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Motivation

— One of the striking application of the gauge theory/string theory duality to study strongly

coupled gauge theory plasma is the (conjectured) KSS bound:

ny _h

s — 4rmky

The bound is saturated at infinitly strong coupling, and in the planar limit. Can this bound be

violated? If so, under which conditions?

—> Can we test gauge theory/string theory duality in the non-equilibrum setting?

—> How do we formulate a causal relativistic hydrodynamics, and describe boost-invariant

expansion of plasma (which could be of relevance to RHIC/LHC)?



First-order 4d conformal hydrodynamics (gauge theory perspctive)

——> consider translationary invariant theory in flat space in equilibrium.

)

In local rest frame
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Theory is characterized by conserved quantities, in particular the stress-energy tensor 7’ e

0, T" =0

——> consider slow, macroscopic fluctuations

q], w < { T, any other microscopic Scale}

Effective description of such fluctuations is provided by macroscopic hydrodynamics
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Hydrodynamics is based on two assumptions:

a: TH[fluctuations| are conserved (as in equilibrium)

e fluctuations are always on-shell — expect to be a good approximation for

b: “Linear response theory is valid” — good approximation from small amplitudes

e linear response theory introduces phenomenological parameters into effective description

of fluctuations



Let u* = (uO, uz) — fluid 4-velocity. Introduce a proper (rest) frame for the fluid element

u’ =1, ut =0, : | 0,u” #0  off — equilibrium |

T = {(P + e)uyu, + PUW} + {TW}

equilibrium stress tensor stress tensor due to velocity gradients
Definition of the rest frame: 790, 70; = 0 =
Too = € ; To; =0

“Constitutive” relation for remaining components:



2
Tij = —C {%‘ 3kuk} — 1 {&;uj + Oju; — §57;j 8ku“}
( — couples to the trace of the velocity gradients — bulk viscosity [in CFT ( = 0]

11 — couples to the traceless part of the velocity gradients — shear viscosity

—> stress-energy conservation

80T00 + @TOZ =0 ; 80T0i + 8jT~ij =0
where 700 = 700 _ €, and

1

TW = T4 _ p§ii — _
e+ P

—> we would like to study on-shell fluctuation, i.e, eigenmodes of the above conservation

laws



Here we have two types of eigenmodes:

a the shear mode (transverse fluctuations of the momentum density TOi)
1 :
W= — 7] 02 = —i n ;2
e+ P T's

whereweusede + P = 1T's
b: sound mode (simultaneous fluctuations of the energy density T9 and longitudinal

component of 79%)
W—=—Cs(q—

cs— the speed of sound

1, (— shear and bulk viscosities

Dispersion relations for the fluctuations are realized (mostly) as poles in equilibrium

correlation functions



| say 'mostly’ because for the shear mode

v = (0,vy,0), vy = Uy (2), xy — is a shear plane
< Ty (2)Ty,,(0) >R does not have a pole because it does not couple to energy or
momentum fluctuations.

Rather, we have
Kubo formula (sh.1)

1 )

w—0 2w

w—0 2w1 LY,TY rY,TryY

1
= lim — [GA (w, 0) — GR (CU, 0)

Other correlation functions of Tuv will have a diffusive pole (sh.2)

1 1
R _
Gwz,wz(w7qz) ~ i — Dqg? D = T—S
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For the sound wave mode ((, 1, ¢s):

(sw.1) can be extracted from equilibrium 1-point correlation function < 17,, >
, OP
C, = E
Recall, for conformal theories: ¢ = 3P, so USCFT —= %
(sw.2)
1

< TooToo >p
00700 ~ R w? — c2q® + iTwq?

there isapole atw = csq — ’ngQ - O(QS)

Recall, for conformal theories: ( = 0
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Consistency of hydrodynamic description

hydro mode computation produces
shear (sh.1) < Ty 2y >Rr,4 +Kubo formula n
shear (sh.2) < Tyr 22 >R +pole D = -
sound (sw.1) <Too >, <1y > Cs
sound (sw.2) < Tho,00 >r +pole Cs, I’

— (sh.1) and (sh.2) produces 17 — must be consistent

—> (sw.1) and (sw.2) produces cs — must be consistent, also I' = %% {1 -+ %} IS

sensitive to D, n
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—> First order hydrodynamics is acausal: the linearized equation for a diffusive mode is not
hyperbolic (first order in temporal but second order in spatial derivatives) — discontinuity in
initial conditions propagates at infinite speed. The acausality is a real problem in numerical
simulations.

