On the Condensed Matter Analog of Baryon Chiral Perturbation Theory

Christoph P. Hofmann

In collaboration with C. Brügger, F. Kämpfer, M. Moser, M. Pepe and U.-J. Wiese

Facultad de Ciencias, UCOL

October 10, 2008

Outline

1 Motivation

- Condensed matter analog of baryon chiral perturbation theory
- Effective field theory for magnons
- 2 Hole-Doping
 - Construction of effective field theory
- 3 Electron-Doping
 - Construction of effective field theory
- 4 Spiral Phases
 - Uniform Background Field
 - Dispersion Relations of Indoped Fermions
 - Spiral Phases for Holes
 - Homogeneous Phase for Electrons

5 Conclusions

Motivation

Hole-Doping Electron-Doping Spiral Phases Conclusions

Condensed matter analog of baryon chiral perturbation theory Effective field theory for magnons

Outline

Motivation

- Condensed matter analog of baryon chiral perturbation theory
- Effective field theory for magnons
- 2 Hole-Doping
 - Construction of effective field theory
- 3 Electron-Doping
 - Construction of effective field theory
- 4 Spiral Phases
 - Uniform Background Field
 - Dispersion Relations of Indoped Fermions
 - Spiral Phases for Holes
 - Homogeneous Phase for Electrons
- 5 Conclusions

Condensed matter analog of baryon chiral perturbation theory Effective field theory for magnons

Motivation: High- T_c superconductivity in cuprates

1986: Bednorz and Müller discover high- T_c superconductivity by doping copper oxide compounds (cuprates):

$$La_2CuO_4 \longrightarrow La_{2-x}Ba_xCuO_4$$
 ($T_c = 35 \text{ K}$)

Condensed matter analog of baryon chiral perturbation theory Effective field theory for magnons

Motivation: High- T_c superconductivity in cuprates

- SC results from doping antiferromagnetic insulators
- Doping possible with both electrons and holes
- Electron-Hole asymmetry

Condensed matter analog of baryon chiral perturbation theory Effective field theory for magnons

Motivation: High- T_c superconductivity in cuprates

Phase diagram of cuprates:

Crystal structure:

Damascelli, Hussain, and Shen, Rev. Mod. Phys. 75 (2003) 473

Orenstein and Millis, Science 288 (2000) 468

- SC results from doping antiferromagnetic insulators
- Doping possible with both electrons and holes
- Common structure: CuO₂ layers separated by spacer layers

Condensed matter analog of baryon chiral perturbation theory Effective field theory for magnons

Motivation: High- T_c superconductivity in cuprates

Phase diagram of cuprates:

Crystal structure:

Damascelli, Hussain, and Shen, Rev. Mod. Phys. 75 (2003) 473

Orenstein and Millis, Science 288 (2000) 468

- SC results from doping antiferromagnetic insulators
- Doping possible with both electrons and holes
- Common structure: CuO₂ layers separated by spacer layers
- Concentrate on antiferromagnetic region: low doping, low T

Condensed matter analog of baryon chiral perturbation theory Effective field theory for magnons

Microscopic description: The Hubbard model

The Hubbard Hamiltonian defined on a square lattice:

$$egin{aligned} \mathcal{H} = &-t\sum_{x,i}(c_{x\uparrow}^{\dagger}c_{x+\hat{i}\uparrow}+c_{x+\hat{i}\uparrow}^{\dagger}c_{x\uparrow}+c_{x\downarrow}^{\dagger}c_{x+\hat{i}\downarrow}+c_{x+\hat{i}\downarrow}^{\dagger}c_{x\downarrow})\ &+U\sum_{x}c_{x\uparrow}^{\dagger}c_{x\uparrow}c_{x\downarrow}^{\dagger}c_{x\downarrow}-\mu\sum_{x}(c_{x\uparrow}^{\dagger}c_{x\uparrow}+c_{x\downarrow}^{\dagger}c_{x\downarrow}-1) \end{aligned}$$

• Parameters:

- *t* : Hopping parameter (nearest neighbors)
- U: On-site Coulomb repulsion
- μ : Chemical potential for fermion number

Condensed matter analog of baryon chiral perturbation theory Effective field theory for magnons

Microscopic description: The Hubbard model

The Hubbard Hamiltonian defined on a square lattice:

$$egin{aligned} \mathcal{H} =& -t\sum_{x,i}(c_{x\uparrow}^{\dagger}c_{x+\hat{i}\uparrow}+c_{x+\hat{i}\uparrow}^{\dagger}c_{x\uparrow}+c_{x\downarrow}^{\dagger}c_{x+\hat{i}\downarrow}+c_{x+\hat{i}\downarrow}^{\dagger}c_{x\downarrow})\ &+U\sum_{x}c_{x\uparrow}^{\dagger}c_{x\uparrow}c_{x\downarrow}^{\dagger}c_{x\downarrow}-\mu\sum_{x}(c_{x\uparrow}^{\dagger}c_{x\uparrow}+c_{x\downarrow}^{\dagger}c_{x\downarrow}-1) \end{aligned}$$

• Parameters:

- *t* : Hopping parameter (nearest neighbors)
- U: On-site Coulomb repulsion
- μ : Chemical potential for fermion number
- Minimal model for cuprates: contains the relevant physics
- Away from half-filling: Hamiltonian virtually unsolvable from first principles (Neither analytically nor numerically)

Condensed matter analog of baryon chiral perturbation theory Effective field theory for magnons

Microscopic description: The Hubbard model

The Hubbard Hamiltonian defined on a square lattice:

$$egin{aligned} \mathcal{H} = &-t\sum_{x,i}(c_{x\uparrow}^{\dagger}c_{x+\hat{i}\uparrow}+c_{x+\hat{i}\uparrow}^{\dagger}c_{x\uparrow}+c_{x\downarrow}^{\dagger}c_{x+\hat{i}\downarrow}+c_{x+\hat{i}\downarrow}^{\dagger}c_{x\downarrow})\ &+U\sum_{x}c_{x\uparrow}^{\dagger}c_{x\uparrow}c_{x\downarrow}^{\dagger}c_{x\downarrow}-\mu\sum_{x}(c_{x\uparrow}^{\dagger}c_{x\uparrow}+c_{x\downarrow}^{\dagger}c_{x\downarrow}-1) \end{aligned}$$

