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Motivation

m For Coulomb scattering, the differential cross section in lowest order
In perturbation theory, equals the classical Rutherford’s result.

What about the scattering by magnetic fields?
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Motivation

m For Coulomb scattering, the differential cross section in lowest order
In perturbation theory, equals the classical Rutherford’s result.

What about the scattering by magnetic fields?

m Scattering by a solenoidal magnetic field of raduis R — 0 = pure
guantum phenomenon.

Aharonov-Bohm effect
Aharonov and Bohm, Phys. Rev. 115, 485 (1959)
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Motivation

m For Coulomb scattering, the differential cross section in lowest order
In perturbation theory, equals the classical Rutherford’s result.

What about the scattering by magnetic fields?

m Scattering by a solenoidal magnetic field of raduis R — 0 = pure
guantum phenomenon.

Aharonov-Bohm effect
Aharonov and Bohm, Phys. Rev. 115, 485 (1959)

m Why it is important?
Magnetic fields confine charged particles (pQCD?)
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Classical regime

Solenoid of radius R
Magnetic field: B = Bz
Magnetic flux (constant):
d = 1R?B,

Impact parameter:

Py = b/R S [—1, 1]
Larmor radius:

x =25, pL=rL/R
Scattering angle: 6 € [0, 27)

Non-radiation assumption
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Classical regime 2

From classical mechanics:

I — pg
0(pp) = 2 arctan o
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Classical regime 2

From classical mechanics:

1 — p%
0(pp) = 2 arctan o

Two solutions for py(9, pr.):

pr(0.p1) = —prsin®(0/2) £ cos(0/2)\/1 - p2 sin® (0/2)
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Classical regime 2

From classical mechanics:

6(py) = 2arct .
— Zarctan
pb Pb + PL
Two solutions for py(9, pr.):
pE0.p1) = —pusin(9/2) £ cos(8/2)y/1 — p3 sin® (0/2)

pp(0, 0 <1) = pi (8, pr)for o € [0,2m)

pp(0,pr > 1) = PZE(QHOL) for 6 € [0, Omax|,
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Classical regime 3

The differential cross section: = S| =

1 do(f) |sind 1 + p% cos
R a9 |2 \/F7
2(308((9/2)\/1—,0%81112 (0/2)

sin 1 + p% cosd
|5 | ez - L O(lpr| — 1)
2 cos (9/2)\/1 — p? sin” (0/2)

0 c0,2m)if pr, <1and @ € [0, Omax] If pr, > 1.
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Classical regime 3

The differential cross section: = S| =

1 do(f) |sind 1 + p% cos
R a9 |2 \/F7
2(308((9/2)\/1—,0%81112 (0/2)

sin 1 + p% cosd
|5 | ez - L O(lpr| — 1)
2 cos (9/2)\/1 — p? sin” (0/2)

0 c0,2m)if pr, <1and @ € [0, Omax] If pr, > 1.

pL — —pL =0 — 21 =0
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Classical regime 4

Action-dimension parameters:

hs, = pR
o
hsg = —
c

Relevant classical parameter:
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Classical regime 5

Rigid solenoid case Weak field limit

pr, < 1 pr, > 1

d _ R d —~ S
5 0 = 2 sin(6/2)| 57 o] 21 R s; 1Qiu2

=00 — pr, = 30.0 —

zf =0.5 pL = 19.0 """

VRN B -
08 - pr= = . 8t i pr.= 1 i
0.6 ;Y -'"v\i\ . 6ff © ! |

’ . N 1 do : 1
%% R do
04 — 4 _
DO N S

0[ | i R PR o b |

0 /2 ™ 3m/2 2m 0 w2 ™
o G
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Classical regime 5

Rigid solenoid case Weak field limit

pr, < 1 pr, > 1
d _ R d ~

e = 5 |sin(6/2)| &z QWR' \/7
Perturbative analysis implies:

do por—0 do |se <1
hscp < 1 = pr, > 1 (s¢ = eP/hc)

=00 — pr, =300 —
pr =0.9 pr =100 -
YN el - T R
08 - L= . gif pr= 1
o6 T 1 6f :
P 1do :
1 do R a6
R df v ‘ .
04 * I/I ...‘\ - 4+ ‘:
o2t/ - 2|
ok | i e PR 0 )
0 /2 ™ 3m/2 2m 0 w2 ™
o G

XI1I-MSPF * October 6th-11th. 2008 San Carlos. Sonora. Mex. — p. 7/25



Q-Perturbative Analysis

Relativistic quantum perturbative analysis
Murguia and Moreno, J. Phys. A36, 2545 (2003)

m Free particle asymptotic sates
m Constant magnetic flux: ® = 7R?B,
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Q-Perturbative analysis 2

Free particle solutions:

2
o) =\ Frulp.s)e P!