Second order causal hydrodynamics

—> Motivated largely by AdS/CFT correspondence (though AdS/CFT strictly speaking was
not needed for this), the effective field theory of conformal hydrodynamics was developed by
Braier et.al and Bhattacharyya et.al

—> First order hydrodynamics involves first-order gradients of the local 4-velocity Vaug;
second order hydrodynamics includes 2-order gradients of the local 4-velocity. In principle,
one can extend the theory to arbitrary order gravients at the expence of introducing new
phenomenological parameters (suplumenting 17, ¢ at the first order). AdS/CFT provides a
first-principle evaluation of ALL phenomenological parameters for a given CFT.

— The hydrodynamic equations is the familiar one:
vV, T" =0

12



T = eutu” + PAMY + TTHY | APV = gt 4+ uHu”
[T"" = —po"” + (2nd order terms) , u, 11" =0, g 1" =0

where o#" is symmetric transverse tensor constructed of first derivatives.

—> besides the shear viscosity 77, the second-order conformal hydrodynamics is described

by 5 additional phenomenological parameters:

{TH7’€7>\17>\27)\3}

e 71 IS the relaxation time that restores’ causality in first-order hydro

e )\ is a coupling of a term bilinear in the velocities, which show up in boost-invariant

expansion of the plasma

e )\ 3 are not needed for irrotational flows
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Consistency of the second order hydrodynamic description

—— Second-order Kubo formular:

Y. T . K
G (w,q) = P —inw + nmw” — 5 (w2 + qz)

— Dispersion relation for the sound:

i T T
w=csq = ¢+ — (C?TH — 5) q’

where I is from the 1st-order hydrodynamics.

Notice that looking at q2 dependence in the second order Kubo formular we can obtain 7g;
the same phenomenological coefficient can be extracted from the O(q?’) sound wave

dispersion relation
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N = 4 SYM gauge theory plasma as a toy model

gauge theory string theory

N =4SU(N)SYM <= N-units of 5-form flux in type IIB string theory
g%’M — Js

—> Consider the theory in the 't Hooft (planar limit), N — o0, g%/M — 0 with Ng%,M kept

fixed. SUGRA is valid [N g; — 00. In which case the background geometry is

AdSs x S°

— Beyong the SUGRA approximation

% -corrections <— (¢s-corrections

ng -corrections <= «’-corrections

9y Mm
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In the planar limit, but for a finite (large) 't Hooft coupling Ng%/M:

1

SIIB= ——— /dlox\/—g R—=(0¢)2 — ——(F5)%+---4+~ve 2°W +--.
167TG10 .

where ¢ is a dilaton, v = £¢(3)(a’)?, and W is constructed from the Weyl tensor Ci,pq

_ hmnk TS hkmn rSs
W p— C Cpmnqc qu rsk _|_ C ermnc pcrsk

and - - - denote other SUGRA modes and higher order o’ corrections

Some features of the o corrected geometry at 1" £ 0

o =0 o #£0
»=0 ¢ #* 0, depends on r
size of S° is constant size of S° depends on r
S = —Afféizo” S # Ahomfm use Wald formula
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Non-equilibrium AdS/CFT correspondence beyong the spergravity approximation

To obtain retarded correlation function of the boundary stress energy tensor, we study scalar

perturbations of the background geometry :

G5uv — Gsuv + hay (u, )

It will be convenient to introduce a field (u, ),

U
o (u1,) = o Py (11, )
To

and use the Fourier decomposition

d4k —wwt+ik-ax
Sﬁ(uaw):/WG bk pr(u)

Finally, we introduce

k
“ k =

o =
27TTO ’ 27TTO

17



The effective action to order O(+y) for @ (u) takes form:
NZ [ d'% [

Sorp = —= du
11 872 / (2%)4/0

+D ook + E i’ + F ool

Ao+ B+ C ook

where A, B, C, D, E, I are even functions of the momenta, and depend explicitly of the
background geometry — the a/3-corrected AdSy X ok background.

Variation of Se ¢ ¢ leads to

1

ch d4k 1 5 /
0Sess = 52 | Gy : du (EOM) b + (B1dp—i, + B2dy’_ )

0

— To have a well-defined variational principle one needs to include the generalized
Gibbons-Hawking term /C, involving the extrinsic curvature of the boundary:

ngneralized 7é Kstandard ) ngneralized — Kstandard — 0(7)
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As necessary for a diffeo-invariant theory, the bulk action must be a total derivative on-shell.