• Symmetries:

 $SU(2)_s$: Global spin rotation

- $U(1)_Q$: Fermion number conservation
 - D_i : Displacement by one lattice spacing
 - O: 90 degrees rotation
 - R: Reflection on a lattice axis
 - T : Time reversal

Condensed matter analog of baryon chiral perturbation theory Effective field theory for magnons

Antiferromagnetism: Near half-filling (1 fermion per site)

Near half-filling:

- Antiferromagnetic alignment of spins is preferred
- Spontaneous symmetry breaking: $SU(2)_s \longrightarrow U(1)_s$
- Goldstone's theorem: 2 massless excitations \implies 2 magnons

Motivation Hole-Doping

Electron-Doping Spiral Phases Conclusions Condensed matter analog of baryon chiral perturbation theory Effective field theory for magnons

Systematic effective field theory description

	Antiferromagnets	QCD
Spont. symm. breaking	$SU(2)_s \longrightarrow U(1)_s$	$SU(2)_L \otimes SU(2)_R \to SU(2)_{L=R}$
GB physics	Magnon perturbation theory	Chiral perturbation theory
GB + matter physics	Effective theory presented here	Baryon chiral perturbation theory

Motivation Hole-Doping

Spiral Phases Conclusions Condensed matter analog of baryon chiral perturbation theory Effective field theory for magnons

Systematic effective field theory description

	Antiferromagnets	QCD
Spont. symm. breaking	$SU(2)_s \longrightarrow U(1)_s$	$SU(2)_L \otimes SU(2)_R \to SU(2)_{L=R}$
GB physics	Magnon perturbation theory	Chiral perturbation theory
GB + matter physics	Effective theory presented here	Baryon chiral perturbation theory

Condensed matter analog of baryon chiral perturbation theory Effective field theory for magnons

Pure magnon sector: Magnon perturbation theory

Spontaneous global $SU(2)_s \longrightarrow U(1)_s$ spin symmetry breaking:

• 2 Goldstone bosons (magnons) described by

$$ec{e}(x) = ig(e_1(x), e_2(x), e_3(x)ig) \in S^2 = SU(2)_s/U(1)_s$$

with $x = (x_1, x_2, t)$

Condensed matter analog of baryon chiral perturbation theory Effective field theory for magnons

Pure magnon sector: Magnon perturbation theory

Spontaneous global $SU(2)_s \longrightarrow U(1)_s$ spin symmetry breaking:

• 2 Goldstone bosons (magnons) described by

$$ec{e}(x) = ig(e_1(x), e_2(x), e_3(x)ig) \in S^2 = SU(2)_s/U(1)_s$$

with $x = (x_1, x_2, t)$

• Low-energy magnon physics described by nonlinear σ -model

$$\mathcal{L} = \frac{\rho_s}{2} (\partial_i \vec{e} \cdot \partial_i \vec{e} + \frac{1}{c^2} \partial_t \vec{e} \cdot \partial_t \vec{e}) + \cdots$$

 ρ_s : spin stiffness c: spin wave velocity

Chakravarty, Halperin, and Nelson, PRB 39 (1989) 2344 Hasenfratz and Niedermayer, Phys. Lett. B268 (1991) 231

Construction of effective field theory

Outline

Motivation

- Condensed matter analog of baryon chiral perturbation theory
- Effective field theory for magnons
- 2 Hole-Doping
 - Construction of effective field theory
 - 3 Electron-Doping
 - Construction of effective field theory
- 4 Spiral Phases
 - Uniform Background Field
 - Dispersion Relations of Indoped Fermions
 - Spiral Phases for Holes
 - Homogeneous Phase for Electrons
- 5 Conclusions

Construction of effective field theory

State of affairs: Fermionic sector of effective theory

Earlier attempts by: Shraiman and Siggia, Wen, Shankar, ...

General agreement:

• Magnons are coupled to fermions through composite vector fields

State of affairs: Fermionic sector of effective theory

Earlier attempts by: Shraiman and Siggia, Wen, Shankar, ...

General agreement:

• Magnons are coupled to fermions through composite vector fields

No agreement on low-energy effective Lagrangian for fermions:

- Conflicting realizations of fermion fields
- Non-unique structure of terms in Lagrangians
- \Longrightarrow Model Lagrangians have not been constructed systematically

State of affairs: Fermionic sector of effective theory

Earlier attempts by: Shraiman and Siggia, Wen, Shankar, ...

General agreement:

• Magnons are coupled to fermions through composite vector fields

No agreement on low-energy effective Lagrangian for fermions:

- Conflicting realizations of fermion fields
- Non-unique structure of terms in Lagrangians
- \Longrightarrow Model Lagrangians have not been constructed systematically

 \Longrightarrow Construction of a systematic low-energy effective field theory for magnons and holes analogous to baryon chiral perturbation theory

Construction of effective field theory

Symmetry-based construction of effective theory

Construction of effective field theory

Symmetry-based construction of effective theory

Construction of effective field theory

Nonlinear realization of $SU(2)_s$ symmetry

• $\mathbb{C}P(1)$ representation of magnon field

$$P(x) = \frac{1}{2} (\mathbb{1} + \vec{e}(x) \cdot \vec{\sigma}) \in \mathbb{C}P(1)$$

Construction of effective field theory

Nonlinear realization of $SU(2)_s$ symmetry

• $\mathbb{C}P(1)$ representation of magnon field

$$P(x) = rac{1}{2} ig(\mathbbm{1} + ec{e}(x) \cdot ec{\sigma} ig) \in \mathbb{C}P(1)$$

• Diagonalize the magnon field

$$u(x)P(x)u(x)^{\dagger}=\left(egin{array}{cc} 1 & 0 \ 0 & 0 \end{array}
ight), \qquad u(x)\in SU(2)_s, \qquad u_{11}(x)\geq 0$$

Construction of effective field theory

Nonlinear realization of $SU(2)_s$ symmetry

• $\mathbb{C}P(1)$ representation of magnon field

$$P(x) = rac{1}{2} ig(\mathbbm{1} + ec{e}(x) \cdot ec{\sigma} ig) \in \mathbb{C}P(1)$$

• Diagonalize the magnon field

$$u(x)P(x)u(x)^{\dagger} = \left(egin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}
ight), \qquad u(x) \in SU(2)_s, \qquad u_{11}(x) \geq 0$$

