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Abstract. During a first-order phase transition, gravitational radiation is generated either by bubble
collisions or by turbulence. For phase transitions which took place at the electroweak scale and
beyond, the signal is expected to be within the sensitivity range of planned interferometers such as
LISA or BBO. We review the generation of gravitational waves in a first-order phase transition and
discuss the dependence of the spectrum on the dynamics of the phase transition.
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INTRODUCTION

An essential feature of the dynamics of first-order phase transitions is supercooling:
the temperature must decrease below the critical temperature Tc for the phase transition
to begin. Then, bubbles nucleate, expand and collide until they fill all space, causing
a departure from the condition of (approximate) thermodynamic equilibrium that pre-
dominates throughout most of the history of the Universe. An important consequence of
this dynamics is the formation of cosmological relics, in particular, gravitational waves
(GWs). Once generated, gravitational radiation propagates freely (in contrast to electro-
magnetic radiation). Therefore, GWs may provide information about the early Universe.

The characteristic wavelength of the gravitational waves is determined by the charac-
teristic length of the source. In the case of a phase transition, this is the size of bubbles,
which depends on the dynamics of the phase transition and is a fraction of the Hubble
length. For a given model, one can estimate the characteristic frequency of the GWs. It is
interesting that, for the case of the electroweak phase transition, such estimations give a
milli-Hertz frequency, which is within the sensitivity range of the planned interferometer
LISA.

PHASE TRANSITION DYNAMICS

The most important quantity in finite-temperature field theory is the free energy density,
or finite-temperature effective potential. All the thermodynamical quantities (e.g., the
energy density, pressure, entropy, etc.) are derived from it. As an example, consider
a theory with a single Higgs field φ and particles with φ -dependent masses mi(φ).



Then, the free energy F (φ ,T ) is given by the tree-level potential plus, say, one-loop
corrections. These corrections include the usual zero-temperature contributions, plus
finite temperature contributions. Both contributions depend on the masses mi (φ).

A first-order phase transition occurs when the free energy has two minima separated
by a barrier. Usually, at high temperatures the value φ = 0 is the global minimum.
This corresponds in general to a symmetric phase. A second minimum at φ = φm(T )
becomes the global one at low temperatures. This value corresponds to a spontaneously
broken symmetry. The critical temperature T = Tc is that at which the two minima are
degenerate. At a smaller temperature T0 . Tc the barrier between minima disappears (see
e.g. Ref. [1]).

Hence, above Tc the field is in the high-temperature minimum and the free energy is
a certain function of temperature, F+ (T ) = F (φ = 0,T ). Below Tc, the field is in the
low-temperature minimum and the free energy is a different function of temperature,
F− (T ) = F (φm(T ),T ). All the thermodynamical quantities will be different functions
of T , too. By definition, the functions F+ and F− match at T = Tc, since the critical
temperature is that at which the two minima have the same free energy. However, several
quantities are discontinuous. This is the case, e.g., of the energy density ρ , which is
smaller in the stable phase. The difference L ≡ ρ+(Tc)− ρ−(Tc) is called latent heat.
This heat is released in the phase transition interfaces, which are the walls of expanding
bubbles.

During the adiabatic cooling, the Universe reaches the critical temperature. At this
moment the system is in the high-temperature phase, with φ(x)≡ 0. As the temperature
decreases from Tc, this phase becomes metastable. The system becomes supercooled,
since now the stable phase is the low-T one, with φ = φm. Therefore, bubbles begin to
nucleate.

A bubble is a configuration in which the field has the value φm inside a certain
radius and falls to φ = 0 outside. The nucleation rate Γ ' T 4e−S3(T )/T is dominated
by a Boltzmann factor corresponding to the probability of thermal activation. The three-
dimensional instanton action S3 coincides with the free energy that is necessary to form
a “critical” bubble in unstable equilibrium between expansion and contraction. Roughly,
nucleation becomes important when Γ is comparable to H4, where H is the Hubble rate.
The nucleation rate is extremely sensitive to temperature. At the critical temperature we
have S3 = ∞ and Γ = 0, whereas at the temperature T0 we have S3 = 0 and Γ∼ T 4. This
is a huge rate in comparison with the expansion rate, which is suppressed by factors of
the Planck mass, H4 ∼ (T 2/MPlanck)4 ¿ T 4.