N2 [ d*%k (! 1
orp = —& ., “[EOM
Seff 8%2/(%)4/0 du<0 B+ [EO ])

Thus on-shell, it reduces to the sum of two boundary term: the horizon contribution ( as

Indeed, we find

u — 1) and the boundary contribution (as © — 0). In computing the two-point retarded
correlation function of the boundary stress-energy tensor, the horizon contribution must be
discarded; the boundary contribution is divergent as u = € — 0 and must be supplemented
by the counterterm action:

3N?Z 1

1
4 kl 2
Sct——42/u 6d:z:\/—fy<1—|——2P——12(P Pkl—P)lne>

where 7;; is the metric induced at the u© = € boundary, and

- 1 1
P=~"Py;, Pj= 5 (Rz'j - ER%‘g) :
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Altogether, the total renormalized boundary action takes the form

N2 [ d%
Stor(€) = — 572 / 2myi

U=¢€

—> Having found the solution for a gravitational perturbation, we can compute the correlation
function G 3 (w, q) by applying the Minkowski AdS/CFT prescription

2F,

GLE  (w,q) = lim 7

w0 o,

Explicitly we find

LY,TY 9

IN2T4(1+159) (1 .. o o
GR  (w,q) = — ¢ i+ 7)<—z'm[1+120fy]+[—q2+mz—lenz

. 5 905 . P
+ (—120m2 In2 + 25¢% + 71&)] + O(w?, mq2)> + O(~?)
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R

In the hydrodynamic limit the retarded correlation function ny’xy

(w, q) takes form

. K
ny,xy(w, Q) =P — 1MW + UTHWQ o 5 (wz + q2) + O(wgaqu)

Comparing the hydro and the gravity results we conclude

2N2T4 1
p="" (1 + 157 + 0(72)) , g = (1 + 1207 + 0(72))
2-1n2 375
T = + 2254013, k=1 145y + O(4?)
2T 41 al
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Morally similar (albeit technically quite different computations) has to be performed to extract

the dispersion relation for the sound quasinormal mode:

1,1 105 3—2In2
w(q) = —=q — iq’ (— + —v) +q3<

V3 3 3 61/3

244/3

We were unable to evaluate 2

1
TR (—2758 +1221%) 4 17051n 2) 7> +0(q*,7%)

%23 analytically; numerically, we find

2170 = 264.7598406

Second order relativistic hydrodynamics of conformal fluids implies the following dispersion

relation for the sound mode

r r
w=csq —il'g* + — (Cng — 5) k> 4+ O(k*)
Cs
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Comparing gauge and gravity computations we find

= : : I'T=—(1+12 O :
c \/§+0 v+ O(y?) 67T< + 07>+ (v*)

in agreement with the conformal equation of state at order O(+y), as well as in agreement

with the ratio . Additionally, we compute

2-In2 1
mlT=""""14 (mu5hﬂp—$%8+qzé>)y4—0( 2)

27 167

A required agreement between Kubo-fortumal and the quasinormal mode computations

(2)

provides a prediction for z;

2429 2425
= 02,

6 12

2
2K

prediction

which is in excellent agreement with the actually numerical result.
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Universality of transport of CFT plasma beyond the supergravity approximation

Theorem-I: In the planar limit, and for infinite 't Hooft coupling Ng%,M — o< the ratio of

shear viscosity to the enetropy density is universal under all conceivable considitions:

i 1

s Am

Theoreme-II: In the planar limit, and for large, but finite 't Hooft coupling Ng%/M > 1, the
ratio of shear viscosity to the entropy density in conformal gauge theories in 4d and in the

absence of chemical potentials for the conserved U (1) charges is universal

n 1 15¢(3)
T = (1
s Am ( i \3/2 i

Similarly, all other second- and higher-order hydrodynamic coefficients are universal.

Question: if we model QCD at RHIC scales as a conformal plasma, does it mean that we

know what is its shear viscosity?