• Under global $SU(2)_s$ spin transformations

$$P(x)' = gP(x)g^{\dagger}, \qquad g \in SU(2)_s$$

Construction of effective field theory

Nonlinear realization of $SU(2)_s$ symmetry

• $\mathbb{C}P(1)$ representation of magnon field

$$P(x) = rac{1}{2} (\mathbb{1} + ec{e}(x) \cdot ec{\sigma}) \in \mathbb{C}P(1)$$

• Diagonalize the magnon field

$$u(x)P(x)u(x)^{\dagger} = \left(egin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}
ight), \qquad u(x) \in SU(2)_s, \qquad u_{11}(x) \geq 0$$

• Under global $SU(2)_s$ spin transformations

$$P(x)' = gP(x)g^{\dagger}, \qquad g \in SU(2)_s$$

• The diagonalizing field u(x) transforms as

$$u(x)' = h(x)u(x)g^{\dagger}, \qquad h(x) \in U(1)_{s}, \qquad u_{11}(x)' \ge 0$$

Construction of effective field theory

Nonlinear realization of $SU(2)_s$ symmetry

• $\mathbb{C}P(1)$ representation of magnon field

$$P(x) = rac{1}{2} (\mathbb{1} + ec{e}(x) \cdot ec{\sigma}) \in \mathbb{C}P(1)$$

• Diagonalize the magnon field

$$u(x)P(x)u(x)^{\dagger} = \left(egin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}
ight), \qquad u(x) \in SU(2)_s, \qquad u_{11}(x) \geq 0$$

• Under global $SU(2)_s$ spin transformations

$$P(x)' = gP(x)g^{\dagger}, \qquad g \in SU(2)_s$$

• The diagonalizing field u(x) transforms as

 $u(x)' = h(x)u(x)g^{\dagger}, \qquad h(x) \in U(1)_{s}, \qquad u_{11}(x)' \ge 0$

Global $SU(2)_s$ rotation manifests itself as local $U(1)_s$ transformation!

Construction of effective field theory

Composite vector fields

• We introduce an anti-Hermitean field

$$v_{\mu}(x) = u(x)\partial_{\mu}u(x)^{\dagger} = \left(egin{array}{cc} v^3_{\mu}(x) & v^+_{\mu}(x) \ v^-_{\mu}(x) & -v^3_{\mu}(x) \end{array}
ight)$$

with $\mu \in \{1, 2, t\}$

• Components used to couple magnons to holes

Construction of effective field theory

Composite vector fields

• We introduce an anti-Hermitean field

$$v_{\mu}(x) = u(x)\partial_{\mu}u(x)^{\dagger} = \left(egin{array}{cc} v^3_{\mu}(x) & v^+_{\mu}(x) \ v^-_{\mu}(x) & -v^3_{\mu}(x) \end{array}
ight)$$

with $\mu \in \{1, 2, t\}$

- Components used to couple magnons to holes
- Under global $SU(2)_s$ the components transform as

$$v^3_\mu(x)' = v^3_\mu(x) - \partial_\mu \alpha(x), \qquad v^\pm_\mu(x)' = v^\pm_\mu(x) \exp\left(\pm 2i\alpha(x)\right)$$

$$v^3_\mu(x)$$
: Abelian gauge field $v^\pm_\mu(x)$: Vector field ("charged" under $U(1)_s)$

Construction of effective field theory

Symmetry-based construction of effective theory

Construction of effective field theory

Hole pockets \iff Effective fields for holes

Where in momentum space do doped holes reside?

- \implies Angle resolved photoemission spectroscopy (ARPES)
- \Longrightarrow Numerical simulations of single hole in AF

Construction of effective field theory

Hole pockets \iff Effective fields for holes

Where in momentum space do doped holes reside?

- \implies Angle resolved photoemission spectroscopy (ARPES)
- \Longrightarrow Numerical simulations of single hole in AF

Single hole (away from half-filling) dispersion relation in the first Brillouin zone:

Minima at lattice momenta $\vec{k} = \pm (\frac{\pi}{2a}, \pm \frac{\pi}{2a})$

Construction of effective field theory

Hole pockets \iff Effective fields for holes

Symmetry considerations: Two half-pockets combine to a full pocket In the effective theory:

 p_2

Construction of effective field theory

Hole pockets \iff Effective fields for holes

Symmetry considerations: Two half-pockets combine to a full pocket

Construction of effective field theory

Symmetry-based construction of effective theory

Construction of effective field theory

Transformation behavior of hole fields

• The symmetry properties of the underlying system have to be inherited by the effective theory!

Construction of effective field theory

Transformation behavior of hole fields

- The symmetry properties of the underlying system have to be inherited by the effective theory!
- Transformation rules for hole fields:

 $SU(2)_{s}: \quad \psi_{\pm}^{f}(x)' = \exp(\pm i\alpha(x))\psi_{\pm}^{f}(x)$ $U(1)_{Q}: \quad {}^{Q}\psi_{\pm}^{f}(x) = \exp(i\omega)\psi_{\pm}^{f}(x)$ $D_{i}: \quad {}^{D_{i}}\psi_{\pm}^{f}(x) = \mp \exp(ik_{i}^{f}a)\exp(\mp i\varphi(x))\psi_{\mp}^{f}(x)$ $O: \quad {}^{O}\psi_{\pm}^{\alpha}(x) = \mp \psi_{\pm}^{\beta}(Ox) \quad {}^{O}\psi_{\pm}^{\beta}(x) = \psi_{\pm}^{\alpha}(Ox)$ $R: \quad {}^{R}\psi_{\pm}^{\alpha}(x) = \psi_{\pm}^{\beta}(Rx) \quad {}^{R}\psi_{\pm}^{\beta}(x) = \psi_{\pm}^{\alpha}(Rx)$ $T: \quad {}^{T}\psi_{\pm}^{f}(x) = \mp \exp(\mp i\varphi(Tx))\psi_{\pm}^{f\dagger}(Tx)$ ${}^{T}\psi_{\pm}^{f\dagger}(x) = \pm \exp(\pm i\varphi(Tx))\psi_{\pm}^{f}(Tx)$
Construction of effective field theory

Transformation behavior of hole fields

- The symmetry properties of the underlying system have to be inherited by the effective theory!
- Transformation rules for hole fields:

 $SU(2)_{s}: \quad \psi_{\pm}^{f}(x)' = \exp(\pm i\alpha(x))\psi_{\pm}^{f}(x)$ $U(1)_{Q}: \quad {}^{Q}\psi_{\pm}^{f}(x) = \exp(i\omega)\psi_{\pm}^{f}(x)$ $D_{i}: \quad {}^{D_{i}}\psi_{\pm}^{f}(x) = \mp \exp(ik_{i}^{f}a)\exp(\mp i\varphi(x))\psi_{\mp}^{f}(x)$ $O: \quad {}^{O}\psi_{\pm}^{\alpha}(x) = \mp \psi_{\pm}^{\beta}(Ox) \quad {}^{O}\psi_{\pm}^{\beta}(x) = \psi_{\pm}^{\alpha}(Ox)$ $R: \quad {}^{R}\psi_{\pm}^{\alpha}(x) = \psi_{\pm}^{\beta}(Rx) \quad {}^{R}\psi_{\pm}^{\beta}(x) = \psi_{\pm}^{\alpha}(Rx)$ $T: \quad {}^{T}\psi_{\pm}^{f}(x) = \mp \exp(\mp i\varphi(Tx))\psi_{\pm}^{f\dagger}(Tx)$ ${}^{T}\psi_{\pm}^{f\dagger}(x) = \pm \exp(\pm i\varphi(Tx))\psi_{\pm}^{f}(Tx)$

• In a systematic derivative expansion: Construct the most general Lagrangian which respects all symmetries

Construction of effective field theory

Effective Lagrangian for magnons and holes

Lagrangian at leading order: Brügger et al. PRB 74 (2006) 224432

$$\begin{aligned} \mathcal{L} &= \frac{\rho_s}{2} (\partial_i \vec{e} \cdot \partial_i \vec{e} + \frac{1}{c^2} \partial_t \vec{e} \cdot \partial_t \vec{e}) \\ &+ \sum_{\substack{f=\alpha,\beta\\s=+,-}} \left[M \psi_s^{f\dagger} \psi_s^f + \psi_s^{f\dagger} D_t \psi_s^f \\ &+ \frac{1}{2M'} D_i \psi_s^{f\dagger} D_i \psi_s^f + \sigma_f \frac{1}{2M''} (D_1 \psi_s^{f\dagger} D_2 \psi_s^f + D_2 \psi_s^{f\dagger} D_1 \psi_s^f) \\ &+ \Lambda (\psi_s^{f\dagger} v_1^s \psi_{-s}^f + \sigma_f \psi_s^{f\dagger} v_2^s \psi_{-s}^f) \\ &+ N_1 \psi_s^{f\dagger} v_i^s v_i^{-s} \psi_s^f + \sigma_f N_2 (\psi_s^{f\dagger} v_1^s v_2^{-s} \psi_s^f + \psi_s^{f\dagger} v_2^s v_1^{-s} \psi_s^f) \right] \end{aligned}$$

with

$$egin{aligned} D_\mu \psi^f_\pm(x) &= \left[\partial_\mu \pm i v^3_\mu(x)
ight]\psi^f_\pm(x) \ \sigma_lpha &= +1, \quad \sigma_eta &= -1 \end{aligned}$$

Construction of effective field theory

Effective Lagrangian for magnons and holes

Lagrangian at leading order: Brügger et al. PRB 74 (2006) 224432

$$\begin{aligned} \mathcal{L} &= \frac{\rho_s}{2} (\partial_i \vec{e} \cdot \partial_i \vec{e} + \frac{1}{c^2} \partial_t \vec{e} \cdot \partial_t \vec{e}) \\ &+ \sum_{\substack{f=\alpha,\beta\\s=+,-}} \left[M \psi_s^{f\dagger} \psi_s^f + \psi_s^{f\dagger} D_t \psi_s^f \\ &+ \frac{1}{2M'} D_i \psi_s^{f\dagger} D_i \psi_s^f + \sigma_f \frac{1}{2M''} (D_1 \psi_s^{f\dagger} D_2 \psi_s^f + D_2 \psi_s^{f\dagger} D_1 \psi_s^f) \\ &+ \Lambda (\psi_s^{f\dagger} \mathbf{v}_1^s \psi_{-s}^f + \sigma_f \psi_s^{f\dagger} \mathbf{v}_2^s \psi_{-s}^f) \\ &+ N_1 \psi_s^{f\dagger} \mathbf{v}_i^s \mathbf{v}_i^{-s} \psi_s^f + \sigma_f N_2 (\psi_s^{f\dagger} \mathbf{v}_1^s \mathbf{v}_2^{-s} \psi_s^f + \psi_s^{f\dagger} \mathbf{v}_2^s \mathbf{v}_1^{-s} \psi_s^f) \right] \end{aligned}$$

with

$$egin{aligned} D_\mu \psi^f_\pm(\mathbf{x}) &= \left[\partial_\mu \pm i oldsymbol{v}^3_\mu(\mathbf{x})
ight] \psi^f_\pm(\mathbf{x}) \ \sigma_lpha &= +1, \quad \sigma_eta &= -1 \end{aligned}$$

Construction of effective field theory

Outline

Motivation

- Condensed matter analog of baryon chiral perturbation theory
- Effective field theory for magnons
- 2 Hole-Doping
 - Construction of effective field theory
- 3 Electron-Doping
 - Construction of effective field theory
- 4 Spiral Phases
 - Uniform Background Field
 - Dispersion Relations of Indoped Fermions
 - Spiral Phases for Holes
 - Homogeneous Phase for Electrons
- 5 Conclusions

Construction of effective field theory

Electron pockets \iff Effective fields for electrons

Single electron (away from half-filling) dispersion relation in the first Brillouin zone:

Minima at lattice momenta $\vec{k} = (\frac{\pi}{a}, 0)$ and $\vec{k} = (0, \frac{\pi}{a})$

Construction of effective field theory

Electron pockets \iff Effective fields for electrons

Single electron (away from half-filling) dispersion relation in the first Brillouin zone:

Minima at lattice momenta $\vec{k} = (\frac{\pi}{a}, 0)$ and $\vec{k} = (0, \frac{\pi}{a})$

Symmetry considerations: one single electron pocket!

