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Motivation

� For Coulomb scattering, the differential cross section in lowest order
in perturbation theory, equals the classical Rutherford’s result.

What about the scattering by magnetic fields?
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Motivation

� For Coulomb scattering, the differential cross section in lowest order
in perturbation theory, equals the classical Rutherford’s result.

What about the scattering by magnetic fields?

� Scattering by a solenoidal magnetic field of raduis R → 0 ≡ pure
quantum phenomenon.

Aharonov-Bohm effect
Aharonov and Bohm, Phys. Rev. 115, 485 (1959)
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Motivation

� For Coulomb scattering, the differential cross section in lowest order
in perturbation theory, equals the classical Rutherford’s result.

What about the scattering by magnetic fields?

� Scattering by a solenoidal magnetic field of raduis R → 0 ≡ pure
quantum phenomenon.

Aharonov-Bohm effect
Aharonov and Bohm, Phys. Rev. 115, 485 (1959)

� Why it is important?

Magnetic fields confine charged particles (pQCD?)
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Classical regime

b

R

θ

O

~C

rL

x

Solenoid of radius R

Magnetic field: B = B0z

Magnetic flux (constant):

Φ = πR2B0

Impact parameter:

ρb = b/R ∈ [−1, 1]

Larmor radius:

rL = pc
eB , ρL ≡ rL/R

Scattering angle: θ ∈ [0, 2π)

Non-radiation assumption
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Classical regime 2
From classical mechanics:

θ(ρb) = 2 arctan





√

1 − ρ2
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Classical regime 2
From classical mechanics:

θ(ρb) = 2 arctan





√

1 − ρ2
b

ρb + ρL





Two solutions for ρb(θ, ρL):

ρ±b (θ, ρL) = −ρL sin2(θ/2) ± cos(θ/2)
√

1 − ρ2
L sin2 (θ/2)

XIII-MSPF * October 6th-11th, 2008 San Carlos, Sonora, Mex. – p. 4/25



Classical regime 2
From classical mechanics:

θ(ρb) = 2 arctan





√

1 − ρ2
b

ρb + ρL





Two solutions for ρb(θ, ρL):

ρ±b (θ, ρL) = −ρL sin2(θ/2) ± cos(θ/2)
√

1 − ρ2
L sin2 (θ/2)

ρb(θ, ρL < 1) = ρ+
b (θ, ρL) for θ ∈ [0, 2π)

ρb(θ, ρL ≥ 1) = ρ±b (θ, ρL) for θ ∈ [0, θmax],

sin(θmax/2) = 1/ρL
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Classical regime 3

The differential cross section: dσ(θ)
dθ =

∑

i
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∣

∣

dbi(θ)
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2



ρL +
1 + ρ2

L cos θ

2 cos (θ/2)
√
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L sin2 (θ/2)
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sin θ
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ρL − 1 + ρ2
L cos θ

2 cos (θ/2)
√

1 − ρ2
L sin2 (θ/2)





∣
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∣

∣

∣

∣

Θ(|ρL| − 1)

θ ∈ [0, 2π) if ρL < 1 and θ ∈ [0, θmax] if ρL ≥ 1.
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ρL − 1 + ρ2
L cos θ

2 cos (θ/2)
√
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L sin2 (θ/2)





∣
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∣

∣

Θ(|ρL| − 1)

θ ∈ [0, 2π) if ρL < 1 and θ ∈ [0, θmax] if ρL ≥ 1.

ρL → −ρL ≡ θ → 2π − θ
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Classical regime 4

Action-dimension parameters:

~sp = pR

~sΦ =
eΦ

c

Relevant classical parameter:

ρL =
rL
R

= π
sp
sΦ
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Classical regime 5

Rigid solenoid case Weak field limit
ρL ≪ 1 ρL ≫ 1
dσ
dθ

∣

∣

ρL→0
= R

2 |sin(θ/2)| dσ
dθ

∣

∣

sΦ≪1
≈ 2πR sp

sΦ

u√
1−u2

 0

 0.2

 0.4

 0.6

 0.8

 1

0 � 3�=2 2��=2 �

1R d�d�

�L = 0:0�L = 0:5�L = 0:9�L = 1:0
 0

 2

 4

 6

 8

 10

0 �=2 ��

1R d�d�

�L = 10:0�L = 5:0�L = 1:0�L = 30:0

XIII-MSPF * October 6th-11th, 2008 San Carlos, Sonora, Mex. – p. 7/25



Classical regime 5

Rigid solenoid case Weak field limit
ρL ≪ 1 ρL ≫ 1
dσ
dθ

∣

∣

ρL→0
= R

2 |sin(θ/2)| dσ
dθ

∣

∣

sΦ≪1
≈ 2πR sp

sΦ

u√
1−u2

Perturbative analysis implies:

