phys. A36, 2545 (2003)
■ Free particle asymptotic sates

- Constant magnetic flux: $\Phi=\pi R^{2} B_{0}$

$$
S_{f i}^{(1)}=\delta_{f i}-i \int \bar{\psi}_{f}(x) \frac{e \notin(x)}{\hbar c} \psi_{i}(x) d^{4} x
$$

Q-Perturbative analysis 2

Free particle solutions:

$$
\psi(x)=\sqrt{\frac{m c^{2}}{E V}} u(\mathbf{p}, \mathbf{s}) e^{-i p \cdot x / \hbar}
$$

Magnetic potential of the solenoid:

$$
A=A_{\mu} \gamma^{\mu}=\frac{\Phi}{2 \pi} \epsilon_{i j 3} x_{i} \gamma^{j} \begin{cases}\frac{1}{R^{2}} & \text { for } r<R \\ \frac{1}{x_{1}^{2}+x_{2}^{2}} & \text { for } r>R\end{cases}
$$

Q-Perturbative analysis 3

Feynman rules: $\quad q^{\mu}=q_{\|}^{\mu}+q_{\perp}^{\mu} \quad q_{\|}^{\mu}=\left(q_{0}, 0,0, q_{3}\right), q_{\perp}^{\mu}=\left(0, q_{1}, q_{2}, 0\right)$

\longrightarrow	$u(\mathbf{p}, \mathbf{s})$
\bullet	$\bar{u}(\mathbf{p}, \mathbf{s})$
$e \Phi / \hbar c$	

$$
A(q)==-2 i \frac{\hbar^{2}}{R} J_{1}\left(q_{\perp} R / \hbar\right) \epsilon_{i j 3} \frac{q_{i}}{q_{\perp}} \gamma^{j}
$$

$$
\bullet \longrightarrow \quad-i S_{F}(q)=-i \frac{\hbar}{q^{\mu} \gamma_{\mu}-m c+i \epsilon}
$$

Q-Perturbative analysis 4

Differential cross section to first order in $\alpha=e^{2} / \hbar c$ and $\beta=e \Phi / 2 \pi c$:

$$
\begin{aligned}
& \frac{d \sigma}{d \theta}=\hbar\left(\frac{e \Phi}{R c}\right)^{2} \frac{\left|J_{1}\left(2 \frac{p}{\hbar} R|\sin (\theta / 2)|\right)\right|^{2}}{8 \pi p^{3} \sin ^{4}(\theta / 2)} \\
& d \sigma(2 \pi-\theta)=d \sigma(\theta) \Longrightarrow \text { Asimmetry } \equiv 0
\end{aligned}
$$

Q-Perturbative analysis 5

The result is consistent:

We recover the Aharonov-Bohm result for $\frac{e \Phi}{2 \hbar c} \ll 1$:

$$
\left.\frac{d \sigma}{d \theta}\right|_{\frac{p}{\hbar} R\left|\sin \frac{\theta}{2}\right|<1}=\frac{e^{2} \Phi^{2}}{8 \pi c^{2} \hbar p \sin ^{2} \frac{\theta}{2}}
$$

Remember:

$$
\left.\frac{d \sigma}{d \theta}\right|_{A B}=\hbar \frac{\sin ^{2}(e \Phi / 2 \hbar c)}{2 \pi p \sin ^{2}(\theta / 2)}
$$

Q-Perturbative analysis 6

Classical Planck's limit:

$$
\hbar \rightarrow 0
$$

$$
\lim _{\hbar \rightarrow 0} \frac{d \sigma}{d \theta}=\lim _{\hbar \rightarrow 0} \hbar^{2}\left(\frac{e \Phi}{2 \pi c}\right)^{2} \frac{\cos ^{2}\left(2 \frac{p}{\hbar} R|\sin (\theta / 2)|-3 \pi / 4\right)}{2 R^{3} p^{4}\left|\sin ^{5}(\theta / 2)\right|}=0
$$

Q-Perturbative analysis 6

Classical Planck's limit:

$$
\hbar \rightarrow 0
$$

$$
\lim _{\hbar \rightarrow 0} \frac{d \sigma}{d \theta}=\lim _{\hbar \rightarrow 0} \hbar^{2}\left(\frac{e \Phi}{2 \pi c}\right)^{2} \frac{\cos ^{2}\left(2 \frac{p}{\hbar} R|\sin (\theta / 2)|-3 \pi / 4\right)}{2 R^{3} p^{4}\left|\sin ^{5}(\theta / 2)\right|}=0
$$

Higher orders?

