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Condensed matter analog of baryon chiral perturbation theory
Effective field theory for magnons

Motivation: High-Tc superconductivity in cuprates

1986: Bednorz and Müller discover high-Tc superconductivity by
doping copper oxide compounds (cuprates):

La2CuO4 −→ La2−xBaxCuO4 (Tc = 35 K)
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Electron-Hole asymmetry
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Motivation: High-Tc superconductivity in cuprates

SC results from doping antiferromagnetic insulators

Doping possible with both electrons and holes

Common structure: CuO2 layers separated by spacer layers

Concentrate on antiferromagnetic region: low doping, low T
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Microscopic description: The Hubbard model

The Hubbard Hamiltonian defined on a square lattice:

H = − t
∑

x ,i

(c†x↑cx+î↑ + c
†

x+î↑
cx↑ + c

†
x↓cx+î↓ + c

†

x+î↓
cx↓)

+ U
∑

x

c
†
x↑cx↑c

†
x↓cx↓ − µ

∑

x

(c†x↑cx↑ + c
†
x↓cx↓ − 1)

Parameters:
t : Hopping parameter (nearest neighbors)

U : On-site Coulomb repulsion

µ : Chemical potential for fermion number
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Condensed matter analog of baryon chiral perturbation theory
Effective field theory for magnons

Microscopic description: The Hubbard model

The Hubbard Hamiltonian defined on a square lattice:

H = − t
∑

x ,i

(c†x↑cx+î↑ + c
†

x+î↑
cx↑ + c

†
x↓cx+î↓ + c

†

x+î↓
cx↓)

+ U
∑

x

c
†
x↑cx↑c

†
x↓cx↓ − µ

∑

x

(c†x↑cx↑ + c
†
x↓cx↓ − 1)

Parameters:
t : Hopping parameter (nearest neighbors)

U : On-site Coulomb repulsion

µ : Chemical potential for fermion number

Minimal model for cuprates: contains the relevant physics

Away from half-filling: Hamiltonian virtually unsolvable from
first principles (Neither analytically nor numerically)
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Microscopic description: The Hubbard model

The Hubbard Hamiltonian defined on a square lattice:

H = − t
∑

x ,i

(c†x↑cx+î↑
+ c

†

x+î↑
cx↑ + c

†
x↓cx+î↓

+ c
†

x+î↓
cx↓)

+ U
∑

x

c
†
x↑cx↑c

†
x↓cx↓ − µ

∑

x

(c†x↑cx↑ + c
†
x↓cx↓ − 1)

Symmetries:

SU(2)s : Global spin rotation

U(1)Q : Fermion number conservation

Di : Displacement by one lattice spacing

O : 90 degrees rotation

R : Reflection on a lattice axis

T : Time reversal
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Antiferromagnetism: Near half-filling (1 fermion per site)

Near half-filling:

Antiferromagnetic alignment of spins is preferred

Spontaneous symmetry breaking: SU(2)s −→ U(1)s

Goldstone’s theorem: 2 massless excitations =⇒ 2 magnons
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Pure magnon sector: Magnon perturbation theory

Spontaneous global SU(2)s −→ U(1)s spin symmetry breaking:

2 Goldstone bosons (magnons) described by

~e(x) =
(

e1(x), e2(x), e3(x)
)

∈ S2 = SU(2)s/U(1)s

with x = (x1, x2, t)
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Effective field theory for magnons

Pure magnon sector: Magnon perturbation theory

Spontaneous global SU(2)s −→ U(1)s spin symmetry breaking:

2 Goldstone bosons (magnons) described by

~e(x) =
(

e1(x), e2(x), e3(x)
)

∈ S2 = SU(2)s/U(1)s

with x = (x1, x2, t)

Low-energy magnon physics described by nonlinear σ-model

L =
ρs

2
(∂i~e · ∂i~e +

1

c2
∂t~e · ∂t~e) + · · ·

ρs : spin stiffness c : spin wave velocity

Chakravarty, Halperin, and Nelson, PRB 39 (1989) 2344
Hasenfratz and Niedermayer, Phys. Lett. B268 (1991) 231
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State of affairs: Fermionic sector of effective theory

Earlier attempts by: Shraiman and Siggia, Wen, Shankar, ...