~sΦ ≪ 1 ≡ ρL ≫ 1 (sΦ = eΦ/~c)
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Q-Perturbative Analysis

Relativistic quantum perturbative analysis
Murguia and Moreno, J. Phys. A36, 2545 (2003)

� Free particle asymptotic sates

� Constant magnetic flux: Φ = πR2B0

S
(1)
fi = δfi − i

∫

ψ̄f (x)
eA/(x)

~c
ψi(x)d

4x
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Q-Perturbative analysis 2

Free particle solutions:

ψ(x) =

√

mc2

EV
u(p, s)e−ip·x/~

Magnetic potential of the solenoid:

A/ = Aµγ
µ =

Φ

2π
ǫij3xiγ

j

{

1
R2 for r < R

1
x2

1+x2
2

for r > R
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Q-Perturbative analysis 3
Feynman rules: qµ = qµ

‖
+ qµ

⊥ qµ

‖
= (q0, 0, 0, q3), qµ

⊥ = (0, q1, q2, 0)u(p; s)�u(p; s)e�=�h
A(q) = �2i�h2R J1(q?R=�h)�ij3 qiq3?j

�iSF (q) = �i �hq���m+i�
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Q-Perturbative analysis 4
Differential cross section to first order
in α = e2/~c and β = eΦ/2πc:

dσ

dθ
= ~

(

eΦ

Rc

)2
∣

∣J1(2
p
~
R|sin (θ/2)|)

∣

∣

2

8πp3 sin4 (θ/2)

dσ(2π − θ) = dσ(θ) =⇒ Asimmetry ≡ 0
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Q-Perturbative analysis 5

The result is consistent:

We recover the Aharonov-Bohm result for eΦ
2~c ≪ 1:

dσ

dθ

∣

∣

∣

∣

p

~
R|sin θ

2 |≪1

=
e2Φ2

8πc2~p sin2 θ
2

√

Remember:
dσ

dθ

∣

∣

∣

∣

AB

= ~
sin2 (eΦ/2~c)

2πp sin2 (θ/2)
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Q-Perturbative analysis 6
Classical Planck’s limit:

~ → 0

lim
~→0

dσ

dθ
= lim

~→0
~

2

(

eΦ

2πc

)2 cos2
(

2p
~
R|sin (θ/2)| − 3π/4

)

2R3p4
∣

∣sin5 (θ/2)
∣

∣

= 0
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Q-Perturbative analysis 6
Classical Planck’s limit:
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)2 cos2
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Higher orders?
Possible non-classical asymmetries
Murguia, Moreno and Torres, quant-ph/0407123

�
m pfjpi q 1�h 1�h�h

�h2 �h21�h2
�h�h�h�h�h

1�h 1�h 1�h 1�h
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What we understand

� New pure quantum phenomenon

� Perturbative analysis (renormalized to all order)
→ incomplete information

� Asymmetries are not explained by perturbation theory

Example: pQCD
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What we understand 2

0

Region of coincidence of RP-DCS and AB-DCS

AB-DCS

Classical region

Renormalized perturbartive DCS in eΦ
(RP-DCS)

12
π

arctan (sΦ)

2 π
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ct
an
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p
)
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What we understand 2

0

Region of coincidence of RP-DCS and AB-DCS

AB-DCS

Classical region

Renormalized perturbartive DCS in eΦ
(RP-DCS)

12
π

arctan (sΦ)

2 π
ar

ct
an

(s
p
)

1

dσ
dθ

∣

∣

LLP ;θ≪1
= e2Φ2

2π~c2pθ2

Landau, Lifshitz and Pitaevkii, Quantum Mechanics (non relativistic theory)

(Pergamon Press, Oxford) 1977
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Q-Exact analysis (R > 0)

Ingredients for a non-relativistic analysis:

� Schrödinger’s equation Φ = (Z + ǫ)Φ0, Φ0 = hc/e

� All quantum numbers large as compared with ~

� Stationary phase approximation
Berry and Mount, Rep. Prog. Phys. 35, 315 (1972)

Landau, Lifshitz and Pitaevskii, Quantum Mechanics (non relativistic theory) (Pergamon Press,

Oxford) 1977

� We search for ν0, which corresponds to an extremum
of the phase δν (ν = L/~): 2δ′(ν0) + θ = 0

Notice: Relativistic and Non-relativistic regimes are related
via a Foldy-Wouthuysen transformation
Moreno and Zentella, J. Phys. A22, L821 (1989)
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Q-Exact analysis 2
Scattering Amplitude:

f(θ) =
e−iπ/4

√
2πk

m=∞
∑

m=−∞
eimθ

{

e2iδm − 1
}

Classical limit:

f(θ) =
e−iπ/4

√
2πk

ei(ν0−1/2)θ e2iδ(ν0) [1 + isign(δ′′(ν0))]