 \implies Fields for electrons: $\psi_{\pm}(x) \quad \psi_{\pm}^{\dagger}(x)$

Construction of effective field theory

Effective Lagrangian for magnons and electrons

Lagrangian at leading order:

$$\begin{split} \mathcal{L} &= \frac{\rho_s}{2} (\partial_i \vec{e} \cdot \partial_i \vec{e} + \frac{1}{c^2} \partial_t \vec{e} \cdot \partial_t \vec{e}) \\ &+ \sum_{s=+,-} \left[M \psi_s^{\dagger} \psi_s + \psi_s^{\dagger} D_t \psi_s + \frac{1}{2M'} D_i \psi_s^{\dagger} D_i \psi_s + N \psi_s^{\dagger} v_i^s v_i^{-s} \psi_s \right. \\ &+ i \mathcal{K} \left(D_1 \psi_s^{\dagger} v_1^s \psi_{-s} - \psi_s^{\dagger} v_1^s D_1 \psi_{-s} - D_2 \psi_s^{\dagger} v_2^s \psi_{-s} + \psi_s^{\dagger} v_2^s D_2 \psi_{-s} \right) \Big] \\ \text{with} \end{split}$$

$$D_{\mu}\psi_{\pm}(x) = \left[\partial_{\mu} \pm i v_{\mu}^{3}(x)\right]\psi_{\pm}(x)$$

Brügger, Hofmann, Kämpfer, Moser, Pepe, and Wiese, PRB 75 (2007) 214405

Construction of effective field theory

Effective Lagrangian for magnons and electrons

Lagrangian at leading order:

$$\begin{split} \mathcal{L} &= \frac{\rho_s}{2} (\partial_i \vec{e} \cdot \partial_i \vec{e} + \frac{1}{c^2} \partial_t \vec{e} \cdot \partial_t \vec{e}) \\ &+ \sum_{s=+,-} \left[M \psi_s^{\dagger} \psi_s + \psi_s^{\dagger} D_t \psi_s + \frac{1}{2M'} D_i \psi_s^{\dagger} D_i \psi_s + N \psi_s^{\dagger} \mathbf{v}_i^s \mathbf{v}_i^{-s} \psi_s \right. \\ &+ i \mathcal{K} \left(D_1 \psi_s^{\dagger} \mathbf{v}_1^s \psi_{-s} - \psi_s^{\dagger} \mathbf{v}_1^s D_1 \psi_{-s} - D_2 \psi_s^{\dagger} \mathbf{v}_2^s \psi_{-s} + \psi_s^{\dagger} \mathbf{v}_2^s D_2 \psi_{-s} \right) \Big] \\ \text{with} \end{split}$$

$$D_{\mu}\psi_{\pm}(x) = \left[\partial_{\mu} \pm i v_{\mu}^{3}(x)\right]\psi_{\pm}(x)$$

Brügger, Hofmann, Kämpfer, Moser, Pepe, and Wiese, PRB 75 (2007) 214405

Construction of effective field theory

Effective Lagrangian for magnons and electrons

Lagrangian at leading order:

$$\begin{split} \mathcal{L} &= \frac{\rho_s}{2} (\partial_i \vec{e} \cdot \partial_i \vec{e} + \frac{1}{c^2} \partial_t \vec{e} \cdot \partial_t \vec{e}) \\ &+ \sum_{s=+,-} \left[M \psi_s^{\dagger} \psi_s + \psi_s^{\dagger} D_t \psi_s + \frac{1}{2M'} D_i \psi_s^{\dagger} D_i \psi_s + N \psi_s^{\dagger} v_i^s v_i^{-s} \psi_s \right. \\ &+ i \mathcal{K} \left(D_1 \psi_s^{\dagger} v_1^s \psi_{-s} - \psi_s^{\dagger} v_1^s D_1 \psi_{-s} - D_2 \psi_s^{\dagger} v_2^s \psi_{-s} + \psi_s^{\dagger} v_2^s D_2 \psi_{-s} \right) \Big] \\ \text{with} \end{split}$$

$$D_{\mu}\psi_{\pm}(x) = \left[\partial_{\mu} \pm i v_{\mu}^{3}(x)\right]\psi_{\pm}(x)$$

Additional derivatives! \implies One-magnon exchange between electrons is weaker than between holes

Brügger, Hofmann, Kämpfer, Moser, Pepe, and Wiese, PRB 75 (2007) 214405

Construction of effective field theory

Comparison of Holes and Electrons

Holes:

- Carry flavor
- Elliptical pockets in BZ
- Interact with background at O(p)

Electrons:

- No flavor
- Circular pockets in BZ
- Interact with background at O(p²)

Uniform Background Field Dispersion Relations of Indoped Fermions Spiral Phases for Holes Homogeneous Phase for Electrons

Outline

1 Motivation

- Condensed matter analog of baryon chiral perturbation theory
- Effective field theory for magnons
- 2 Hole-Doping
 - Construction of effective field theory

3 Electron-Doping

• Construction of effective field theory

4 Spiral Phases

- Uniform Background Field
- Dispersion Relations of Indoped Fermions
- Spiral Phases for Holes
- Homogeneous Phase for Electrons

Conclusions

Uniform Background Field Dispersion Relations of Indoped Fermions Spiral Phases for Holes Homogeneous Phase for Electrons

Assumptions

To describe the antiferromagnet with finite doping, we assume

- Fermions are indoped homogeneously
- The magnetic background does not vary in time: $v_t = 0$
- Fermion contact interactions are small

Uniform Background Field Dispersion Relations of Indoped Fermions Spiral Phases for Holes Homogeneous Phase for Electrons

• The homogeneous doping of fermions requires a homogeneous magnetic background.