General agreement:

Magnons are coupled to fermions through composite vector
fields
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General agreement:

Magnons are coupled to fermions through composite vector
fields

No agreement on low-energy effective Lagrangian for fermions:

Conflicting realizations of fermion fields

Non-unique structure of terms in Lagrangians

=⇒ Model Lagrangians have not been constructed systematically



10

Motivation
Hole-Doping

Electron-Doping
Spiral Phases

Conclusions

Construction of effective field theory

State of affairs: Fermionic sector of effective theory

Earlier attempts by: Shraiman and Siggia, Wen, Shankar, ...

General agreement:

Magnons are coupled to fermions through composite vector
fields

No agreement on low-energy effective Lagrangian for fermions:

Conflicting realizations of fermion fields

Non-unique structure of terms in Lagrangians

=⇒ Model Lagrangians have not been constructed systematically

=⇒ Construction of a systematic low-energy effective field theory
for magnons and holes analogous to baryon chiral perturbation
theory
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P(x) =
1

2

(1+ ~e(x) · ~σ
)

∈ CP(1)
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, u(x) ∈ SU(2)s , u11(x) ≥ 0
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Nonlinear realization of SU(2)s symmetryCP(1) representation of magnon field

P(x) =
1

2

(1+ ~e(x) · ~σ
)

∈ CP(1)

Diagonalize the magnon field

u(x)P(x)u(x)† =

(

1 0
0 0

)

, u(x) ∈ SU(2)s , u11(x) ≥ 0

Under global SU(2)s spin transformations

P(x)′ = gP(x)g †, g ∈ SU(2)s

The diagonalizing field u(x) transforms as

u(x)′ = h(x)u(x)g †, h(x) ∈ U(1)s , u11(x)′ ≥ 0

Global SU(2)s rotation manifests itself as local U(1)s transformation!
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Composite vector fields

We introduce an anti-Hermitean field

vµ(x) = u(x)∂µu(x)† =

(

v3
µ(x) v+

µ (x)

v−
µ (x) −v3

µ(x)

)

with µ ∈ {1, 2, t}

Components used to couple magnons to holes
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Composite vector fields

We introduce an anti-Hermitean field

vµ(x) = u(x)∂µu(x)† =

(

v3
µ(x) v+

µ (x)

v−
µ (x) −v3

µ(x)

)

with µ ∈ {1, 2, t}

Components used to couple magnons to holes

Under global SU(2)s the components transform as

v3
µ(x)′ = v3

µ(x)−∂µα(x), v±
µ (x)′ = v±

µ (x) exp
(

± 2iα(x)
)

v3
µ(x): Abelian gauge field

v±
µ (x): Vector field (“charged” under U(1)s )
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Hole pockets ⇐⇒ Effective fields for holes

Where in momentum space do doped holes reside?

=⇒ Angle resolved photoemission spectroscopy (ARPES)
=⇒ Numerical simulations of single hole in AF
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Construction of effective field theory

Hole pockets ⇐⇒ Effective fields for holes

Where in momentum space do doped holes reside?

=⇒ Angle resolved photoemission spectroscopy (ARPES)
=⇒ Numerical simulations of single hole in AF

Single hole (away from half-filling) dispersion relation in the first
Brillouin zone:

Minima at lattice
momenta ~k = ±( π

2a ,± π
2a )
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Construction of effective field theory

Hole pockets ⇐⇒ Effective fields for holes

Symmetry considerations: Two half-pockets combine to a full pocket
In the effective theory:
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Hole pockets ⇐⇒ Effective fields for holes

Symmetry considerations: Two half-pockets combine to a full pocket
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Construction of effective field theory

