Phase transition dynamics and gravitational waves

Ariel Mégevand

Universidad Nacional de Mar del Plata Argentina

XIII MEXICAN SCHOOL OF PARTICLES AND FIELDS October 2008

A. Mégevand (Mar del Plata, Argentina) Phase transition dynamics and GWs

San Carlos 2008 1 / 31

Outline

Outline

Motivation

First-order phase transitions Gravitational waves

Phase transition dynamics

Thermodynamics Bubble nucleation Bubble growth

Gravitational waves from a first-order phase transition

Turbulence in a first-order phase transition Gravitational waves from turbulence

Phase transition dynamics and gravitational waves GWs from detonations and deflagrations Global treatment of deflagration bubbles Results Motivation

Motivation

Phase transition dynamics

Gravitational waves from a first-order phase transition

Phase transition dynamics and gravitational waves

A. Mégevand (Mar del Plata, Argentina)

First-order phase transitions

Phase transition dynamics

- supercooling
- nucleation and expansion of bubbles
- bubble collisions
- departure form equilibrium

Possible consequences

- topological defects, magnetic fields
- baryogenesis, inhomogeneities
- cosmological constant
- gravitational waves (GWs)

Gravitational waves

from first-order phase transitions

Since GWs propagate freely, they may provide a direct source of information about the early Universe.

The spectrum

- The characteristic wavelength of the gravitational radiation is determined by the characteristic length of the source.
- ► The characteristic length is the size of bubbles, which depends on the phase transition dynamics and the Hubble length H⁻¹.
- ► For the electroweak phase transition, the characteristic frequency, redshifted to today, is ~ milli-Hertz.
- This is within the sensitivity range of the planned Laser Interferometer Space Antenna (LISA).

Phase transition dynamics

Motivation

Phase transition dynamics

Gravitational waves from a first-order phase transition

Phase transition dynamics and gravitational waves

A. Mégevand (Mar del Plata, Argentina)

Thermodynamics

The free energy

Thermodynamic quantities (ρ , p, s,...) are derived from the free energy density (finite-temperature effective potential).

Example:

A theory with a Higgs field and particle masses $m_i(\phi)$

$$\mathcal{F}(\phi, T) = V_0(\phi) + V_{1\text{-loop}}(\phi, T),$$

 $V_0(\phi) =$ tree-level potential

 $V_{1-\text{loop}}(\phi, T) = \text{zero-temperature corrections} + \text{finite-temperature corrections}$

A. Mégevand (Mar del Plata, Argentina)

The effective potential

$$\mathcal{F}(\phi, T) = V_0(\phi) + V_{1\text{-loop}}(\phi, T),$$

where

$$\begin{split} V_0(\phi) &= -\frac{1}{2}\lambda v^2 \phi^2 + \frac{1}{4}\lambda \phi^4 \\ V_{1-\text{loop}}(\phi) &= \sum \frac{\pm g_i}{64\pi^2} \left[m_i^4(\phi) \left(\log \left(\frac{m_i^2(\phi)}{m_i^2(v)} \right) - \frac{3}{2} \right) + 2m_i^2(\phi) m_i^2(v) \right] \\ &+ \sum \frac{g_i T^4}{2\pi^2} I_{\mp} \left[\frac{m_i(\phi)}{T} \right] \\ \text{with} \qquad I_{\mp}(x) &= \pm \int_0^\infty dy \, y^2 \log \left(1 \mp e^{-\sqrt{y^2 + x^2}} \right) \end{split}$$

A. Mégevand (Mar del Plata, Argentina)

Phase transition dynamics

Thermodynamics

First-order phase transition

High T: $\phi = 0$ (false vacuum) Low T: $\phi = \phi_m(T)$ (true vacuum) $T_c = critical temperature$

 $\mathcal{F}(\phi, T)$ around the critical temperature

First-order phase transition

Thermodynamic quantities are different in each phase

$$T > T_c: \Rightarrow \mathcal{F}(\phi = 0, T) \equiv \mathcal{F}_+(T) \Rightarrow \rho_+, s_+, p_+, \dots$$

$$T < T_c: \Rightarrow \mathcal{F}(\phi_m(T), T) \equiv \mathcal{F}_-(T) \Rightarrow \rho_-, s_-, p_-, \dots$$

High-temperature phase $\phi = 0$

• Energy density:
$$\rho_+(T) = \rho_{\Lambda} + g_* \pi^2 T^4/30$$

= false vacuum + radiation

Low-temperature phase $\phi = \phi_m(T)$

• $\rho_{-}(T)$ depends on the effective potential

A. Mégevand (Mar del Plata, Argentina) Phase transition dynamics and GWs

First-order phase transition

Discontinuities at $T = T_c$

At the critical temperature, 𝓕₊(𝒯_c) = 𝓕₋(𝒯_c), but ρ₊(𝒯_c) > ρ₋(𝒯_c).

•
$$L \equiv \rho_+(T_c) - \rho_-(T_c) =$$
latent heat.

The latent heat

- L is released during bubble expansion.
- Should not be confused with ρ_{Λ} or $\Delta \mathcal{F}$.