Once bubbles nucleate, they begin to expand until they fill all space. The velocity of
bubble walls depends on several parameters (see e.g. Ref. [2]). The pressure difference
∆p between phases pushes the walls towards the false vacuum. ∆p depends on the
amount of supercooling, since at the critical temperature we have p+ = p−. The plasma
exerts a friction on the bubble wall, which depends on the interactions of the particles
with the Higgs field that makes up the wall configuration. The latent heat that is injected
into the plasma causes reheating and bulk motions of the fluid.

According to Hydrodynamics, a phase transition front (bubble wall) can propagate
either as a detonation or as a deflagration. For a detonation, the bubble wall moves
faster than the speed of sound in the plasma, cs = 1/

√
3. As a consequence, no signal



precedes the wall, which is followed by a rarefaction wave. Thus, in this case a bubble
cannot influence other bubbles, except in the regions where bubble walls meet and
collide. On the contrary, a deflagration front is slower than the sound. In this case the
wall is preceded by a shock wave which moves at vsh ≈ cs. Therefore, in the case of
deflagrations, bubbles will influence each other.

GENERATION OF GRAVITATIONAL WAVES

Gravitational waves are produced in a first-order phase transition, either by bubble
collisions (due to the motion of thin energy concentrations), or by the turbulence that
the moving walls generate in the relativistic fluid [3]. In general, turbulence is a stronger
source of GWs than bubble collisions. It can be seen that the Reynolds number is
large enough to produce turbulence when a source injects energy into the plasma. If
the phase transition takes place in an electrically conducting fluid in the presence of
magnetic fields, then turbulence develops in a completely different way. This gives a
third mechanism for generation of GWs, called magnetohydrodynamics. Here I will
consider only the case of turbulence without magnetic fields.

The simplest model of turbulence is Kolmogoroff-type turbulence. In this model,
energy is injected by a stirring source which has a characteristic length LS. Turbulent
eddies of this size are produced, which then break into smaller ones. The same happens
at any size scale L < LS. When turbulence is fully developed, a cascade is established, in
which energy is transmitted from larger to smaller length scales, beginning at the stirring
scale LS and finishing at a scale LD at which viscosity dissipates the energy into heat.
An important feature is that the energy in the cascade is transmitted with a constant rate
ε . For stationary turbulence, this rate equals the power that is injected by the source.

Consider the velocity correlation tensor of the fluid, 〈vi(x)v j(y)〉, where the brackets
mean a statistical average. For stationary, homogeneous, and isotropic turbulence, the
two-point velocity correlator in momentum space has a simple form,

〈vi(k)v∗j(q)〉 ∝ δ 3(k−q)
E(k)

k2

(
δi j− kik j

k2

)
, (1)

where E(k) is the energy density spectrum of the turbulent fluid. For Kolmogoroff
turbulence, we have E(k) ∝ ε2/3k−5/3.

It is well known that the source of GWs is the spatial, transverse and traceless piece of
the stress-energy tensor. In our case, the relevant part is Ti j (x) ∝ vi (x)v j (x). The energy
density in GWs involves a statistical average, ρGW ∼ 〈Ti jTi j〉 ∼ 〈viv jviv j〉. To calculate
this quantity, the theory of turbulence must be used. In the present case the energy
density can be related to the Kolmogoroff spectrum through Eq. (1). The expansion of
the Universe can be neglected during the production of the gravitational radiation, since
the duration of the phase transition is shorter than the Hubble time. Once the GWs have
been generated, their wavelengths scale with the scale factor a, and their amplitudes
scale with a−1.

The GW spectrum is characterized by the quantity ΩGW ( f ) = 1
ρc

dρGW
d log f , where ρc is

the critical energy density today. The spectrum has been recently calculated in Refs.



[4, 5] (with different approaches and results). The peak frequency is given by

fp = 1.6×10−5Hz
T∗

100GeV

( g∗
100

)1/6 L−1
S

H∗
, (2)

Using the results from Ref. [4], the peak amplitude can be written as

ΩGW ( fp)≈ΩR

(
LS

H−1∗

)10/3 (
ε

H∗

)4/3

, (3)

where ΩR corresponds to radiation today and H∗ is the Hubble rate at the time of
turbulence. The relevant parameters that appear in the energy density spectrum are the
stirring scale LS and the dissipation rate in the turbulent cascade, ε . In the case of a phase
transition, LS is roughly the size of the largest bubbles, and the dissipation rate equals
the injected power, so it is proportional to the latent heat and the velocity of the bubble
wall, ε ∝ Lvw.

