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Motivation First-order phase transitions

First-order phase transitions

Phase transition dynamics

I supercooling

I nucleation and expansion of bubbles

I bubble collisions

I departure form equilibrium

Possible consequences

I topological defects, magnetic fields

I baryogenesis, inhomogeneities

I cosmological constant

I gravitational waves (GWs)
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Motivation Gravitational waves

Gravitational waves
from first-order phase transitions

I Since GWs propagate freely, they may provide a direct source of
information about the early Universe.

The spectrum

I The characteristic wavelength of the gravitational radiation
is determined by the characteristic length of the source.

I The characteristic length is the size of bubbles, which depends on the
phase transition dynamics and the Hubble length H−1.

I For the electroweak phase transition, the characteristic frequency,
redshifted to today, is ∼ milli-Hertz.

I This is within the sensitivity range of the planned
Laser Interferometer Space Antenna (LISA).
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Phase transition dynamics
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Phase transition dynamics Thermodynamics

Thermodynamics

The free energy

Thermodynamic quantities (ρ, p, s,...) are derived from the
free energy density (finite-temperature effective potential).

Example:

A theory with a Higgs field and particle masses mi (φ)

F(φ,T ) = V0 (φ) + V1-loop(φ,T ),

V0 (φ) = tree-level potential

V1-loop (φ,T ) = zero-temperature corrections
+ finite-temperature corrections
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Phase transition dynamics Thermodynamics

The effective potential

F(φ,T ) = V0 (φ) + V1-loop(φ,T ),

where
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Phase transition dynamics Thermodynamics

First-order phase transition
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Figure: The free energy
F(φ,T ) around the critical
temperature

High T : φ = 0 (false vacuum)
Low T : φ = φm(T )

(true vacuum)
Tc = critical temperature
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Phase transition dynamics Thermodynamics

First-order phase transition

Thermodynamic quantities are different in each phase

T > Tc : ⇒ F(φ = 0,T ) ≡ F+(T ) ⇒ ρ+, s+, p+, . . .
T < Tc : ⇒ F (φm(T ),T ) ≡ F−(T ) ⇒ ρ−, s−, p−, . . .

High-temperature phase φ = 0

I Energy density: ρ+(T ) = ρΛ + g∗π
2T 4/30

= false vacuum + radiation

Low-temperature phase φ = φm(T )

I ρ−(T ) depends on the effective potential
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Phase transition dynamics Thermodynamics

First-order phase transition

Discontinuities at T = Tc

I At the critical temperature, F+(Tc) = F−(Tc),
but ρ+(Tc) > ρ−(Tc).

I L ≡ ρ+(Tc) − ρ−(Tc) = latent heat.

The latent heat
I L is released during bubble expansion.

I Should not be confused with ρΛ or ∆F .
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Phase transition dynamics Bubble nucleation

Bubble nucleation

I During the adiabatic cooling of the Universe,
the temperature Tc is reached.

I The system is in the φ = 0 phase [i.e., φ(x) ≡ 0].
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I At T < Tc

bubbles of the stable phase
[i.e., with φ = φm inside]

begin to nucleate in the
supercooled φ = 0 phase.

I At T = T0 the barrier
disappears. (T0 ∼ Tc .)
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Phase transition dynamics Bubble nucleation

Bubble nucleation

Nucleation rate

Thermal tunneling probability per unit volume per unit time:

Γ ' T 4e−S3(T )/T

S3 (T ) = three-dimensional instanton action
= free energy of the critical bubble

Γ is extremely sensitive to temperature:

I At T = Tc , Γ = 0 (S3 = ∞)

I At T = T0, Γ ∼ T 4 (S3 = 0)
I Nucleation becomes important as soon as Γ ∼ H4, and
I H4 ∼ (T 2/MPlanck)

4 � T 4.
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Phase transition dynamics Bubble growth

Bubble growth

I Once nucleated, bubbles expand until they fill all space.