√

π

2|δ′′(ν0)|

The differential cross section:

dσ

dθ
= |f(θ)|2 =

1

2k

1

|δ′′(ν0)|
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Q-Exact analysis 3
Notice: The differential cross section

coincides with the classical one

L = ~ν ⇒ b = ν/k

⊕

2δ′(ν0) + θ = 0

implies
d2δ

dν2

∣

∣

∣

∣

ν=ν0

= −1

2

dθ

dν
= − 1

2k

dθ

db
,

hence
dσ

dθ
=

∣

∣

∣

∣

db

dθ

∣

∣

∣

∣

=
1

2k

1

|δ′′(ν0)|
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Q-Exact analysis 4
Rigid Solenoid

� Solution to Schrödinger’s equation:

ψ(r) =
m=∞
∑

m=−∞
eimθCm[Jm+N (kr) +DmNm+N (kr)]

� The phase is: e2iδm =
H

(2)
m+ǫ(kR)

H
(1)
m+ǫ(kR)

, ǫ ∈ (0, 1)
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Q-Exact analysis 4
Rigid Solenoid

� Solution to Schrödinger’s equation:

ψ(r) =
m=∞
∑

m=−∞
eimθCm[Jm+N (kr) +DmNm+N (kr)]

� The phase is: e2iδm =
H

(2)
m+ǫ(kR)

H
(1)
m+ǫ(kR)

, ǫ ∈ (0, 1)

√
When R → 0, AB limit recovered

√
Classical limit obtained:

dσ

dθ
=
R

2
| sen (θ/2)|
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Q-Exact analysis 5
Penetrable Solenoid

� Solutions to Schrödinger’s equation:

ψ>(r) =
m=∞
∑

m=−∞
eimθ [C>

1 Jm+N (k⊥r) + C>
2 Nm+N (k⊥r)]

ψ<(r) =
m=∞
∑

m=−∞
eimθ C< x|m|/2 e−x/2M(α/2, γ;x)

x = N
r2

R2
, α = |m| +m+ 1 − 2

N

(

kR

2

)2

, γ = |m| + 1
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Q-Exact analysis 6

� The phase is:

e2iδm = −H
(2)
m (kR)M(m−N,N, kR) −H

(2)′

m (kR)

H
(1)
m (kR)M(m−N,N, kR) −H

(1)′
m (kR)

M(m,N, kR) ≡ 1

kR

[

|m| −N +N
α

γ

M(α/2 + 1, γ + 1;N)

M(α/2, γ;N)

]
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Q-Exact analysis 6

� The phase is:

e2iδm = −H
(2)
m (kR)M(m−N,N, kR) −H

(2)′

m (kR)

H
(1)
m (kR)M(m−N,N, kR) −H

(1)′
m (kR)

M(m,N, kR) ≡ 1

kR

[

|m| −N +N
α

γ

M(α/2 + 1, γ + 1;N)

M(α/2, γ;N)

]

√
When R → 0, AB limit recovered

√
Classical limit obtained:
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Q-Exact analysis 7
mθ + 2 δ(m) vs m

κ ≡ kR = 100
(b = L/p = m/k ⇒ κ · ρb = k · b = m)

θ = π/4 N = 25 θ = π/15 N = 10

ρL = 2.0 κ · ρb = 30.17,−88.75 ρL = 5.0 κ · ρb = 79.32,−90.25

-88.7497 30.171
m

1

2

3

4

5

6

mΘ+2∆

-90.2513 79.3251
m

1

2

3

4

5

6

mΘ+2∆
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Q-Exact analysis 8
mθ + 2 δ(m) vs m

κ ≡ kR = 100
(b = L/p = m/k ⇒ κ · ρb = k · b = m)

θ = 3π/4 N = 500 θ = π/4 N = 62.5

ρL = 0.1 κ · ρb = 29.57 ρL = 0.8 κ · ρb = 76.24

29.5691
m

1

2

3

4

5

6

mΘ+2∆

76.2362
m

1

2

3

4

5

6

mΘ+2∆

XIII-MSPF * October 6th-11th, 2008 San Carlos, Sonora, Mex. – p. 24/25



Conclusions
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Classical regime:
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Conclusions
Classical regime:

� dσ asymmetric and finite. σ = 2R

Quantum regime:

� dσ (relativistic) perturbative, symmetric to lowest order in e2

� Non-classical asymmetries

� Classical limit not recovered

� New quantum effect
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Conclusions
Classical regime:

� dσ asymmetric and finite. σ = 2R

Quantum regime:

� dσ (relativistic) perturbative, symmetric to lowest order in e2

� Non-classical asymmetries

� Classical limit not recovered

� New quantum effect

� dσ (non-relativistic) exact, asymmetric

� Classical limit recovered
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