Possible non-classical asymmetries

Murguia, Moreno and Torres, quant-ph/0407123

What we understand

- New pure quantum phenomenon
- Perturbative analysis (renormalized to all order)
\rightarrow incomplete information
■ Asymmetries are not explained by perturbation theory

Example: pQCD

What we understand 2

Q-Exact analysis $(R>0)$

Ingredients for a non-relativistic analysis:
■ Schrödinger's equation $\Phi=(Z+\epsilon) \Phi_{0}, \Phi_{0}=h c / e$

- All quantum numbers large as compared with \hbar

■ Stationary phase approximation
Berry and Mount, Rep. Prog. Phys. 35, 315 (1972)
Landau, Lifshitz and Pitaevskii, Quantum Mechanics (non relativistic theory) (Pergamon Press,
Oxford) 1977

- We search for ν_{0}, which corresponds to an extremum of the phase $\delta_{\nu}(\nu=L / \hbar): 2 \delta^{\prime}\left(\nu_{0}\right)+\theta=0$

Notice: Relativistic and Non-relativistic regimes are related via a Foldy-Wouthuysen transformation
Moreno and Zentella, J. Phys. A22, L821 (1989)

Q-Exact analysis 2

Scattering Amplitude:

$$
f(\theta)=\frac{e^{-i \pi / 4}}{\sqrt{2 \pi k}} \sum_{m=-\infty}^{m=\infty} e^{i m \theta}\left\{e^{2 i \delta_{m}}-1\right\}
$$

Classical limit:

$$
f(\theta)=\frac{e^{-i \pi / 4}}{\sqrt{2 \pi k}} e^{i\left(\nu_{0}-1 / 2\right) \theta} e^{2 i \delta\left(\nu_{0}\right)}\left[1+i \operatorname{sign}\left(\delta^{\prime \prime}\left(\nu_{0}\right)\right)\right] \sqrt{\frac{\pi}{2\left|\delta^{\prime \prime}\left(\nu_{0}\right)\right|}}
$$

The differential cross section:

$$
\frac{d \sigma}{d \theta}=|f(\theta)|^{2}=\frac{1}{2 k} \frac{1}{\left|\delta^{\prime \prime}\left(\nu_{0}\right)\right|}
$$

Q-Exact analysis 3

Notice: The differential cross section
coincides with the classical one

$$
\begin{array}{ccc}
L=\hbar \nu & \Rightarrow & b=\nu / k \\
& \oplus \\
2 \delta^{\prime}\left(\nu_{0}\right)+\theta=0
\end{array}
$$

implies

$$
\left.\frac{d^{2} \delta}{d \nu^{2}}\right|_{\nu=\nu_{0}}=-\frac{1}{2} \frac{d \theta}{d \nu}=-\frac{1}{2 k} \frac{d \theta}{d b},
$$

hence

$$
\frac{d \sigma}{d \theta}=\left|\frac{d b}{d \theta}\right|=\frac{1}{2 k} \frac{1}{\left|\delta^{\prime \prime}\left(\nu_{0}\right)\right|}
$$

Q-Exact analysis 4

Rigid Solenoid
■ Solution to Schrödinger's equation:

$$
\psi(\mathbf{r})=\sum_{m=-\infty}^{m=\infty} e^{i m \theta} C_{m}\left[J_{m+N}(k r)+D_{m} N_{m+N}(k r)\right]
$$

■ The phase is: $e^{2 i \delta_{m}}=\frac{H_{m+\epsilon}^{(2)}(k R)}{H_{m+\epsilon}^{(1)}(k R)}, \quad \epsilon \in(0,1)$

Q-Exact analysis 4

Rigid Solenoid
■ Solution to Schrödinger's equation:

$$
\psi(\mathbf{r})=\sum_{m=-\infty}^{m=\infty} e^{i m \theta} C_{m}\left[J_{m+N}(k r)+D_{m} N_{m+N}(k r)\right]
$$