 \Rightarrow $v_i = const.$ up to a $U(1)_s$ "gauge" transformation:

$$\begin{array}{lll} v_i^3(x)' &=& v_i^3(x) - \partial_i \alpha(x) = \sin^2 \frac{\theta(x)}{2} \partial_i \varphi(x) - \partial_i \alpha(x) = c_i^3, \\ v_i^{\pm}(x)' &=& v_i^{\pm}(x) \exp(\pm 2i\alpha(x)) \\ &=& \frac{1}{2} [\sin \theta(x) \partial_i \varphi(x) \pm i \partial_i \theta(x)] \exp(\mp i (\varphi(x) - 2\alpha(x))) \\ &=& c_i^{\pm} \end{array}$$

Theorem

The staggered magnetization $\vec{e}(x)$ configuration formed for uniform background fields c_i, c_i^3 is either homogeneous or a spiral

> Brügger, Hofmann, Kämpfer, Pepe, and Wiese PRB 75 (2007) 014421

Uniform Background Field Dispersion Relations of Indoped Fermions Spiral Phases for Holes Homogeneous Phase for Electrons

Hamiltonian Formulation I

Hole Hamiltonian:

$$H^{f} = \begin{pmatrix} M + \frac{(p_{i} - c_{i}^{3})^{2}}{2M'} + \sigma_{f} \frac{(p_{1} - c_{1}^{3})(p_{2} - c_{2}^{3})}{M''} & \Lambda(c_{1} + \sigma_{f}c_{2}) \\ \Lambda(c_{1} + \sigma_{f}c_{2}) & M + \frac{(p_{i} + c_{i}^{3})^{2}}{2M'} + \sigma_{f} \frac{(p_{1} + c_{1}^{3})(p_{2} + c_{2}^{3})}{M''} \end{pmatrix}$$

Electron Hamiltonian:

$$H = \begin{pmatrix} M + \frac{(p_i - c_i^3)^2}{2M'} + Nc_i c_i & 2K(-p_1c_1 + p_2c_2) \\ 2K(-p_1c_1 + p_2c_2) & M + \frac{(p_i + c_i^3)^2}{2M'} + Nc_i c_i \end{pmatrix}$$

Acting on the 2d spin space $\begin{pmatrix} \psi_+(x) \\ \psi_-(x) \end{pmatrix}$.

Uniform Background Field Dispersion Relations of Indoped Fermions Spiral Phases for Holes Homogeneous Phase for Electrons

Hamiltonian Formulation II

Energy of the indoped fermions through diagonalization of the single-particle Hamiltonians

Hole Energy

$$E^f_{\pm}(\vec{p}) = M + \frac{p_i^2}{2M'} + \sigma_f \frac{p_1 p_2}{M''} \pm \Lambda |c_1 + \sigma_f c_2|$$

Electron Energy

$$E_{\pm}(\vec{p}) = M + rac{p_i^2}{2M'} + Nc_ic_i \pm 2K|p_1c_1 - p_2c_2|$$

- $\bullet~\pm$ now refers to upper and lower energy states.
- Minimizing the energies of the fermions leads to $c_i^3 = 0$

Uniform Background Field Dispersion Relations of Indoped Fermions Spiral Phases for Holes Homogeneous Phase for Electrons

Identification of Parameters

 $c_i^3 = 0$ has important consequences. It can be shown, that

θ(x) = π/2 ⇒ The spiral plane lies in the plane CuO plane
φ(x) = 2c_ix_i
k = 2√(c₁² + c₂²) = const. k is the spiral pitch

Background field contribution to the total energy density:

$$\epsilon = 2\rho_s v_i^+ v_i^- = 2\rho_s (c_1^2 + c_2^2)$$

Uniform Background Field Dispersion Relations of Indoped Fermions **Spiral Phases for Holes** Homogeneous Phase for Electrons

Density of Indoped Holes - Total Energy Density

• Density per flavor:

$$n_{\pm}^{f} = \frac{1}{(2\pi)^{2}} \int_{P_{\pm}^{f}} d^{2}p = \frac{1}{2\pi} M_{\text{eff}} T_{\pm}^{f}, \quad M_{\text{eff}} = \frac{M'M''}{\sqrt{M''^{2} - M'^{2}}}$$

- Kinetic energy density: $t_{\pm}^{f} = \frac{1}{(2\pi)^{2}} \int_{P_{\pm}^{f}} d^{2}p \left(\frac{p_{i}^{2}}{2M'} + \sigma_{f} \frac{p_{1}p_{2}}{M''}\right) = \frac{1}{4\pi} M_{\text{eff}} T_{\pm}^{f^{2}}$
- Total energy density:

$$\epsilon_{h} = \sum_{f=\alpha,\beta\atop s=+,-} \left[(M + s\Lambda |c_{1} + \sigma_{f} c_{2}|) n_{s}^{f} + t_{s}^{f} \right]$$

Minimize $\epsilon_h - \lambda n$: Minimizing the fermion energy density with fixed hole density. λ is a Lagrange multiplier.

Uniform Background Field Dispersion Relations of Indoped Fermions **Spiral Phases for Holes** Homogeneous Phase for Electrons

Phases of Hole-Doped Antiferromagnets

4 Pocket Phase:

Fact

Bounded from below for $2\pi\rho_s > M_{eff}\Lambda^2$

$$c_i = 0$$
 $\epsilon_4 = \epsilon_0 + Mn + rac{\pi n^2}{4M_{eff}}$

3 Pocket Phase:

Fact

Bounded from below for $2\pi\rho_s > M_{eff}\Lambda^2$

$$|c_i| = \frac{\pi}{2} \frac{\Lambda n}{6\pi\rho_s - M_{eff}\Lambda^2} \quad \epsilon_3 = \epsilon_0 + Mn + \frac{\pi}{3M_{eff}} \left(1 - \frac{1}{2} \frac{M_{eff}\Lambda^2}{6\pi\rho_s - M_{eff}\Lambda^2}\right) n^2$$

Uniform Background Field Dispersion Relations of Indoped Fermions **Spiral Phases for Holes** Homogeneous Phase for Electrons

Phases of Hole-Doped Antiferromagnets

2 Pocket Phase:

Fact

Bounded from below for $2\pi\rho_s > \frac{1}{2}M_{eff}\Lambda^2$

$$|c_{1,2}| = \frac{\Lambda}{4\rho_s}n, \ |c_{2,1}| = 0, \quad \epsilon_2 = \epsilon_0 + Mn + \left(\frac{\pi}{2M_{eff}} - \frac{\Lambda^2}{8\rho_s}\right)n^2.$$

1 Pocket Phase:

Fact

Always bounded from below but unstable against forming inhomogeneities for $2\pi\rho_s < \frac{1}{2}M_{\rm eff}\Lambda^2$

$$|c_1| = |c_2| = \frac{\Lambda}{4\rho_s}n$$
 $\epsilon_1 = \epsilon_0 + Mn + \left(\frac{\pi}{M_{eff}} - \frac{\Lambda^2}{4\rho_s}\right)n^2$