Magnetic potential of the solenoid:

P 1 forr < R
W = R?
A=At = I €ija iy’ { forr > R

wl—l—xz
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Q-Perturbative analysis 3

Feynman rules: ¢ =qf +¢f  qff =(40,0,0,48),¢" = (0,01,42,0)

> o ’U,(p, S)

[ > ’lj,(p,S)
PY e® /he

Alq) = —2i%fJ1(QLR/h)€¢j3q(]—stj
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Q-Perturbative analysis 4

Differential cross section to first order
ina =¢?/hcand 3 = ed/2rc:

to ) (<)’ LhckREn /2]
df Rc 8mp3 sint (0/2)

do(2m — 0) = do () = Asimmetry = 0

0.003

0.0025

0.002 -

0.0015

0.001 -

=[N

0 /2 i 3n/2 27

XII-MSPE * October 6th-11th. 2008

San Carlos. Sonora. Mex

- —pn. 11/25



Q-Perturbative analysis 5

The result Is consistent:

We recover the Aharonov-Bohm result for £& < 1:

2 19
e P
_ X \/
)

= ——
PRlsin 2|<1  S8mchpsin

do
do

Remember:
do

do

sin? (e® /2hc)
Ap  2mpsin® (0/2)
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Q-Perturbative analysis 6

Classical Planck’s limit:

h — (

do (fﬁi)z(XEQ(Z%}ﬂﬁn(ﬁ/Zﬂ——3#/4)

lim — = lim A
—0 df  h—0 2mc 2R3p* |sin” (6/2)]
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Q-Perturbative analysis 6

Classical Planck’s limit:

h — 0

2 .
lim %% = tim 12 (@) cos” (2f R|sin (95/2)| —3r/4)
h—0 df h—0 2T 2R3p4 ‘Sin (9/2)’

; i
= t‘ "
__ 7, :



Higher orders?

Possible non-classical asymmetries
Murguia, Moreno and Torres, quant-ph/0407123

J m
p q Pf
1 1 1 1
! ! - J
h h h h h
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What we understand

B New pure quantum phenomenon

m Perturbative analysis (renormalized to all order)
— Incomplete information

B Asymmetries are not explained by perturbation theory

Example: pQCD
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What we understand 2

1 @

. Renormalized perturbartive DCS in e®
(RP-DCS)
=
VA
= B AB-DCS
i~
©
=
s . Region of coincidence of RP-DCS and AB-DCS
@ Classical region
0 2 arctan (sg) 1
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What we understand 2

1 @

. Renormalized perturbartive DCS in e®
(RP-DCS)
=
VA
= B AB-DCS
i~
©
=
s . Region of coincidence of RP-DCS and AB-DCS
@ Classical region
0 2 arctan (sg) 1

. do — 5 sin® (e® /2hc)
d91AB "7 2mpsin® (0/2)

XII-MSPE * October 6th-11th. 2008 San Carlos. Sonora. Mex. — n. 16/25



What we understand 2

1 @

. Renormalized perturbartive DCS in e®
(RP-DCS)
=
v
= B AB-DCS
i~
©
=
s . Region of coincidence of RP-DCS and AB-DCS
@ Classical region
0 2 arctan (sg) 1

| 2

e®\2 |J1(2F Rlsin (6/2)])
h( ) 8mp3 sin* (0/2)
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What we understand 2

1 ®
. Renormalized perturbartive DCS in e®
(RP-DCS)
=
VA
z B AB-DCS
©
=
s . Region of coincidence of RP-DCS and AB-DCS
@ Classical region
0 2 arctan (sg) 1
) do - ¥
do | LLP;f<1 2mhc?ph?

Landau, Lifshitz and Pitaevkii, Quantum Mechanics (non relativistic theory)

(Pergamon Press, Oxford) 1977
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Q-Exact analysis (R > 0)

Ingredients for a non-relativistic analysis:
m Schrodinger’s equation ® = (7 + ¢)®q, &g = hc/e
m All guantum numbers large as compared with 7

m Stationary phase approximation
Berry and Mount, Rep. Prog. Phys. 35, 315 (1972)
Landau, Lifshitz and Pitaevskii, Quantum Mechanics (non relativistic theory) (Pergamon Press,
Oxford) 1977

¢ We search for vy, which corresponds to an extremum
of the phase 4, (v = L/h): 20’ (vy) + 6 = 0

Notice: Relativistic and Non-relativistic regimes are related
via a Foldy-Wouthuysen transformation
Moreno and Zentella, J. Phys. A22, L821 (1989)
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Q-Exact analysis 2

Scattering Amplitude:

—im /4 M=00

£(6) = e\/ﬂ Z ez’m@{e%ém _ 1}

m—-=—oo

Classical limit:

e~im/d - . 7
_ i(ro—1/2)0 _2i6(vo) - "
f(0) Nors: e e 11+ 4sign(0” (vp))] \/2|5”(V0)‘
The differential cross section:

do 1 1
db ‘f( )l 2k \5”(V0)\
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Q-Exact analysis 3