■ The phase is: $e^{2 i \delta_{m}}=\frac{H_{m+\epsilon}^{(2)}(k R)}{H_{m+\epsilon}^{(1)}(k R)}, \quad \epsilon \in(0,1)$
\checkmark When $R \rightarrow 0$, AB limit recovered
$\sqrt{ }$ Classical limit obtained:

$$
\frac{d \sigma}{d \theta}=\frac{R}{2}|\operatorname{sen}(\theta / 2)|
$$

Q-Exact analysis 5

Penetrable Solenoid

■ Solutions to Schrödinger's equation:

$$
\begin{aligned}
& \psi_{>}(\mathbf{r})=\sum_{m=-\infty}^{m=\infty} e^{i m \theta}\left[C_{1}^{>} J_{m+N}\left(k_{\perp} r\right)+C_{2}^{>} N_{m+N}\left(k_{\perp} r\right)\right] \\
& \psi_{<}(\mathbf{r})=\sum_{m=-\infty}^{m=\infty} e^{i m \theta} C^{<} x^{|m| / 2} e^{-x / 2} M(\alpha / 2, \gamma ; x) \\
& x=N \frac{r^{2}}{R^{2}}, \quad \alpha=|m|+m+1-\frac{2}{N}\left(\frac{k R}{2}\right)^{2}, \quad \gamma=|m|+1
\end{aligned}
$$

Q-Exact analysis 6

■ The phase is:

$$
\begin{aligned}
e^{2 i \delta_{m}} & =-\frac{H_{m}^{(2)}(k R) \mathcal{M}(m-N, N, k R)-H_{m}^{(2)^{\prime}}(k R)}{H_{m}^{(1)}(k R) \mathcal{M}(m-N, N, k R)-H_{m}^{(1)^{\prime}}(k R)} \\
\mathcal{M}(m, N, k R) & \equiv \frac{1}{k R}\left[|m|-N+N \frac{\alpha}{\gamma} \frac{M(\alpha / 2+1, \gamma+1 ; N)}{M(\alpha / 2, \gamma ; N)}\right]
\end{aligned}
$$

Q-Exact analysis 6

■ The phase is:

$$
\begin{aligned}
e^{2 i \delta_{m}} & =-\frac{H_{m}^{(2)}(k R) \mathcal{M}(m-N, N, k R)-H_{m}^{(2)^{\prime}}(k R)}{H_{m}^{(1)}(k R) \mathcal{M}(m-N, N, k R)-H_{m}^{(1)^{\prime}}(k R)} \\
\mathcal{M}(m, N, k R) & \equiv \frac{1}{k R}\left[|m|-N+N \frac{\alpha}{\gamma} \frac{M(\alpha / 2+1, \gamma+1 ; N)}{M(\alpha / 2, \gamma ; N)}\right]
\end{aligned}
$$

When $R \rightarrow 0$, AB limit recovered
$\sqrt{ }$ Classical limit obtained:

Q-Exact analysis 7

$$
\begin{gathered}
m \theta+2 \delta(m) \mathrm{VS} m \\
\kappa \equiv k R=100 \\
\left(b=L / p=m / k \Rightarrow \kappa \cdot \rho_{b}=k \cdot b=m\right)
\end{gathered}
$$

$$
\rho_{L}=2.0
$$

$$
\kappa \cdot \rho_{b}=30.17,-88.75
$$

$$
\rho_{L}=5.0
$$

$$
\kappa \cdot \rho_{b}=79.32,-90.25
$$

Q-Exact analysis 8

$$
\begin{gathered}
m \theta+2 \delta(m) \mathrm{VS} m \\
\kappa \equiv k R=100 \\
\left(b=L / p=m / k \Rightarrow \kappa \cdot \rho_{b}=k \cdot b=m\right)
\end{gathered}
$$

$$
\begin{array}{cc}
\theta=3 \pi / 4 & N=500 \\
\rho_{L}=0.1 & \kappa \cdot \rho_{b}=29.57
\end{array}
$$

$$
\begin{array}{cc}
\theta=\pi / 4 & N=62.5 \\
\rho_{L}=0.8 & \kappa \cdot \rho_{b}=76.24
\end{array}
$$

Conclusions

Conclusions

Classical regime:

■ $d \sigma$ asymmetric and finite. $\sigma=2 R$

Conclusions

Classical regime:
■ $d \sigma$ asymmetric and finite. $\sigma=2 R$
Quantum regime:

- $d \sigma$ (relativistic) perturbative, symmetric to lowest order in e^{2}

■ Non-classical asymmetries
■ Classical limit not recovered
■ New quantum effect

Conclusions

Classical regime:
■ $d \sigma$ asymmetric and finite. $\sigma=2 R$
Quantum regime:
■ $d \sigma$ (relativistic) perturbative, symmetric to lowest order in e^{2}
■ Non-classical asymmetries
■ Classical limit not recovered
■ New quantum effect
■ $d \sigma$ (non-relativistic) exact, asymmetric
■ Classical limit recovered