Transformation behavior of hole fields

The symmetry properties of the underlying system have to be
inherited by the effective theory!
Transformation rules for hole fields:

SU(2)s : ψf
±(x)′ = exp(±iα(x))ψf

±(x)

U(1)Q : Qψf
±(x) = exp(iω)ψf

±(x)

Di : Diψf
±(x) = ∓ exp(ik f

i a) exp(∓iϕ(x))ψf
∓(x)

O : Oψα
±(x) = ∓ψβ

±(Ox) Oψβ
±(x) = ψα

±(Ox)

R : Rψα
±(x) = ψβ

±(Rx) Rψβ
±(x) = ψα

±(Rx)

T : Tψf
±(x) = ∓ exp(∓iϕ(Tx))ψf †

± (Tx)

Tψf †
± (x) = ± exp(±iϕ(Tx))ψf

±(Tx)



19

Motivation
Hole-Doping

Electron-Doping
Spiral Phases

Conclusions

Construction of effective field theory

Transformation behavior of hole fields

The symmetry properties of the underlying system have to be
inherited by the effective theory!
Transformation rules for hole fields:

SU(2)s : ψf
±(x)′ = exp(±iα(x))ψf

±(x)

U(1)Q : Qψf
±(x) = exp(iω)ψf

±(x)

Di : Diψf
±(x) = ∓ exp(ik f

i a) exp(∓iϕ(x))ψf
∓(x)

O : Oψα
±(x) = ∓ψβ

±(Ox) Oψβ
±(x) = ψα

±(Ox)

R : Rψα
±(x) = ψβ

±(Rx) Rψβ
±(x) = ψα

±(Rx)

T : Tψf
±(x) = ∓ exp(∓iϕ(Tx))ψf †

± (Tx)

Tψf †
± (x) = ± exp(±iϕ(Tx))ψf

±(Tx)

In a systematic derivative expansion: Construct the most
general Lagrangian which respects all symmetries
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Construction of effective field theory

Effective Lagrangian for magnons and holes

Lagrangian at leading order: Brügger et al. PRB 74 (2006) 224432

L =
ρs

2
(∂i~e · ∂i~e +

1

c2
∂t~e · ∂t~e)

+
∑

f =α,β

s=+,−

[

Mψf †
s ψ

f
s + ψf †

s Dtψ
f
s

+
1

2M ′
Diψ

f †
s Diψ

f
s + σf

1

2M ′′

(

D1ψ
f †
s D2ψ

f
s + D2ψ

f †
s D1ψ

f
s

)

+ Λ
(

ψf †
s v s

1ψ
f
−s + σf ψ

f †
s v s

2ψ
f
−s

)

+ N1ψ
f †
s v s

i v−s
i ψf

s + σf N2

(

ψf †
s v s

1v−s
2 ψf

s + ψf †
s v s

2v−s
1 ψf

s

)

]

with
Dµψ

f
±(x) =

[

∂µ ± iv3
µ(x)

]

ψf
±(x)

σα = +1, σβ = −1
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f †
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+ Λ
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i ψf

s + σf N2

(

ψf †
s v s

1v−s
2 ψf
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with
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Construction of effective field theory

Electron pockets ⇐⇒ Effective fields for electrons

Single electron (away from half-filling) dispersion relation in the
first Brillouin zone:

Minima at lattice
momenta ~k = (π

a
, 0) and

~k = (0, π
a
)
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Construction of effective field theory

Electron pockets ⇐⇒ Effective fields for electrons

Single electron (away from half-filling) dispersion relation in the
first Brillouin zone:

Minima at lattice
momenta ~k = (π

a
, 0) and

~k = (0, π
a
)

Symmetry considerations: one single electron pocket!