Bubble nucleation

- During the adiabatic cooling of the Universe, the temperature T_c is reached.
- The system is in the $\phi = 0$ phase [i.e., $\phi(x) \equiv 0$].

At T < T_c bubbles of the stable phase [i.e., with φ = φ_m inside] begin to nucleate in the supercooled φ = 0 phase.

At T = T₀ the barrier disappears. (T₀ ~ T_c.)

Bubble nucleation

Nucleation rate

Thermal tunneling probability per unit volume per unit time:

$$\Gamma \simeq T^4 e^{-S_3(T)/T}$$

 $S_3(T) =$ three-dimensional instanton action = free energy of the critical bubble

 $\boldsymbol{\Gamma}$ is extremely sensitive to temperature:

• At
$$T = T_c$$
, $\Gamma = 0$ $(S_3 = \infty)$
• At $T = T_0$, $\Gamma \sim T^4$ $(S_3 = 0)$

• Nucleation becomes important as soon as $\Gamma \sim H^4$, and • $H^4 \sim (T^2/M_{\text{Planck}})^4 \ll T^4$.

A. Mégevand (Mar del Plata, Argentina)

Bubble growth

- Once nucleated, bubbles expand until they fill all space.
- ▶ The velocity of bubble walls depends on several parameters.
 - Pressure difference Δp = p_− − p₊ Depends on supercooling. (At T = T_c, p_− = p₊).
 - Friction of bubble wall with plasma Depends on microphysics (particles-Higgs interactions).
 - ► Latent heat L = ρ₊ − ρ_− injected into the plasma. Causes reheating and fluid motions.
- Hydrodynamics allows two propagation modes: detonations and deflagrations.

Hydrodynamics

Detonations

- The phase transition front (bubble wall) moves faster than the speed of sound: $v_w > c_s$.
- No signal precedes the wall. It is followed by a rarefaction wave.
- A bubble wall does not influence other bubbles. except in the collision regions

Deflagrations

- The deflagration front is subsonic ($v_w < c_s$).
- The wall is preceded by a shock wave which moves at a velocity $v_{sh} \approx c_s$.
- Thus, it will influence other bubbles.

GWs from a phase transition

Motivation

Phase transition dynamics

Gravitational waves from a first-order phase transition

Phase transition dynamics and gravitational waves

A. Mégevand (Mar del Plata, Argentina)

Possible mechanisms

Bubble collisions

The walls of expanding bubbles provide thin energy concentrations that move rapidly.

Turbulence

In the early Universe, the Reynolds number is large enough to produce turbulence when energy is injected.

Magnetohydrodynamics (turbulence in a magnetized plasma)

It develops in an electrically conducting fluid, in the presence of magnetic fields.

Cosmological turbulence

Kolmogoroff-type turbulence

- Energy is injected by a **stirring source** at a length scale L_S.
- Eddies of each size L break into smaller ones.
- When turbulence is fully developed, a cascade of energy is established from larger to smaller length scales.
- ► The cascade begins at the stirring scale L_S and stops at the dissipation scale L_D ≪ L_S.
- Energy in the cascade is transmitted with a constant rate ε .
- For stationary turbulence, the dissipation rate ε equals the power that is injected by the source.

Cosmological turbulence

The energy spectrum

• Consider the velocity correlation tensor $\langle v_i(\mathbf{x})v_j(\mathbf{y})\rangle$, where

- v(x) = velocity of the fluid,
- $\langle \cdots \rangle$ = statistical average.
- For stationary, homogeneous, isotropic turbulence, we have for the Fourier transform of v_i:

$$\langle v_i(\mathbf{k})v_j^*(\mathbf{q})\rangle \propto \delta^3(\mathbf{k}-\mathbf{q})rac{E(k)}{k^2}\left(\delta_{ij}-rac{k_ik_j}{k^2}
ight),$$

E(k) = turbulent energy density spectrum.

For Kolmogoroff turbulence, $E(k) \propto \varepsilon^{2/3} k^{-5/3}$ for $L_D < L < L_S$ (with $k = 2\pi/L$).

A. Mégevand (Mar del Plata, Argentina)

Gravitational waves from turbulence

- The source for the tensor metric perturbation h_{ij} is the transverse and traceless piece of the stress-energy tensor T_{ij}.
- The relevant part of the stress-energy tensor for the relativistic fluid is

 $T_{ij}\left(\mathbf{x}
ight)\propto v_{i}\left(\mathbf{x}
ight)v_{j}\left(\mathbf{x}
ight).$

The energy density in GWs is

$$\rho_{GW} \sim \langle T_{ij} T_{ij} \rangle \sim \langle v_i v_j v_i v_j \rangle.$$

• The spectrum can be related to $\langle v_i v_j \rangle \sim E(k)$ (Kolmogoroff).

Gravitational waves from turbulence

The expansion of the Universe

- Can be neglected in the production of GWs
- Once produced, their wavelength scales with the scale factor a and their amplitude decays like a⁻¹.

21 / 31

The GW spectrum

The spectrum is characterized by

$$\Omega_{GW}(f) = \frac{1}{\rho_c} \frac{d\rho_{GW}}{d\log f},$$

where $\rho_c = critical$ density.

