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Motivation

Condensed matter analog of baryon chiral perturbation theory
Effective field theory for magnons

Motivation: High- T, superconductivity in cuprates

1986: Bednorz and Miiller discover high-T. superconductivity by
doping copper oxide compounds (cuprates):

La2CuO4 — Lag_XBaXCuO4 (TC =35 K)
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Motivation: High- T, superconductivity in cuprates
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@ SC results from doping antiferromagnetic insulators
@ Doping possible with both electrons and holes

@ Electron-Hole asymmetry
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Motivation: High- T, superconductivity in cuprates

Phase diagram of cuprates: Crystal structure:
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Dopant Cofcentration x
Damascelli, Hussain, and Shen, . . .
Rev. Mod. Phys. 75 (2003) 473 Orenstein and Millis, Science 288 (2000) 468

@ SC results from doping antiferromagnetic insulators
@ Doping possible with both electrons and holes
@ Common structure: CuO; layers separated by spacer layers

@ Concentrate on antiferromagnetic region: low doping, low T
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Microscopic description: The Hubbard model

The Hubbard Hamiltonian defined on a square lattice:

T T T
H__tz = x+lT+C+TCXT+ x| x+ll+c+7lcxl)
—l—UZc Cx1Cy Cxl‘ﬂz ch+c = 1)

@ Parameters:
t : Hopping parameter (nearest neighbors)

U : On-site Coulomb repulsion

1 Chemical potential for fermion number



Motivation

Condensed matter analog of baryon chiral perturbation theory
Effective field theory for magnons

Microscopic description: The Hubbard model

The Hubbard Hamiltonian defined on a square lattice:

T T T
H__tz = x+lT+C+TCXT+ x| x+ll+c+7lcxl)
—l—UZc Cx1Cy Cxl_ﬂz ch+c 1l — 1)

@ Parameters:
t : Hopping parameter (nearest neighbors)

U : On-site Coulomb repulsion
1 Chemical potential for fermion number
@ Minimal model for cuprates: contains the relevant physics

@ Away from half-filling: Hamiltonian virtually unsolvable from
first principles (Neither analytically nor numerically)



Motivation

Condensed matter analog of baryon chiral perturbation theory
Effective field theory for magnons

Microscopic description: The Hubbard model

The Hubbard Hamiltonian defined on a square lattice:

— 1 1 1 1
H=- tz:(chcXJr;T T T 6 Gt cx+ncxl)

X, i
+UY cheadion —n) (e + e —1)
X X

@ Symmetries:
SU(2)s : Global spin rotation
U(1)q : Fermion number conservation
: Displacement by one lattice spacing
: 90 degrees rotation

: Reflection on a lattice axis

- 3 0O

. Time reversal
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Condensed matter analog of baryon chiral perturbation theory
Effective field theory for magnon

Antiferromagnetism: Near half-filling (1 fermion per site)

Near half-filling:
@ Antiferromagnetic alignment of spins is preferred
@ Spontaneous symmetry breaking: SU(2)s — U(1)s

@ Goldstone’s theorem: 2 massless excitations = 2 magnons
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Systematic effective field theory description

Antiferromagnets QCD
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Condensed matter analog of baryon chiral perturbation theory
Effective field theory for magnons

Systematic effective field theory description

Antiferromagnets QCD
Spont. symm. | g0y L p(1),  |SU@)L®SU@K — SU@)i—r
breaking
GB physics Magnon perturbation | Chiral perturbation
theory theory
GB + matter Effective theory Baryon chiral
physics presented here perturbation theory
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Pure magnon sector: Magnon perturbation theory

Spontaneous global SU(2)s; — U(1)s spin symmetry breaking:
@ 2 Goldstone bosons (magnons) described by

&(x) = (e1(x), e2(x), e3(x)) € S? = SU(2)s/U(1)s

with x = (x1, x2, t)



Motivation

Condensed matter analog of baryon chiral perturbation theory
Effective field theory for magnons