=⇒ Fields for electrons: ψ±(x) ψ†
±(x)
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Construction of effective field theory

Effective Lagrangian for magnons and electrons

Lagrangian at leading order:

L =
ρs

2
(∂i~e · ∂i~e +

1

c2
∂t~e · ∂t~e)

+
∑

s=+,−

[

Mψ†
sψs + ψ†

sDtψs +
1

2M ′
Diψ

†
sDiψs + Nψ†

s v
s
i v−s

i ψs

+ iK
(

D1ψ
†
sv

s
1ψ−s − ψ†

sv
s
1D1ψ−s − D2ψ

†
sv

s
2ψ−s + ψ†

sv
s
2D2ψ−s

)

]

with
Dµψ±(x) =

[

∂µ ± iv3
µ(x)

]

ψ±(x)

Brügger, Hofmann, Kämpfer, Moser, Pepe, and Wiese, PRB 75
(2007) 214405



23

Motivation
Hole-Doping

Electron-Doping
Spiral Phases

Conclusions

Construction of effective field theory

Effective Lagrangian for magnons and electrons

Lagrangian at leading order:

L =
ρs

2
(∂i~e · ∂i~e +

1

c2
∂t~e · ∂t~e)

+
∑

s=+,−

[

Mψ†
sψs + ψ†

sDtψs +
1

2M ′
Diψ

†
sDiψs + Nψ†

s v
s
i v−s

i ψs

+ iK
(

D1ψ
†
sv

s
1ψ−s − ψ†

sv
s
1D1ψ−s − D2ψ

†
sv

s
2ψ−s + ψ†

sv
s
2D2ψ−s

)

]

with
Dµψ±(x) =

[

∂µ ± iv3
µ(x)

]

ψ±(x)
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Effective Lagrangian for magnons and electrons

Lagrangian at leading order:

L =
ρs

2
(∂i~e · ∂i~e +

1

c2
∂t~e · ∂t~e)

+
∑

s=+,−

[

Mψ†
sψs + ψ†

sDtψs +
1

2M ′
Diψ

†
sDiψs + Nψ†

s v
s
i v−s

i ψs

+ iK
(

D1ψ
†
sv

s
1ψ−s − ψ†

sv
s
1D1ψ−s − D2ψ

†
sv

s
2ψ−s + ψ†

sv
s
2D2ψ−s

)

]

with
Dµψ±(x) =

[

∂µ ± iv3
µ(x)

]

ψ±(x)

Additional derivatives! =⇒ One-magnon exchange between
electrons is weaker than between holes

Brügger, Hofmann, Kämpfer, Moser, Pepe, and Wiese, PRB 75
(2007) 214405
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Comparison of Holes and Electrons

Holes:

Carry flavor

Elliptical pockets in BZ

Interact with background
at O(p)

Electrons:

No flavor

Circular pockets in BZ

Interact with background
at O(p2)
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Assumptions

To describe the antiferromagnet with finite doping, we assume

Fermions are indoped homogeneously

The magnetic background does not vary in time: vt = 0

Fermion contact interactions are small
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Uniform Background Field
Dispersion Relations of Indoped Fermions
Spiral Phases for Holes
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The homogeneous doping of fermions requires a homogeneous
magnetic background.
⇒ vi = const. up to a U(1)s “gauge” transformation:

v3
i (x)′ = v3

i (x) − ∂iα(x) = sin2 θ(x)

2
∂iϕ(x) − ∂iα(x) = c3

i ,

v±
i (x)′ = v±

i (x) exp(±2iα(x))

=
1

2

[

sin θ(x)∂iϕ(x) ± i∂iθ(x)
]

exp(∓i(ϕ(x) − 2α(x)))

= c±i

Theorem

The staggered magnetization ~e(x) configuration formed for

uniform background fields ci , c
3
i is either homogeneous or a spiral

Brügger, Hofmann, Kämpfer, Pepe, and Wiese PRB 75
(2007) 014421
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Hamiltonian Formulation I

Hole Hamiltonian:

H f =

(

M +
(pi−c3

i
)2

2M′ + σf
(p1−c3

1 )(p2−c3
2 )

M′′ Λ(c1 + σf c2)