Uniform Background Field Dispersion Relations of Indoped Fermions **Spiral Phases for Holes** Homogeneous Phase for Electrons

Phases of Hole-Doped Antiferromagnets

Homogeneous Phase 4 Hole Pockets

Uniform Background Field Dispersion Relations of Indoped Fermions Spiral Phases for Holes Homogeneous Phase for Electrons

Phases of Hole-Doped Antiferromagnets

O Degree Spiral 2 Hole Pockets 45 Degrees Spiral 3 (or 1) Hole Pockets

Uniform Background Field Dispersion Relations of Indoped Fermions Spiral Phases for Holes Homogeneous Phase for Electrons

Stability of Phases for Hole Doping

Uniform Background Field Dispersion Relations of Indoped Fermions Spiral Phases for Holes Homogeneous Phase for Electrons

Homogeneous Phase for Electron-Doped Antiferromagnets

Homogeneous Phase No Spiral Phases

Outline

- Motivation
 - Condensed matter analog of baryon chiral perturbation theory
 - Effective field theory for magnons
- 2 Hole-Doping
 - Construction of effective field theory
- 3 Electron-Doping
 - Construction of effective field theory
- ④ Spiral Phases
 - Uniform Background Field
 - Dispersion Relations of Indoped Fermions
 - Spiral Phases for Holes
 - Homogeneous Phase for Electrons

5 Conclusions

Conclusions

- High-T superconductors: Condensed matter analog of baryon chiral perturbation theory
- We have constructed a systematic low-energy effective field theory for lightly doped antiferromagnets
- Using the effective theory we have investigated spiral phases in hole- and electron-doped cuprates
- While spiral phases do exist for hole-doping, they are absent in electron-doped cuprates
- We also calculated the one-magnon-exchange potential and investigated the possibility of hole-hole and electron-electron bound states

Outlook

- Analysis of materials with other lattice geometries: Honeycomb and Triangular lattices
- Incorporation of Phonons as low-energy degrees of freedom
- Systematic treatment of loop graphs
- Towards the mysterious Mechanism of high-T superconductivity

Nonlinear Realization of $SU(2)_s$ on the fermions

$$u(x)' = h(x)u(x)g^{\dagger}$$
 $C'_{x} = gC_{x}$

Nonlinear Realization of $SU(2)_s$ on the fermions

$$u(x)' = h(x)u(x)g^{\dagger}$$
 $C'_{x} = gC_{x}$

$$\begin{split} \Psi^{X}(x)' &= h(x)u(x)C_{x} = h(x)\Psi^{X}(x) \\ \Psi^{X}(x) &= \begin{pmatrix} \psi^{X}_{+}(x) & \psi^{X^{\dagger}}_{-}(x) \\ \psi^{X}_{-}(x) & -\psi^{X^{\dagger}}_{+}(x) \end{pmatrix}, \quad x \in \textit{even sublattice} \\ \Psi^{X}(x) &= \begin{pmatrix} \psi^{X}_{+}(x) & -\psi^{X^{\dagger}}_{-}(x) \\ \psi^{X}_{-}(x) & \psi^{X^{\dagger}}_{+}(x) \end{pmatrix}, \quad x \in \textit{odd sublattice}. \end{split}$$

The global spin rotation symmetry is also realized locally on the fermions.

Sublattice Structure 1

Sublattice Structure 2

From Charge Carriers to Grassmann numbers

From Charge Carriers to Grassmann numbers

Hubbard model in manifestly $SU(2)_{\vec{Q}}$ invariant form (at half filling)

$$\mathcal{H} = -\frac{t}{2} \sum_{x,i} \operatorname{Tr}[C_x^{\dagger} C_{x+\hat{i}} + C_{x+\hat{i}}^{\dagger} C_x] + \frac{U}{12} \sum_x \operatorname{Tr}[C_x^{\dagger} C_x C_x^{\dagger} C_x].$$
$$C_x = \begin{pmatrix} c_{x\uparrow} & (-1)^x c_{x\downarrow}^{\dagger} \\ c_{x\downarrow} & -(-1)^x c_{x\uparrow}^{\dagger} \end{pmatrix}$$

From Charge Carriers to Grassmann numbers

Hubbard model in manifestly $SU(2)_{\vec{Q}}$ invariant form (at half filling)

$$\mathcal{H} = -\frac{t}{2} \sum_{x,i} \operatorname{Tr}[C_x^{\dagger} C_{x+\hat{i}} + C_{x+\hat{i}}^{\dagger} C_x] + \frac{U}{12} \sum_x \operatorname{Tr}[C_x^{\dagger} C_x C_x^{\dagger} C_x].$$
$$C_x = \begin{pmatrix} c_{x\uparrow} & (-1)^x c_{x\downarrow}^{\dagger} \\ c_{x\downarrow} & -(-1)^x c_{x\uparrow}^{\dagger} \end{pmatrix}$$

$$\Psi^X(x) = u(x)C_x$$
 $X := sublatticeindex$

Solution for $\vec{e}(x)$ for constant background fields

$$\vec{e}(x) = \left(\sin\theta(x)\cos\varphi(x), \sin\theta(x)\sin\varphi(x), \cos\theta(x)\right)$$
$$\cos\theta(x) = \frac{1}{\sqrt{1 + \left(\frac{c_i}{c_i^3}\right)^2}} \left[\cos\eta + \frac{c_i}{c_i^3}\sin\eta\cos\left(2\sqrt{1 + \left(\frac{c_i}{c_i^3}\right)^2}c_i^3x_i\right)\right]$$
$$\varphi(x) = \operatorname{atan}\left(\frac{\frac{c_i}{c_i^3}\sin\left(2\sqrt{1 + \left(\frac{c_i}{c_i^3}\right)^2}c_i^3x_i\right)}{\sin\eta - \frac{c_i}{c_i^3}\cos\eta\cos\left(2\sqrt{1 + \left(\frac{c_i}{c_i^3}\right)^2}c_i^3x_i\right)}\right).$$

45

.