Peak frequency:

$$f_p = 1.6 \times 10^{-5} Hz rac{T_*}{100 GeV} \left(rac{g_*}{100}
ight)^{1/6} rac{L_S^{-1}}{H_*}.$$

Peak amplitude:

$$\Omega_{GW}(f_p) \approx \Omega_R \left(\frac{L_S}{H_*^{-1}}\right)^{10/3} \left(\frac{\varepsilon}{H_*}\right)^{4/3}$$

where Ω_R = radiation. [Caprini & Durrer, PRD 74, 063521 (2006)]

A. Mégevand (Mar del Plata, Argentina)

GWs and phase transition dynamics

The spectrum $\Omega_{GW}(f)$ depends on:

- The temperature $T \sim T_c = \text{critical temperature}$
- The stirring scale $L_S \sim$ size of bubbles
- ► The dissipation rate ε = Injected power ~ latent heat × bubble wall velocity
- The parameters depend on hydrodynamics (How bubble walls propagate in the fluid).

Phase transition and GWs

Motivation

Phase transition dynamics

Gravitational waves from a first-order phase transition

Phase transition dynamics and gravitational waves

A. Mégevand (Mar del Plata, Argentina)

Phase transition dynamics and GWs

San Carlos 2008 24 / 31

GWs from detonations and deflagrations

Detonations (supersonic walls)

- The injected energy is concentrated in a thin region near the bubble wall. (Simpler calculations).
- The wall velocity is v_w = v_w(α), where α = L/ρ_{th} = (latent heat)/(thermal energy)
- The nucleation rate Γ = e^{-S₃(T)/T} increases as temperature decreases with time.
- A Taylor expansion of the exponent gives $\Gamma = \Gamma_0 e^{\beta t}$.
- β^{-1} is the only time scale in the problem.
- It determines the duration of the phase transition Δt ~ β⁻¹ and the bubble size d ~ v_wβ⁻¹.
- As a consequence, the spectrum of gravitational waves depends only on two parameters, α and β .

GWs from detonations and deflagrations

Deflagrations (subsonic walls)

- Calculations are more difficult:
- $v_w \sim \Delta p/\eta$
 - $\eta =$ friction coefficient
 - Δp = pressure difference (depends on supercooling)
- Shock waves distribute the latent heat, causing reheating and bulk motions of the fluid far from the wall.
- ► The phase transition should be treated *globally*.

GWs from detonations and deflagrations

- Due to the difficulties of the deflagration case, calculations of the GW spectrum in specific models often assume that bubble walls propagate as detonations.
- The formulas for the detonation case (which depend only on α, β) are used.
 - ► For instance, to investigate GWs in the electroweak phase transition for different extensions of the Standard Model.
- ► However, the bubbles expand in general as **deflagrations**.
 - It is known that in the electroweak phase transition, $v_w \sim 10^{-2} 10^{-1}$,
 - i.e., the walls are deflagrations ($v_w < c_s \approx 0.6$).

Global treatment of deflagration bubbles

Approximation for slow bubble walls:

- If v_w ≪ c_s, the quick distribution of latent heat causes a homogeneous reheating (T depends only on t).
- Equations for T(t), v_w(t), ... can be solved numerically. In general:

Relevant features:

- All bubbles nucleate in a short interval δt_{Γ} around the "initial" time $t \equiv t_{\Gamma}$.
- The bubble number density at t = t_Γ determines the bubble size d ~ n_b^{-1/3}.
- Soon after t = t_Γ the shock waves collide and turbulence starts.

Results

- Taking into account the general features of the dynamics, we can derive relations between ε, d, v_w,...
- and obtain analytical expressions
 [A.M., PRD 78, 084003 (2008)]

$$f_{
ho} \sim 10^{-2} m Hz \left(rac{T_c}{100 \, GeV}
ight) \left(rac{d}{H^{-1}}
ight)^{-1},$$

$$\Omega_{GW}|_{\mathrm{peak}} \sim 10^{-4} (\alpha v_w)^{8/3} \left(\frac{d}{H^{-1}}\right)^2.$$

For the electroweak phase transition at $T_c \sim 100 GeV$, we would need $d/H^{-1} \sim 10^{-2}$ so that $f_p \sim mHz$.

• (In general,
$$10^{-5} \lesssim d \lesssim 10^{-1}$$
)

Results

► Then, for $d/H^{-1} \sim 10^{-2}$, $v_W \sim 0.1$ and $\alpha \sim 1$, we have $\Omega_{GW} \sim 10^{-11}$.

Detecting electroweak GWs at LISA

$$v_w = 0.1$$

 $v_w = 0.05$
 $- - v_w = 0.02$

Figure: The values of α and T_c that give $f_p = 1mHz$ and $\Omega_{GW}(f_p) = 10^{-11}$.

Summary

- It is important to consider deflagrations as a source of GWs.
- ► The resulting amplitude may be comparable to the detonation case.

Outlook

A complete numerical calculation is necessary to evaluate the quantities v_w, d, ... in specific models.
 [A.M. and A. Sánchez, work in progress]