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Abstract.

A well known example in quantum electrodynamics (QED) shtivet Coulomb scattering of
unpolarized electrons, calculated to lowest order in pbetion theory, yields a results that exactly
coincides (in the non-relativistic limit) with the Rutherfl formula. We examine an analogous
example, the classical and perturbative quantum scagtesfnan electron by a magnetic field
confined in an infinite solenoid of finite radius. The resulitained for the classical and the quantum
differential cross sections display marked differencesil®this may not be a complete surprise,
one should expect to recover the classical expression Hyiagghe classical limit to the quantum
result. This turn not to be the case. Surprisingly enough,shown that the classical result can not
be recuperated even if higher order corrections are includie recover the classic correspondence
of the quantum scattering problem a suitable non-pertiudbatethodology should be applied.
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INTRODUCTION

As it is widely known, the scattering of unpolarized eleagdy the Coulomb potential
exactly coincides with the classical Rutherford formularie consider the lowest order
in perturbation theory and the non-relativistic regime.tts paper, we examine an
analogous example: the scattering of an electron of momemilby a magnetic field
in a long solenoid of fixed fluxb and finite radiusR, looking both at the classical and
guantum regimes.

In the zero radius limit, the differential cross section (D@Sgiven by the famous
Aharonov-Bohm (AB) result [1]:

do| _ HS|n2(§¢/Zﬁc) | )
d0|,g  2mpsir?(6/2)
This is a purely quantum effect, because infihe 0 limit the expression cancels.

For a finite valueR of the solenoid radius, the classical cross section willehav
definite non-vanishing value, as far as the electron cantpgrenside the solenoid. We
shall calculate the expression for this classical cross@edne may wonder if there is
a connection between the quantum and classical regimesift $iolenoid radius. We



find that the differential cross section obtained from thet farder QED calculation does
not reduce to the classical value in the- O limit. Surprisingly enough, it is shown that
the classical result can not be recuperated even if higltaraorrections are included.
To recover the classic correspondence of the quantum sogtroblem a suitable non-
perturbative methodology should be applied.

CLASSICAL CROSSSECTION

Let us first consider the classical differential cross sectdf charged particles by
the magnetic field of a long solenoid of finite radiRsand fixed magnetic fluxp.
Utilizing the classical equation of motion the scatteringle as a function of the impact
parameteb is obtained as
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wherer| = pc/eBis the Larmor radius. The impact paramebtéf) is a multiple-valued
function of 8; hence, the differential cross section requires to addwizeldranches of
the function, the result is worked out as
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where we defined a dimensionless paramptet r| /R = pR/2f3, with 3 = e®/2rC;
andO(x) is the Heaviside step function. Notice that in the low eneegyme | < 1) the
scattering angle covers all the ran@e [— 1, 11). Instead foip. > 1 there is a maximum
allowed scattering anglé € [0, 6max; where sitimax) = 1/p..

As expected, the Lorentz’s force produces in general a icEsBCS that is not
symmetric with respect to the forward directiof € 0). Furthermore, it is worthwhile
to observe the highly nonlinear dependence of the DCS on tingliog 8 = e®/271C.

The impenetrable limip. — 0O is obtained withpR— 0 and fixed®; or considering
the limit @ — oo with fixed pR; in both case the DCS reduces to
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a result that, as expected, is symmetric with respect todhedrd direction and inde-
pendent of the coupling to the magnetic field.
Another interesting limit is obtained for high energy inerd particles with fixed
magnetic flux:pR— o (p_ > 1). The scattered electrons are confined inside a narrow



cone aligned along the forward direction, defined by the mamn anglebmax~ 1/p..
It is possible to show from equation (3) that the cross saagoluces to
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We notice again the nonlinear dependence of the DCS on thdicgug®, a result that
anticipates the incompatibility of the classical resulthwthe one that will be obtained
in a quantum perturbative calculation to any given finitesord

18] < Bmax. (5)

PERTURBATIVE QUANTUM ANALYSIS

We now turn our attention to the calculation of the DCS in tharqum regime. The
electron interacts with the gauge potential, that for thédinadius solenoid can be
represented as
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The interaction of the electron with the external magnestdfis taken into account by
introducing a dimensionless coupling facesp /hc for each interaction of the electron
with the external field, and a factor related to the Fouriansformation of the gauge
potentialA:
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whereq, refers to the momentum perpendicular to the direction ofntiagnetic field,
andJ; is the Bessel functions of first kind.