I The velocity of bubble walls depends on several parameters.
I Pressure difference ∆p = p− − p+

Depends on supercooling. (At T = Tc , p− = p+).
I Friction of bubble wall with plasma

Depends on microphysics (particles-Higgs interactions).
I Latent heat L = ρ+ − ρ− injected into the plasma.

Causes reheating and fluid motions.

I Hydrodynamics allows two propagation modes:
detonations and deflagrations.
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Phase transition dynamics Bubble growth

Hydrodynamics

Detonations

I The phase transition front (bubble wall)
moves faster than the speed of sound: vw > cs .

I No signal precedes the wall.
It is followed by a rarefaction wave.

I A bubble wall does not influence other bubbles,
except in the collision regions

Deflagrations

I The deflagration front is subsonic (vw < cs).

I The wall is preceded by a shock wave which moves
at a velocity vsh ≈ cs .

I Thus, it will influence other bubbles.
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GWs from a phase transition
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GWs from a phase transition Possible mechanisms

Possible mechanisms

Bubble collisions
I The walls of expanding bubbles provide thin energy concentrations

that move rapidly.

Turbulence

I In the early Universe, the Reynolds number is large enough to produce
turbulence when energy is injected.

Magnetohydrodynamics (turbulence in a magnetized plasma)

I It develops in an electrically conducting fluid, in the presence of
magnetic fields.
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GWs from a phase transition Turbulence in a first-order phase transition

Cosmological turbulence

Kolmogoroff-type turbulence

I Energy is injected by a stirring source at a length scale LS .

I Eddies of each size L break into smaller ones.

I When turbulence is fully developed, a cascade of energy is established
from larger to smaller length scales.

I The cascade begins at the stirring scale LS and stops at the
dissipation scale LD � LS .

I Energy in the cascade is transmitted with a constant rate ε.

I For stationary turbulence, the dissipation rate ε equals the power
that is injected by the source.
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GWs from a phase transition Turbulence in a first-order phase transition

Cosmological turbulence

The energy spectrum

I Consider the velocity correlation tensor 〈vi(x)vj (y)〉, where
I v(x) = velocity of the fluid,
I 〈· · · 〉 = statistical average.

I For stationary, homogeneous, isotropic turbulence,
we have for the Fourier transform of vi :

〈vi (k)v∗
j (q)〉 ∝ δ3(k − q)

E (k)

k2

(

δij −
kikj

k2

)

,

I E (k) = turbulent energy density spectrum.

I For Kolmogoroff turbulence, E (k) ∝ ε2/3k−5/3

for LD < L < LS (with k = 2π/L).
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GWs from a phase transition Gravitational waves from turbulence

Gravitational waves from turbulence

I The source for the tensor metric perturbation hij is the transverse and
traceless piece of the stress-energy tensor Tij .

I The relevant part of the stress-energy tensor
for the relativistic fluid is

Tij (x) ∝ vi (x) vj (x) .

I The energy density in GWs is

ρGW ∼ 〈TijTij〉 ∼ 〈vivjvivj〉.

I The spectrum can be related to 〈vivj〉 ∼ E (k) (Kolmogoroff).
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GWs from a phase transition Gravitational waves from turbulence

Gravitational waves from turbulence

The expansion of the Universe

I Can be neglected in the production of GWs

I Once produced, their wavelength scales
with the scale factor a and their amplitude decays like a−1.
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GWs from a phase transition Gravitational waves from turbulence

The GW spectrum

I The spectrum is characterized by

ΩGW (f ) =
1

ρc

dρGW

d log f
,

where ρc = critical density.

I Peak frequency:

fp = 1.6 × 10−5Hz
T∗

100GeV

( g∗
100

)1/6 L−1
S

H∗

.