Pure magnon sector: Magnon perturbation theory

Spontaneous global SU(2)s; — U(1)s spin symmetry breaking:
@ 2 Goldstone bosons (magnons) described by

&(x) = (e1(x), e2(x), e3(x)) € S? = SU(2)s/U(1)s
with x = (x1, x2, t)
@ Low-energy magnon physics described by nonlinear o-model
L= P08 06+~ 0:8) + - --
2 c?

ps: spin stiffness  ¢: spin wave velocity

Chakravarty, Halperin, and Nelson, PRB 39 (1989% 2344
Hasenfratz and Niedermayer, Phys. Lett. B268 (1991) 231
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State of affairs: Fermionic sector of effective theory

Earlier attempts by: Shraiman and Siggia, Wen, Shankar, ...

General agreement:

@ Magnons are coupled to fermions through composite vector
fields
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Hole-Doping
Construction of effective field theory

State of affairs: Fermionic sector of effective theory

Earlier attempts by: Shraiman and Siggia, Wen, Shankar, ...

General agreement:

@ Magnons are coupled to fermions through composite vector
fields

No agreement on low-energy effective Lagrangian for fermions:
@ Conflicting realizations of fermion fields
@ Non-unique structure of terms in Lagrangians
—> Model Lagrangians have not been constructed systematically

— Construction of a systematic low-energy effective field theory
for magnons and holes analogous to baryon chiral perturbation
theory
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Symmetry-based construction of effective theory
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@ CP(1) representation of magnon field

P(x) = %(11 1+ &(x) - 5) € CP(1)
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Hole-Doping
Construction of effective field theory

Nonlinear realization of SU(2), symmetry

@ CP(1) representation of magnon field

1
P(x) = 5(]1 + &(x)-7) € CP(1)
@ Diagonalize the magnon field

u(x)P(x)u(x) = < o ) u(x) € SUR)s,  ua(x) >0

@ Under global SU(2)s spin transformations
P(x) =gP(x)g', g€ SU(2)s
@ The diagonalizing field u(x) transforms as
u(x) = h(x)u(x)g', h(x) € U(1)s, up1(x) >0

Global SU(2)s rotation manifests itself as local U(1)s transformation!



Hole-Doping
Construction of effective field theory

Composite vector fields

@ We introduce an anti-Hermitean field
+
% = u(x)0uu T—<V(X) vu(x)>
u( ) ( ) ( ) v (X) _Vi(x)
with € {1,2, t}

@ Components used to couple magnons to holes



Hole-Doping
Construction of effective field theory

Composite vector fields

@ We introduce an anti-Hermitean field

) = st = (2000

with € {1,2, t}
@ Components used to couple magnons to holes

@ Under global SU(2)s the components transform as

va(x) = v3(x) — dua(x), viE(x) = vi(x) exp (£ 2ia(x))

v3(x): Abelian gauge field
vljt(x): Vector field (“charged” under U(1)s)
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Hole-Doping
Construction of effective field theory

Hole pockets <= Effective fields for holes

Where in momentum space do doped holes reside?

= Angle resolved photoemission spectroscopy (ARPES)
= Numerical simulations of single hole in AF



Hole-Doping
Construction of effective field theory

Hole pockets <= Effective fields for holes

Where in momentum space do doped holes reside?

= Angle resolved photoemission spectroscopy (ARPES)
= Numerical simulations of single hole in AF

Single hole (away from half-filling) dispersion relation in the first
Brillouin zone:

N NG
7 2%
TN : N%sese .. .
“‘\:‘\:S:\Q\\;\:;:\\;-“',;;//M:,:“‘:‘\‘\S:\g%{‘ Minima at lattice
N A0SR k=+(~
S é@%“\:\:\\:}:& momenta k = £(£5,+
s
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Hole-Doping
Construction of effective field theory

Hole pockets <= Effective fields for holes

P2

/a

P2

—>P1 > D1

Microscopic theory/ ARPES Effective theory

Symmetry considerations: Two half-pockets combine to a full pocket
In the effective theory:
P2 P2