Λ(c1 + σf c2) M +
(pi +c3

i )2

2M′ + σf
(p1+c3

1 )(p2+c3
2 )

M′′

)

Electron Hamiltonian:

H =

(

M +
(pi−c3

i
)2

2M′ + Ncici 2K (−p1c1 + p2c2)

2K (−p1c1 + p2c2) M +
(pi +c3

i
)2

2M′ + Ncici

)

Acting on the 2d spin space

(

ψ+(x)
ψ−(x)

)

.
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Hamiltonian Formulation II

Energy of the indoped fermions through diagonalization of the
single-particle Hamiltonians

Hole Energy

E f
±(~p) = M +

p2
i

2M ′
+ σf

p1p2

M ′′
± Λ|c1 + σf c2|

Electron Energy

E±(~p) = M +
p2
i

2M ′
+ Ncici ± 2K |p1c1 − p2c2|

± now refers to upper and lower energy states.

Minimizing the energies of the fermions leads to c3
i = 0
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Identification of Parameters

c3
i = 0 has important consequences. It can be shown, that

θ(x) = π
2

⇒ The spiral plane lies in the plane CuO plane

ϕ(x) = 2cixi

k = 2
√

c2
1 + c2

2 = const.

k is the spiral pitch

Background field contribution to the total energy density:

ǫ = 2ρsv
+
i v−

i = 2ρs(c
2
1 + c2

2 )
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Density of Indoped Holes - Total Energy Density

Density per flavor:
nf
± = 1

(2π)2

∫

P f
±

d2p = 1
2π

MeffT f
±, Meff = M′M′′√

M′′2−M′2

Kinetic energy density:

t f
± = 1

(2π)2

∫

P f
±

d2p
(

p2
i

2M′ + σf
p1p2
M′′

)

= 1
4π

MeffT f
±

2

Total energy density:

ǫh =
∑

f =α,β

s=+,−

[

(M + sΛ|c1 + σf c2|)nf
s + t f

s

]

Minimize ǫh − λn: Minimizing the fermion energy density with
fixed hole density. λ is a Lagrange multiplier.
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Phases of Hole-Doped Antiferromagnets

4 Pocket Phase:

Fact

Bounded from below for 2πρs > MeffΛ2

ci = 0 ǫ4 = ǫ0 + Mn +
πn2

4Meff

3 Pocket Phase:

Fact

Bounded from below for 2πρs > MeffΛ2

|ci | =
π

2

Λn

6πρs − MeffΛ2
ǫ3 = ǫ0+Mn+

π

3Meff

(

1 − 1

2

MeffΛ2

6πρs − MeffΛ2

)

n2
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Phases of Hole-Doped Antiferromagnets

2 Pocket Phase:

Fact

Bounded from below for 2πρs >
1
2MeffΛ2

|c1,2| =
Λ

4ρs

n, |c2,1| = 0, ǫ2 = ǫ0 + Mn +

(

π

2Meff

− Λ2

8ρs

)

n2.

1 Pocket Phase:

Fact

Always bounded from below but unstable against forming

inhomogeneities for 2πρs <
1
2MeffΛ2

|c1| = |c2| =
Λ

4ρs

n ǫ1 = ǫ0 + Mn +

(

π

Meff

− Λ2

4ρs

)

n2
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Phases of Hole-Doped Antiferromagnets

Homogeneous Phase
4 Hole Pockets
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Phases of Hole-Doped Antiferromagnets

O Degree Spiral 45 Degrees Spiral
2 Hole Pockets 3 (or 1) Hole Pockets



36

Motivation
Hole-Doping

Electron-Doping
Spiral Phases

Conclusions

Uniform Background Field
Dispersion Relations of Indoped Fermions
Spiral Phases for Holes
Homogeneous Phase for Electrons

Stability of Phases for Hole Doping

 0
 0  1  2 MeffΛ

2
/2πρs

Homogeneous phase Zero degree spiral Inhomogeneous phase

κi
κ1
κ2
κ3
κ4

κ1 =

(

π

Meff
− Λ2

ρs

)