The DCS was calculated in reference [2] to the lowest pertivdarder in3 =
ed /2, using free particle incident and final asymptotic statesding

(8)
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The previous result has the same form whether or not the fislatigation of the beam
Is actually measured. As can be observed, the cross sesgmimetric in the scattering
angle8 with respect to the forward direction.

The marked different behavior between the classical andtgupaDCS becomes evi-
dent; first from the symmetric behavior of the quantum reggjtiation (8), as compared
to the asymmetric structure of the classical one, equaBpnHurthermore, notice that
the total quantum cross section is infinite, in contrast &fthite value of R obtained
for the classical case. More important is the fact that thengum DCS in equation (8)
is directly proportional to the coupling®, while the classical DCS divergese® — 0.

In order to consider the classical limit of the DCS in equat{8h we recall that
according to Berry and Mount [3] and Gutzwiller [4], the irepientation of the classical



limit requires to look at the situation in which the actionagtities that appear in the
corresponding classical problem are considered as vege las compared tb [5].
Here we identify two action variables, selected pRande®/c. It is then convenient
to define the dimensionless parametgys= pR/h andsep = e®/hc. In term of these
dimensionless parameters the DCS in equation (8) can be eas
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The classical limit is enforced by considering bath>> 1 andse > 1. We observe
that the classical limit of the DCS in equation (9) vanishesabee it behaves as
sé/s?, 0 h? — 0. This result establishes that the classical DCS can not dmveeed
in the “classical limit” of the quantum DCS calculated to fiostler in3 = e®/27tc.
Higher order processes can be calculated using the Feyruesfor the electron-
solenoid scattering [6]. Counting thiepower contributions to higher order diagrams
(as the one depicted in figure 1) and assuming free partigimpi®tic states, it can
be shown that higher orders fhdo not modify the leadingy power contribution to the
scattering matrix; in fact higher order correctiongicontribute with terms proportional
to positive higher powers ih.
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FIGURE 1. Feynman diagram anl power counting for an arbitrary order i = e®/2rmc of the
scattering matrix for a solenoidal magnetic field. The wighlines represent the interaction with the
external magnetic field while the straight lines represkatftee-fermion propagators.

We recall that usual radiative corrections (higher powars) will in general con-
tribute with positiveh powers to the matrix elements, hence they are not expected to
be relevant in the classical limit. Consequently, for aditrfinite order the perturbative
expansion in botl3 and a produces a contribution proportional to powershpfthat
cancels in the classical limit of this process. Consequeh#yclassical expression for
the DCS can not be recovered.

The various regions for the scattering electron-solenoamtgss are schematically
displayed in the diagram of figure 2. For illustrative purpssthe arc-tangent o,
andsy are normalized to unity. There are depicted the regions irchvequations (1)
and (8) are valid, including the renormalized perturbatamns in8 = ed/2rmc. Notice



that the Aharonov-Bohm DCS is valid for smajj; whereas the perturbative results in
B are valid in the smakky region. Both results coincide in tlsg — 0 andse — 0 region
[2]. It is expected that the exact quantum calculation {v&dr all values ofsp andse)
has the correct classical limit in ttsg — o andse — o region, which is depicted with
a dot in the upper right corner of the diagram.
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FIGURE 2. Diagrams, vs Se for the quantum cross section of the scattering by a solahaidgnetic
field. The results for sma#l, andse are shown by the dashed regions. The classical region issepted
by the dot in the upper right corner.

CONCLUSIONS

In this paper we have studied the classical and quantumesicattof an electron by a
magnetic field confined in an infinite solenoid of finite radilrsthe classical scenario
the DCS shows a nonlinear dependence on the coupling parafeted/2mc and a
general asymmetric behavior with respect to the forwardation. The DCS obtained
in the perturbative quantum regime displays marked diffees as compared with the
classical one. The classical limit of a corresponding quaxbbservable is characterized
as the limit in which all the relevant action quantities abasidered very large as com-
pared withh. We found that the classical DCS is not recovered from the igua®CS,
even if higher order corrections are included. We conclumdg in general perturbative
calculations easily could drive to unappropriated resmltdhe classical limit, because
in the perturbative regime typically at least one paramegerains small in comparison
with h.

To recover the classical correspondence of the quanturtesogt problem a suitable
non-perturbative methodology should be applied. It has isd@wn in [7] that an exact
expression for the quantum non-relativistic DCS can be abthiThen a combination
of the large action_variabl@& limit, with an stationary phase approximation for the
evaluation of the partial wave summation can be succegsfupplemented in order to
correctly derive the classical limit .
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