Hole-Doping
Construction of effective field theory

Hole pockets <= Effective fields for holes

P2

/a

P2

T/a b ) D

Microscopic theory/ ARPES Effective theory

Symmetry considerations: Two half-pockets combine to a full pocket



Hole-Doping
Construction of effective field theory

Symmetry-based construction of effective theory

| Microscopic model |

Symmetries / Position of hole pockets
Spontaneous symmetry breaking in momentum space

Nonlinear realization of SU(2), /
Composite vector fields

Low-energy effective field theory
for magnons and holes
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Hole-Doping
Construction of effective field theory

Transformation behavior of hole fields

@ The symmetry properties of the underlying system have to be
inherited by the effective theory!
@ Transformation rules for hole fields:

SU)s: wl(x) = exp(Fia(x)vl(x)

Ul)g: “l(x) = exp(iw)yf(x)
D WL = % explika) el ()04 (1)
0 %vL(x) =FuL(0x) Cvi(x)=v2(0x)
R Rt =vl(Ry)  Red(x) = v§(Rx)
T Tof(x) = Fexp(Fio(Tx))w (Tx)
Tq/}jj(x) + exp(Lip( Tx))h(Tx)



Hole-Doping
Construction of effective field theory

Transformation behavior of hole fields

@ The symmetry properties of the underlying system have to be
inherited by the effective theory!
@ Transformation rules for hole fields:

SU)s: wl(x) = exp(Fia(x)vl(x)
Ul)g: Wh(x) = exp(iw)yl(x)
Di . Piyph(x) = Fexp(ikf a) exp(:Figo(x))wi(x)

0: %
R: Fyg(x)=vl(Rx)  Fyl(x) =v%(Rx)
T: Tl (x) = Fexp(Fip(Tx)wH (Tx)

£ .
Tyl (x) = £ exp(ig( Tx))k (Tx)
@ In a systematic derivative expansion: Construct the most
general Lagrangian which respects all symmetries



Hole-Doping
Construction of effective field theory

Effective Lagrangian for magnons and holes

Lagrangian at leading order: Briigger et al. PRB 74 (2006) 224432
N I
L= %(a,e 08+ 018 - 0r€)
+ > [Multel + vl D

f=a,8
s=+,—

+ a7 D Dl + o (Dy 1 Dav] + Do {1 D1
+ AWl + orelTsyly)
+ Nt o el + o (it vive ol + wltvivi=ul) |

with Dl (x) = [0, % iv3(x)] ¢f(x)

a — +17 o3 — -1



Hole-Doping
Construction of effective field theory

Effective Lagrangian for magnons and holes

Lagrangian at leading order: Briigger et al. PRB 74 (2006) 224432
N I
L= %(a,e 08+ 018 - 0r€)
+ > [Multel + vl D

f=a,8
s=+,—

+ s DD + o7 o (Drf D] + Dy {1 1)
+ ATl + orplTusyl,)
+ N ftviv ol + oM (it viv ol + wltvivoul) |
with

Dyt (x) = [0+ ivi ()] $L(0)
o= +1, o = -1
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Electron-Doping Construction of effective field theory

Electron pockets <> Effective fields for electrons

Single electron (away from half-filling) dispersion relation in the
first Brillouin zone:

Minima at lattice
momenta k = (%,0) and
k=(0,Z
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Electron-Doping Construction of effective field theory

Electron pockets <> Effective fields for electrons

Single electron (away from half-filling) dispersion relation in the
first Brillouin zone:

Minima at lattice
momenta k = (%,0) and
k=(0,Z

’a

Symmetry considerations: one single electron pocket!