κ2 =

(

π

2Meff
− Λ2

8ρs

)

κ3 =
π

3Meff

(

1 − 1

2

MeffΛ2

6πρs − MeffΛ2

)

κ4 =
π

4Meff
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Homogeneous Phase for Electron-Doped Antiferromagnets

Homogeneous Phase
No Spiral Phases
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Effective field theory for magnons
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Construction of effective field theory

4 Spiral Phases
Uniform Background Field
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Conclusions

High-T superconductors: Condensed matter analog of baryon
chiral perturbation theory

We have constructed a systematic low-energy effective field
theory for lightly doped antiferromagnets

Using the effective theory we have investigated spiral phases
in hole- and electron-doped cuprates

While spiral phases do exist for hole-doping, they are absent in
electron-doped cuprates

We also calculated the one-magnon-exchange potential and
investigated the possibility of hole-hole and electron-electron
bound states
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Outlook

Analysis of materials with other lattice geometries:
Honeycomb and Triangular lattices

Incorporation of Phonons as low-energy degrees of freedom

Systematic treatment of loop graphs

Towards the mysterious Mechanism of high-T
superconductivity
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Nonlinear Realization of SU(2)s on the fermions

u(x)′ = h(x)u(x)g † C ′
x = gCx

ΨX (x)′ = h(x)u(x)Cx = h(x)ΨX (x)

ΨX (x) =

(

ψX
+(x) ψX †

− (x)

ψX
−(x) −ψX †

+ (x)

)

, x ∈ even sublattice

ΨX (x) =

(

ψX
+(x) −ψX †

− (x)

ψX
−(x) ψX †

+ (x)

)

, x ∈ odd sublattice.

The global spin rotation symmetry is also realized locally on the
fermions.
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Sublattice Structure 1

k = (k1, k2) ∈
{

(0, 0);
(

π
a
, π

a
)
)}

A A

A A

A A

A

B B

B

B

B

B

BB A
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Sublattice Structure 2

k = (k1, k2) ∈
{

(0, 0) ,
(

pi
a
, π

a

)

,
(

π
a
, 0
)

,
(

0, π
a

)

,
(

± π
2a ,± π

2a

)

}

A C

F H

C A

F

B D

E

D

G

B

EG H
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From Charge Carriers to Grassmann numbers

Hubbard model in manifestly SU(2)~Q
invariant form (at half filling)

H = − t

2

∑

x ,i

Tr[C †
x C

x+î
+ C

†

x+î
Cx ] +

U

12

∑

x

Tr[C †
x CxC

†
x Cx ].

Cx =

(

cx↑ (−1)xc†x↓
cx↓ −(−1)xc

†
x↑

)



44

Motivation
Hole-Doping

Electron-Doping
Spiral Phases

Conclusions

From Charge Carriers to Grassmann numbers

Hubbard model in manifestly SU(2)~Q
invariant form (at half filling)

H = − t

2

∑

x ,i

Tr[C †
x C

x+î
+ C

†

x+î
Cx ] +

U

12

∑

x

Tr[C †
x CxC

†
x Cx ].

Cx =

(

cx↑ (−1)xc†x↓
cx↓ −(−1)xc

†
x↑

)

ΨX (x) = u(x)Cx X := sublatticeindex
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Solution for ~e(x) for constant background fields

~e(x) =
(

sinθ(x)cosϕ(x), sin θ(x)sinϕ(x), cos θ(x)
)

cos θ(x) =
1

√

1 +
(

ci

c3
i

)2



cos η +
ci

c3
i

sin η cos



2

√

1 +

(

ci

c3
i

)2

c3
i xi







 .