PHASE TRANSITION DYNAMICS AND GRAVITATIONAL
WAVES

The dynamics is completely different for detonations or deflagrations. A detonation wall
is supersonic and the injected energy is concentrated in a thin region behind the wall.
This makes the calculations simpler. Furthermore, the detonation is usually assumed
to satisfy the Chapman-Jouget condition; in this case, the wall velocity depends on
a single parameter α = L/ρth = latent heat/thermal energy density. The nucleation
rate Γ = e−S3(T )/T increases as temperature decreases from Tc. As we have seen, Γ is
extremely sensitive to temperature; in spite of that, it is usually approximated by Taylor
expanding the exponent around the "nucleation" temperature T∗, which is estimated by
comparing the nucleation and expansion rates. This gives Γ = Γ0eβ t . The parameter β−1

is thus the only time scale in the problem. It determines, in particular, the duration of the
phase transition, ∆t ∼ β−1, and the size of bubbles, d ∼ vwβ−1. As a consequence of
these approximations, the GW spectrum depends only on the two parameters α and β .

On the other hand, a deflagration wall is subsonic. In this case the calculations are
more involved. Firstly, the wall velocity vw does not depend only on the latent heat as
in the previous case; it can be approximated by vw ∼ ∆p/η , where ∆p is the pressure
difference between the two phases and η is a friction coefficient. Since ∆p depends on
the amount of supercooling, vw depends nontrivially on the dynamics of the transition.
Secondly, shock fronts distribute the latent heat away from the wall. Hence, bubbles
influence each other. This influence must be taken into account in the treatment of the
phase transition.

To calculate the GW spectrum in specific models it is usual to assume that bubble
walls propagate as detonations. Then, the formulas for the detonation case (which
depend only on α and β ) can be used. Thus, given a model (e.g., the electroweak
phase transition for different extensions of the Standard Model) it is only necessary
to calculate the parameters α and β to obtain the spectrum. However, it is known that
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FIGURE 1. Development of a phase transition with slow deflagration bubbles.

bubbles in general expand as deflagrations. Indeed, the wall velocity has been calculated
for the electroweak phase transition in the context of electroweak baryogenesis, finding
velocities vw ∼ 10−2 − 10−1 [8], which are much smaller than the speed of sound
cs ≈ 0.6.

For deflagrations, the released latent heat is quickly distributed by shock waves with
velocity vsh ≈ cs. In the limit vw ¿ cs, one can assume that the only effect on the
dynamics of bubble expansion is to cause a homogeneous reheating. Thus, assuming
that the temperature depends only on time, one obtains a set of equations that can be
calculated numerically [7]. In general (see Fig. 1), the temperature decreases below Tc
until bubbles become noticeable. The released latent heat reheats the universe back to a
temperature close to Tc. Then, the temperature remains almost constant until the phase
transition finishes. The nucleation rate has a sharp peak in a short time interval δ tΓ and
vanishes outside. This is because Γ first grows quickly because of the adiabatic cooling,
but then it quickly turns-off as a consequence of reheating.

Since all bubbles are formed in the short time δ tΓ, the peak of Γ defines an "initial"
time tΓ for bubble expansion. The bubble number density nb is set at this time, as well as
the mean distance between centers of nucleation, d∼ n−1/3

b . The latter gives the final size
of bubbles. Turbulence begins before bubble percolation, since shock waves propagate
at vsh À vw and collide before bubble walls.

These general features of the dynamics can be taken into account to derive relations
between the parameters and obtain analytical approximations for the GW spectrum, just
like in the case of detonations. For the peak frequency and amplitude we find [6]

fp ∼ 10−2mHz(Tc/100GeV )
(
d/H−1)−1

, (4)

and
ΩGW |peak ∼ 10−4(αvw)8/3 (

d/H−1)2
. (5)
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FIGURE 2. The values of α and Tc that give fp = 1mHz and ΩGW ( fp) = 10−11, for vw = 0.1 (solid
line), vw = 0.05 (dashed line) and vw = 0.02 (dotted line).

The distance d may vary in a wide range for different models. In order to obtain mHz
frequencies (corresponding to the peak sensitivity of LISA) we would need, e.g., for the
electroweak phase transition with Tc = 100GeV , a value of d/H−1 ∼ 10−2. For such
values of d and reasonable values of the latent heat and the wall velocity, we may
obtain large enough amplitudes ΩGW & 10−11, i.e., above LISA’s detection threshold.
The figure shows the values of the parameters which give electroweak GWs that may be
detected at LISA. For different wall velocities, the allowed regions are those above the
curves.
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