— Fields for electrons: 14 (x) 1} (x)



Electron-Doping Construction of effective field theory

Effective Lagrangian for magnons and electrons

Lagrangian at leading order:
1
£=2(0 08+ 50 04)
+ Y0 [Mulv + D + 53 DD + Nulviv o,
s=+,—
+ K (Dylviv—s — Wi Dro—s — Dyvlvivrs + viviDat ) |

with

D+ (x) = [8u + ivj’(x)] Py (x)

Brugger, Hofmann, Kampfer, Moser, Pepe, and Wiese, PRB 75
(2007) 214405



Electron-Doping Construction of effective field theory

Effective Lagrangian for magnons and electrons

Lagrangian at leading order:
O
L= %(a,e 0 + 018 - 0r€)
1 s ,—S
+ >0 Mol + vlDs + S Dl D + Nyplvi vy
s=+,—
K (Dylviv-s — lvi Doy — Dyvlviv s + vlviDa ) |

with
Db (x) = [0+ iv(x)] ¥ (x)

Brugger, Hofmann, Kampfer, Moser, Pepe, and Wiese, PRB 75
(2007) 214405



Electron-Doping Construction of effective field theory

Effective Lagrangian for magnons and electrons

Lagrangian at leading order:

sz az. Yoz az
£=2(0 08+ 50 04)

+ Y0 [Mulv + D + 53 DD + Nulviv o,
s=+,—
+ K Dy — Wi Dr—s — Dovlvis + viviDat ) |
with
D+ (x) = [8u + ivj’(x)] Py (x)
Additional derivatives! = One-magnon exchange between
electrons is weaker than between holes

Brugger, Hofmann, Kampfer, Moser, Pepe, and Wiese, PRB 75
(2007) 214405



Electron-Doping Construction of effective field theory

Comparison of Holes and Electrons

Holes: Electrons:
o Carry flavor @ No flavor
o Elliptical pockets in BZ @ Circular pockets in BZ
@ Interact with background @ Interact with background

at O(p) at O(p?)
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@ Spiral Phases
@ Uniform Background Field
@ Dispersion Relations of Indoped Fermions
@ Spiral Phases for Holes
@ Homogeneous Phase for Electrons



Uniform ground Field
Dispersion lations of Indoped Fermions
Spiral Ph for Holes

Spiral Phases Homog ous Phase for Electrons

Assumptions

To describe the antiferromagnet with finite doping, we assume
@ Fermions are indoped homogeneously
@ The magnetic background does not vary in time: vy =0

@ Fermion contact interactions are small



Spiral Phases

@ The homogeneous doping of fermions requires a homogeneous
magnetic background.
= v; = const. up to a U(1)s “"gauge” transformation:

vP(x) = vA(x)— 0ax) = sin? @8@(@ — fia(x) = ¢},
vE(x) = vE(x)exp(£2ia(x))

= = [sin0(x)9ip(x) £ i0;0(x)] exp(Fi(p(x) — 2a(x)))

The staggered magnetization €(x) configuration formed for
uniform background fields c;, c,-3 is either homogeneous or a spiral

Brigger, Hofmann, Kampfer, Pepe, and Wiese PRB 75
(2007) 014421



Uniform Background Field
ons of Indoped Fermions

Spiral Phases

Hamiltonian Formulation |

Hole Hamiltonian:

3
Hf = M+ 2M/) + o2 Cl/\)ﬂ(/f)Q %) ’\3(51 +0rc2) , 3
/\(C]_ + 0'fC2) M + (pl2‘|,'\/cl',/) + of (p1+cll\1,(/f)2+c2)

Electron Hamiltonian:

H = M + (pl2l\;/) + Ncic; 2K(—p1C312—|— p2C2)
2K(—p1ic1 + poc2) M+ (pin,r\ﬂci) + Ncjc;

- - Y4 (x)
Acting on the 2d spin space ( v (x) >



Uniform Background Field
ons of Indoped Fermions

Spiral Phases

Hamiltonian Formulation Il

Energy of the indoped fermions through diagonalization of the
single-particle Hamiltonians