ϕ(x) = atan













ci

c3
i

sin

(

2

√

1 +
(

ci

c3
i

)2
c3
i xi

)

sin η − ci

c3
i

cos η cos

(

2

√

1 +
(

ci

c3
i

)2
c3
i xi

)













.
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Strong coupling limit: U ≫ t
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Four possible states at each lattice site: |0〉, | ↑〉, | ↓〉, | ↑↓〉
Assumptions:

Half-filling: in average one fermion per lattice site

Strong coupling limit: U ≫ t

Consequences:

| ↑↓〉 huge energy cost =⇒ Ground state consists of | ↑〉, | ↓〉
Enormous degeneracy of states
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Antiferromagnetism: Hubbard model

Four possible states at each lattice site: |0〉, | ↑〉, | ↓〉, | ↑↓〉
Assumptions:

Half-filling: in average one fermion per lattice site

Strong coupling limit: U ≫ t

Consequences:

| ↑↓〉 huge energy cost =⇒ Ground state consists of | ↑〉, | ↓〉
Enormous degeneracy of states

How does the ground state order?

By hopping system can lower its energy

Hopping only possible for antiparallel spins

=⇒ Antiferromagnetic spin alignment is favored!
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Relating microscopic operators to effective fields I

With the matrix-valued operator

Cx =

(

cx↑ (−1)x c
†
x↓

cx↓ −(−1)xc
†
x↑

)

the Hubbard Hamiltonian can be written

H = − t

2

∑

x ,i

Tr[C †
x C

x+î
+ C

†

x+î
Cx ] +

U

12

∑

x

Tr[C †
x CxC

†
x Cx ]

− µ

2

∑

x

Tr[C †
x Cxσ3]
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Relating microscopic operators to effective fields II

Defining new lattice operators with the help of the
diagonalizing matrix u(x):

ΨA,B,...,H
x = u(x)Cx , x ∈ A,B , ...,H
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Relating microscopic operators to effective fields II

Defining new lattice operators with the help of the
diagonalizing matrix u(x):

ΨA,B,...,H
x = u(x)Cx , x ∈ A,B , ...,H

Work out symmetry transformation properties

Replace lattice operators by effective Grassmann fields

ΨA,B,...,H
x −→ ΨA,B,...,H(x)
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Relating microscopic operators to effective fields II

Defining new lattice operators with the help of the
diagonalizing matrix u(x):

ΨA,B,...,H
x = u(x)Cx , x ∈ A,B , ...,H

Work out symmetry transformation properties

Replace lattice operators by effective Grassmann fields

ΨA,B,...,H
x −→ ΨA,B,...,H(x)

Postulate: Transformation properties are inherited!
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Accidental Galilean boost invariance

G : GP(x) = P(Gx), Gx = (~x − ~v t, t),

Gψf
±(x) = exp

(

~pf · ~x − ωf t
)

ψf
±(Gx),

Gψf †
± (x) = ψf †

± (Gx) exp
(

−~pf · ~x + ωf t
)

,

with ~pf = (pf
1 , p

f
2) and ωf given by

pf
1 =

M ′

1 − (M ′/M ′′)2
[

v1 − σf

M ′

M ′′
v2

]

,

pf
2 =

M ′

1 − (M ′/M ′′)2
[

v2 − σf

M ′

M ′′
v1

]

,

ωf =
pf
i

2

2M ′
+ σf

pf
1pf

2

M ′′
=

M ′

1 − (M ′/M ′′)2
[1

2
(v2

1 + v2
2 ) − σf

M ′

M ′′
v1v2

]
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Transformation behavior of electron fields

SU(2)s : ψ±(x)′ = exp(±iα(x))ψ±(x)

U(1)Q : Qψ±(x) = exp(iω)ψ±(x)

Di : Diψ±(x) = ∓ exp(ikia) exp(∓iϕ(x))ψ∓(x)

O : Oψ±(x) = ±ψ±(Ox)

R : Rψ±(x) = ψ±(Rx)

T : Tψ±(x) = exp(∓iϕ(Tx))ψ†
±(Tx)

Tψ†
±(x) = − exp(±iϕ(Tx))ψ±(Tx)
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