Antiferromagnetism: Hubbard model

Four possible states at each lattice site: $|0\rangle$, $|\uparrow\rangle$, $|\downarrow\rangle$, $|\uparrow\downarrow\rangle$

Antiferromagnetism: Hubbard model

Four possible states at each lattice site: $|0\rangle$, $|\uparrow\rangle$, $|\downarrow\rangle$, $|\uparrow\downarrow\rangle$ Assumptions:

- Half-filling: in average one fermion per lattice site
- Strong coupling limit: $U \gg t$
Antiferromagnetism: Hubbard model

Four possible states at each lattice site: $|0\rangle$, $|\uparrow\rangle$, $|\downarrow\rangle$, $|\uparrow\downarrow\rangle$ Assumptions:

- Half-filling: in average one fermion per lattice site
- Strong coupling limit: $U \gg t$
- Consequences:
 - $|\uparrow\downarrow\rangle$ huge energy cost \implies Ground state consists of $|\uparrow\rangle$, $|\downarrow\rangle$
 - Enormous degeneracy of states

Antiferromagnetism: Hubbard model

Four possible states at each lattice site: $|0\rangle$, $|\uparrow\rangle$, $|\downarrow\rangle$, $|\uparrow\downarrow\rangle$ Assumptions:

- Half-filling: in average one fermion per lattice site
- Strong coupling limit: $U \gg t$

Consequences:

- $|\uparrow\downarrow\rangle$ huge energy cost \implies Ground state consists of $|\uparrow\rangle$, $|\downarrow\rangle$
- Enormous degeneracy of states

How does the ground state order?

- By hopping system can lower its energy
- Hopping only possible for antiparallel spins
- \implies Antiferromagnetic spin alignment is favored!

Relating microscopic operators to effective fields I

With the matrix-valued operator

$$\mathcal{C}_x = \left(egin{array}{cc} c_{ ext{x}\uparrow} & (-1)^x \; c_{ ext{x}\downarrow}^\dagger \ c_{ ext{x}\downarrow} & -(-1)^x c_{ ext{x}\uparrow}^\dagger \end{array}
ight)$$

the Hubbard Hamiltonian can be written

$$H = -\frac{t}{2} \sum_{x,i} \operatorname{Tr}[C_x^{\dagger} C_{x+\hat{i}} + C_{x+\hat{i}}^{\dagger} C_x] + \frac{U}{12} \sum_x \operatorname{Tr}[C_x^{\dagger} C_x C_x^{\dagger} C_x] - \frac{\mu}{2} \sum_x \operatorname{Tr}[C_x^{\dagger} C_x \sigma_3]$$

Relating microscopic operators to effective fields II

• Defining new lattice operators with the help of the diagonalizing matrix u(x):

$$\Psi_x^{A,B,...,H} = u(x)C_x, \qquad x \in A, B, ..., H$$

Relating microscopic operators to effective fields II

• Defining new lattice operators with the help of the diagonalizing matrix u(x):

$$\Psi_x^{A,B,...,H} = u(x)C_x, \qquad x \in A, B, ..., H$$

• Work out symmetry transformation properties

Relating microscopic operators to effective fields II

• Defining new lattice operators with the help of the diagonalizing matrix u(x):

$$\Psi_x^{A,B,...,H} = u(x)C_x, \qquad x \in A, B, ..., H$$

- Work out symmetry transformation properties
- Replace lattice operators by effective Grassmann fields

$$\Psi_x^{A,B,\ldots,H} \longrightarrow \Psi^{A,B,\ldots,H}(x)$$

Relating microscopic operators to effective fields II

• Defining new lattice operators with the help of the diagonalizing matrix u(x):

$$\Psi_x^{A,B,...,H} = u(x)C_x, \qquad x \in A, B, ..., H$$

- Work out symmetry transformation properties
- Replace lattice operators by effective Grassmann fields

$$\Psi_x^{A,B,\ldots,H} \longrightarrow \Psi^{A,B,\ldots,H}(x)$$

• Postulate: Transformation properties are inherited!

Accidental Galilean boost invariance

$$G: \quad {}^{G}P(x) = P(Gx), \qquad Gx = (\vec{x} - \vec{v} \ t, t),$$
$${}^{G}\psi^{f}_{\pm}(x) = \exp\left(\vec{p}^{f} \cdot \vec{x} - \omega^{f} t\right)\psi^{f}_{\pm}(Gx),$$
$${}^{G}\psi^{f\dagger}_{\pm}(x) = \psi^{f\dagger}_{\pm}(Gx)\exp\left(-\vec{p}^{f} \cdot \vec{x} + \omega^{f} t\right),$$

with $ec{p}^f = (p_1^f, p_2^f)$ and ω^f given by

$$p_{1}^{f} = \frac{M'}{1 - (M'/M'')^{2}} \left[v_{1} - \sigma_{f} \frac{M'}{M''} v_{2} \right],$$

$$p_{2}^{f} = \frac{M'}{1 - (M'/M'')^{2}} \left[v_{2} - \sigma_{f} \frac{M'}{M''} v_{1} \right],$$

$$\omega^{f} = \frac{p_{i}^{f^{2}}}{2M'} + \sigma_{f} \frac{p_{1}^{f} p_{2}^{f}}{M''} = \frac{M'}{1 - (M'/M'')^{2}} \left[\frac{1}{2} (v_{1}^{2} + v_{2}^{2}) - \sigma_{f} \frac{M'}{M''} v_{1} v_{2} \right]$$

Transformation behavior of electron fields

$$SU(2)_{s}: \quad \psi_{\pm}(x)' = \exp(\pm i\alpha(x))\psi_{\pm}(x)$$
$$U(1)_{Q}: \quad {}^{Q}\psi_{\pm}(x) = \exp(i\omega)\psi_{\pm}(x)$$
$$D_{i}: \quad {}^{D_{i}}\psi_{\pm}(x) = \mp \exp(ik_{i}a)\exp(\mp i\varphi(x))\psi_{\mp}(x)$$
$$O: \quad {}^{O}\psi_{\pm}(x) = \pm\psi_{\pm}(Ox)$$
$$R: \quad {}^{R}\psi_{\pm}(x) = \psi_{\pm}(Rx)$$
$$T: \quad {}^{T}\psi_{\pm}(x) = \exp(\mp i\varphi(Tx))\psi_{\pm}^{\dagger}(Tx)$$
$$\quad {}^{T}\psi_{\pm}^{\dagger}(x) = -\exp(\pm i\varphi(Tx))\psi_{\pm}(Tx)$$