Hole Energy
2
- Pj p1p2
Ej:(p) =M+ 2/\'4, + of VG + Alct + o7 oy
Electron Energy
2
E:t(ﬁ) =M+ 2/\'4, + Ncjc; 2K|p1C1 — p2C2|

@ + now refers to upper and lower energy states.
@ Minimizing the energies of the fermions leads to c,-3 =0



Uniform Background Field
Dispersion Relations of Indoped Fermions
Spiral Phases for Holes

Spiral Phases Homogeneous Phase for Electrons

Identification of Parameters

c,-3 = 0 has important consequences. It can be shown, that

° O(x)=75
= The spiral plane lies in the plane CuO plane
® p(x) = 2¢ix;
® k=2\/c}+ ¢ = const.
k is the spiral pitch
Background field contribution to the total energy density:

€= 2psV,'+V,'_ = 2PS(C12 + C22)



Uniform Background Field
) ons of Indoped Fermions
es for Holes

Spiral Phases eneous Phase for Electrons

Density of Indoped Holes - Total Energy Density

@ Density per flavor:

nf = ﬁ Jer d’p = 3= Meit TL,  Meft = \/%
@ Kinetic energy density:

th = ﬁ fPi d’p <2p—,\j,, + Uf%’f?) = MefFT
@ Total energy density:

€h = Z [(I\/I + sA|c1 + oroo|)nf + tf
f=a,B
S=+,—

Minimize €, — An: Minimizing the fermion energy density with
fixed hole density. A is a Lagrange multiplier.



Uniform Background Field

Dispersion Relations of Indoped Fermions
Spiral Phases for Holes

Homogeneous Phase for Electrons

Spiral Phases

Phases of Hole-Doped Antiferromagnets

4 Pocket Phase:

Bounded from below for 2mtps > Mag\?

7rn2

fof €4 = €9 + n+4Meff

3 Pocket Phase:

Bounded from below for 2mtps > Mag\?

e T An Mt T 1 1
= €3l = € —_ —
1T 26mps — M2 P 3Mer \© 2



Uniform Background Field

Dispersion Relations of Indoped Fermions
Spiral Phases for Holes

Homogeneous Phase for Electrons

Spiral Phases

Phases of Hole-Doped Antiferromagnets

2 Pocket Phase:

Bounded from below for 2mps > % Mef\?

A T N2
|<:1,2|:£n, |c21] =0, e =¢€ + Mn+ < ——> n’.

S

1 Pocket Phase:

Always bounded from below but unstable against forming
inhomogeneities for 2mps < %Me,r,c/\2

A /\2
la| = || =-—n e =€+ Mn+ T~ _ e
4ps



Uniform Background Field

Dispersior

tions of Indoped Fermions

Homogeneous Phase for Electrons

Spiral Phases for Holes

Spiral Phases
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Homogeneous Phase
4 Hole Pockets
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Dispersion Relations of Indoped Fermions
Spiral Phases for Holes

Spiral Phases
P! Homogeneous Phase for Electrons

Phases of Hole-Doped Antiferromagnets

P I )
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stotatstetotstnistatotatotssstotatototototstonl | Des 3 N S A AN S P )
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Uniform
Dispersion lations of Indoped Fermions
Spiral Phases for Holes

Spiral Phases
P! Homogeneous Phase for Electrons

Stability of Phases for Hole Doping

0

M A2,

|
I Homogencous phase

( ™ N2 T 1 Mg\ )
k1= |-— — — K3 = 1 — =

Inhomogencous phase

M ps 3Metr \ 2 6mps — Mg

T /\2 jog — ™
= - 4 =
"2 <2Meff 8ps> 4M6ff




Uniform
Disper

tions of Indoped Fermions

Homogeneous Phase for Electrons

Spiral Phases for Holes

Spiral Phases
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Conclusions

Conclusions

@ High-T superconductors: Condensed matter analog of baryon
chiral perturbation theory

@ We have constructed a systematic low-energy effective field
theory for lightly doped antiferromagnets

@ Using the effective theory we have investigated spiral phases
in hole- and electron-doped cuprates