I Peak amplitude:

ΩGW (fp) ≈ ΩR

(

LS

H−1
∗

)10/3 (

ε

H∗

)4/3

where ΩR = radiation.
[Caprini & Durrer, PRD 74, 063521 (2006)]
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GWs from a phase transition Gravitational waves from turbulence

GWs and phase transition dynamics

The spectrum ΩGW (f ) depends on:

I The temperature T ∼ Tc = critical temperature

I The stirring scale LS ∼ size of bubbles

I The dissipation rate ε = Injected power
∼ latent heat × bubble wall velocity

I The parameters depend on hydrodynamics
(How bubble walls propagate in the fluid).
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Phase transition and GWs
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Phase transition and GWs GWs from detonations and deflagrations

GWs from detonations and deflagrations

Detonations (supersonic walls)

I The injected energy is concentrated in a thin region
near the bubble wall. (Simpler calculations).

I The wall velocity is vw = vw (α),
where α = L/ρth = (latent heat)/(thermal energy)

I The nucleation rate Γ = e−S3(T )/T increases
as temperature decreases with time.

I A Taylor expansion of the exponent gives Γ = Γ0e
βt .

I β−1 is the only time scale in the problem.

I It determines the duration of the phase transition ∆t ∼ β−1

and the bubble size d ∼ vwβ−1.

I As a consequence, the spectrum of gravitational waves depends only
on two parameters, α and β.
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Phase transition and GWs GWs from detonations and deflagrations

GWs from detonations and deflagrations

Deflagrations (subsonic walls)

I Calculations are more difficult:

I vw ∼ ∆p/η
I η = friction coefficient
I ∆p = pressure difference (depends on supercooling)

I Shock waves distribute the latent heat, causing reheating
and bulk motions of the fluid far from the wall.

I The phase transition should be treated globally.
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Phase transition and GWs GWs from detonations and deflagrations

GWs from detonations and deflagrations

I Due to the difficulties of the deflagration case,
calculations of the GW spectrum in specific models
often assume that bubble walls propagate as detonations.

I The formulas for the detonation case (which depend only on α, β) are
used.

I For instance, to investigate GWs in the electroweak phase transition for
different extensions of the Standard Model.

I However, the bubbles expand in general as deflagrations.

I It is known that in the electroweak phase transition, vw ∼ 10−2 − 10−1,
I i.e., the walls are deflagrations (vw < cs ≈ 0.6).
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Phase transition and GWs Global treatment of deflagration bubbles

Global treatment of deflagration bubbles

Approximation for slow bubble walls:

I If vw � cs , the quick distribution of latent heat causes a
homogeneous reheating (T depends only on t).

I Equations for T (t), vw (t), . . . can be solved numerically.
In general:

Tc

 
T0

Time

Temperature

Nucleation rate Γ

Relevant features:

I All bubbles nucleate in a short interval
δtΓ around the “initial” time t ≡ tΓ.

I The bubble number density at t = tΓ
determines the bubble size d ∼ n

−1/3
b .

I Soon after t = tΓ the shock waves
collide and turbulence starts.
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Phase transition and GWs Results

Results

I Taking into account the general features of the dynamics, we can
derive relations between ε, d , vw ,...

I and obtain analytical expressions
[A.M., PRD 78, 084003 (2008)]

fp ∼ 10−2mHz

(

Tc

100GeV

)(

d

H−1

)−1

,

ΩGW |peak ∼ 10−4(αvw )8/3

(

d

H−1

)2

.

I For the electroweak phase transition at Tc ∼ 100GeV ,
we would need d/H−1 ∼ 10−2 so that fp ∼ mHz .

I (In general, 10−5 . d . 10−1)
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Phase transition and GWs Results

Results

I Then, for d/H−1 ∼ 10−2, vW ∼ 0.1 and α ∼ 1, we have
ΩGW ∼ 10−11.

Detecting electroweak GWs at LISA
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 vw = 0.1

 vw = 0.05
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Figure: The values of α and Tc

that give fp = 1mHz
and ΩGW (fp) = 10−11.
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Summary

Summary

I It is important to consider deflagrations as a source of GWs.

I The resulting amplitude may be comparable to the detonation case.

I Outlook
I A complete numerical calculation is necessary to evaluate the

quantities vw , d , ... in specific models.
[A.M. and A. Sánchez, work in progress]
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