Notice: The differential cross section
coincides with the classical one

L = hv = b=v/k
D
25/(V0) +6=0
iImplies
¢l _ 1ds_ 1db
dv?|,_, 2dv 2k db’
hence

‘ 27@ !5” 0)
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Q-Exact analysis 4

Rigid Solenoid

B Solution to Schrodinger’s equation:

m=oo

v(r)= > &™Cu[Jmin(kr) + Dy Npon (kr)

m=—oo

. - H?, (kR
B The phase is: ¢?'m = 7{;)“( ),
Hm—l—e(kR>

e € (0,1)
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Q-Exact analysis 4

Rigid Solenoid

B Solution to Schrodinger’s equation:

m=oo

v(r)= > &™Cu[Jmin(kr) + Dy Npon (kr)

m=—00
oo 2i5,, _ Hul (kR)
m The phase is: =" = 70 (hE)’ e € (0,1)

v/ When R — 0, AB limit recovered

v/ Classical limit obtained:

do R
o= E\Sen (0/2))
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Q-Exact analysis 5

Penetrable Solenoid

m Solutions to Schrodinger’s equation:

m=aco

Yu(r) = Y €M CT TN (kir) + C5 Ny (ki)
Ve(r)= Y MO LMZ TR M ()2, )

.
T a=|m|+m+ ARG

2 2 (kR
R2’

2
) , v =|m|+1
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Q-Exact analysis 6

B The phase is:

vis.  HP(KR)M(m — N,N,kR) — HY (kR)

© T T (1)
1| a M(a/2+1,v+1;N)
N = — N+ N —
M(m, N, kR) = o0 1 ml T T M (a2, N
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Q-Exact analysis 6

B The phase is:

yis,  HW(KR)M(m — N,N,kR) — H (kR)
HY (kR)M(m — N, N,kR) — HSY (kR)

a M(a/2+ 1,7+ 1;N)
N,kR)= — ||m| - N+ N =
MmN = g | = VA a2, )

v/ When R — 0, AB limit recovered

v/ Classical limit obtained:
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Q-Exact analysis 7

m@ —+25(m) VS m
k= kR = 100

b=L/p=m/k=kK-pp, =k-b=m)

0= /4 N =25 0 =m/15 N =10
o1 = 2.0 k- pp = 30.17, —88.75 oL, =5.0 K- pp = 79.32, —90.25

mMo+26

- 88. 7497 1 30.171 - 90. 2513 79. 3251
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Q-Exact analysis 8

m@ —+25(m) VS m
k= kR = 100

b=L/p=m/k=kK-pp, =k-b=m)

0 =3m/4 N = 500 0 =m/4 N = 62.5
pr, = 0.1 K- pp = 29.57 pr, = 0.8 K- pp = 76.24
ne+256

29. 5691 76. 2362
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Conclusions
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Conclusions

Classical regime:

B do asymmetric and finite. ¢ = 2R
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Conclusions

Classical regime:
B do asymmetric and finite. ¢ = 2R
Quantum regime:

B do (relativistic) perturbative, symmetric to lowest order in e?
m Non-classical asymmetries
m Classical limit not recovered

B New quantum effect
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Conclusions

Classical regime:

do asymmetric and finite. 0 = 2R

Quantum regime:

do (relativistic) perturbative, symmetric to lowest order in e?
Non-classical asymmetries
Classical limit not recovered

New quantum effect

do (non-relativistic) exact, asymmetric

Classical limit recovered

XII-MSPE * October 6th-11th. 2008 San Carlos. Sonora. Mex. — n. 25/25



	Motivation
	Motivation
	Motivation
	Motivation

	Classical regime
	Classical regime 2
	Classical regime 2
	Classical regime 2

	Classical regime 3
	Classical regime 3

	Classical regime 4
	Classical regime 5
	Classical regime 5

	Q-Perturbative Analysis
	Q-Perturbative analysis 2
	Q-Perturbative analysis 3
	Q-Perturbative analysis 4
	Q-Perturbative analysis 5
	Q-Perturbative analysis 6
	Q-Perturbative analysis 6

	Higher orders?
	What we understand
	What we understand 2
	What we understand 2
	What we understand 2
	What we understand 2

	Q-Exact analysis ($R>0$)
	Q-Exact analysis 2
	Q-Exact analysis 3
	Q-Exact analysis 4
	Q-Exact analysis 4

	Q-Exact analysis 5
	Q-Exact analysis 6
	Q-Exact analysis 6

	Q-Exact analysis 7
	Q-Exact analysis 8
	Conclusions
	Conclusions
	Conclusions
	Conclusions