@ While spiral phases do exist for hole-doping, they are absent in
electron-doped cuprates

@ We also calculated the one-magnon-exchange potential and
investigated the possibility of hole-hole and electron-electron
bound states
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Outlook

@ Analysis of materials with other lattice geometries:
Honeycomb and Triangular lattices

@ Incorporation of Phonons as low-energy degrees of freedom
@ Systematic treatment of loop graphs

@ Towards the mysterious Mechanism of high-T
superconductivity
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Nonlinear Realization of SU(2), on the fermions

u(x) = h(x)u(x)g"  C. = gC

WX (x) = h(x)u(x)Cx = h(x)¥X(x)

X _ [¥E0) vX (%)
V) (wf(x) X' (x)

X(x) = wi(x) —w)_d(x) X € odd sublattice
V7 (x) (1/})_(()() f(x))’ € odd sublattice.

The global spin rotation symmetry is also realized locally on the
fermions.

) , X € evensublattice
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Sublattice Structure 1
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Sublattice Structure 2
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Hubbard model in manifestly SU(2) invariant form (at half filling)
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Conclusions

From Charge Carriers to Grassmann numbers

Hubbard model in manifestly SU(2) invariant form (at half filling)

t U
=-3 fc .+l — e ct
H=—3 ;Tr[CXCX+, +CLaGl+ 5 EX:Tr[CXCXCXCX],
c _ (ch (—l)Xcilf )
X1

o) —(—1)*c

WX(x) = u(x)Cx X := sublatticeindex
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Solution for €(x) for constant background fields

&(x) = (sinf(x)cosp(x), sin B(x)siny(x), cos §(x))

1 N 2
cosf(x) = —— [cosn—k =3 sin 7 cos (2 1+ (%) c?x,-)} .
Cj 1 1

1+ (5)

Ci o a\? 3

C—fgsm 24/1+ (c_fl") CXi
. . . 2
sinn) — 5 cosncos | 24/1+ (%) c3xi

©(x) = atan
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Antiferromagnetism: Hubbard model

Four possible states at each lattice site: [0), | 1), |l), |Tl)
Assumptions:
@ Half-filling: in average one fermion per lattice site
@ Strong coupling limit: U >t
Consequences:
o | T]) huge energy cost = Ground state consists of | 1), | |)
@ Enormous degeneracy of states

How does the ground state order?

@ By hopping system can lower its energy

@ Hopping only possible for antiparallel spins
= Antiferromagnetic spin alignment is favored!
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Relating microscopic operators to effective fields |

With the matrix-valued operator

x AT
Cx — 1 (_1) XCXTL
C| _(_1) CXT

the Hubbard Hamiltonian can be written

t U
=-3 fc .+l ~ tc.ct
H=-> ;Tr[CX Copr+ LG+ 5 EX:Tr[CX G ClG

L
-5 zx: Tr[CJ Cxo3)
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Conclusions

Relating microscopic operators to effective fields |l

@ Defining new lattice operators with the help of the
diagonalizing matrix u(x):

\U;\,B,...,H = u(x)Cx, x€AB,....H

@ Work out symmetry transformation properties

@ Replace lattice operators by effective Grassmann fields

‘U)/(\,B,...,H . ‘UA,B,...,H(X)

@ Postulate: Transformation properties are inherited!
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Accidental Galilean boost invariance

G: C°P(x)=P(Gx), Gx=(X-Vt,t),
Cul(x) = exp (B % — w't) vL(Gx),
ol () = vl (Gx)exp (=5 %+ w't)
with pf = (pf, p}) and w’ given by

e MM
1— (M//M//)2 M ’
e M, M
1— (M//M//)2 M ’
2 f . f ! !
F_ P P1P> M 1 M
W= 2;\4/ +or M = (M//M//) [ (Vl + V2) M// V1V2]
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Transformation behavior of electron fields

Y (x) = exp(Fia(x))i=(x)
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