24



| would claim the answer is: NO

—> The crucial word in the Theorem-II is 'planar limit’. Now, a given conformal gauge theory
Is characterized by two different central charges c and a, defining its conformal anomaly

C a
THY — Iy —
(T 1672 % 1672

0 Ly

where

1
Ey= R, R"P* —4R,, R* + R*, I, = R, \R"** - 2R, R" + §32

— In the planar limit

— In a conformal toy model of QCD we expect

c#a
because of the presence of fundamental matter.
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Consider an effective higher-derivative model of gauge theory/string theory duality
5 1 abed ab 2 4
S = d Ly —(g ?R — A+ ClRabcdR + CQRabR + CgR + O(R )

where k2 = 167G . The holographic conformal anomaly is
p 1° 7 c1l I
<TM >h0lographz'c — 8/4,2 + Czl + 5C3l (E4 — 4) -+ 7 (E4 + 4)

while Kats et.al and Brigante et.al found

n_1 (1_801"’2+...) 1 (1_(C_a)+...):%(1_A+...)

s 4w /2 A c

e Notice that ¢; coefficient can come only form R p.4R°¢?, and it is precisely the
coefficient that corresponds to having in the dual CFT ¢ # a. In particular R*-terms,

relevant for the universality Theorem-II does not effect (¢ — a) anomaly of a CFT.

® The KSS viscosity bound is violated in a CFT whenever (c-a). The violation is under
contrall, if |c — a|/c < 1.
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Non-universal violation of the KSS bound Consider a superconformal gauge theory. The

superconformal albegra implies the existance of an anomaly-free U ( 1) R Symmetry. It was

found in Anselmi et.al that

c—a= —% (dimG + Z (dim R;) (r; — 1))

where r; denote the R-charge of a matter chiral multiplet in the representation F;

—> So all we need to do is to scan through the list of available CFT's and compute (¢ — a).
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e Superconformal gauge theories with exactly marginal gauge coupling

Consider SU(NC) supersymmetric gauge theory with 1 4; xS f in the adjoint

representation, n ¢ flavors in the fundamental representation, 7154, flavors in the symmetric

representation and 7254, flavors in the anti-symmetric representation. It is easy now to

enumerate all the models with G = SU(N.) and A < 1as N, — o0:

(nadja Nasyms Nsym nf) cC—a A
(a) (3,0,0,0) 0 0
() (2,1,0,1) SNt | L+ O(N;2)
(c) (1,2,0,2) SNt | L+ O(N;2)
(d) (1,1,1,0) L 6% +O(NY
€) (0,3,0,3) SNt |3 O(N;2)
() (0,2,1,1) Nl | L+ O(N;?)
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For the Sp(2N.) supersymmetric gauge theories

(Nadj, Nasym,Nf) | ¢ —a A
(a) (3,0,0) 0 0
(b) (2,1,4) o | o TONS?)
©) (1,2,8) i | s TONS?)
(d) (0,3,12) el | 13-+ O(N?)

——> The are no models in this class with orthogonal gauge groups
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e N\ = 2 superconformal fixed points from F-theory

Consider /N D3-branes probing an F-theory singularity generated by 17 coincident (p, q)

7-branes, resulting in a constant dilaton. As N — 00,

1 1 §—1
—a=- —1)— — = —— N~?
c—a 4]\7(5 1) Y A NG + O( )

where 0 is a definite angle characterizing an F-theory singularity with a symmetry group G

g HO Hl HQ D4 E6 E7 ES

n,| 2 3 4 6 8 9 10

o | 6/5 4/13 3/2 2 3 4 6

Notice thatin allcases0 < A < las N — oo.
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— In all examples presented the KSS bound is violated since (c — a) > 0

—> There many more CFT’s with ¢ 7% a. For them, however, ¢ — a ~ ¢ and so we can not
say anything reliable about KSS bound. Curiosly though, we did not find a single CFT with
c# asothat (c —a) < 0.
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Conclusions and future directions

e | gave an orverview of transport properties in 4d conformal gauge theories;
e CFT's with ¢ = a have a universal transport properties at finite 't Hooft coupling;
e CFT's with ¢ # a generically violate KSS viscosity bound in a non-universal way;

e our computations provide a highly nontrivial check of holographic gauge theory/string

theory correspondence in the non-equilibrium setting

In the future:

e what can we say about CFT tranport at finite 't Hooft coupling and with non-vanishing

chemical petentials? is 1 / S a nontrivial function of baryon density?
e what is the finite 't Hooft coupling transport of non-CFT’s?
e what is the second-order relativistic non-conformal hydrodynamics?
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Consider expansion of a CFT fluid (gauge theory plasma) in boost invariant frame

:>Widely expected to be a correct description of central region of QGP produced in ultra-relativistic collisions of heavy nuclei

Convert Minkowski frame

ds; = —dxi + dxt + dx;
into a frame with boost-invariance along x3 direction
xg =T coshy, x3 = T sinhy
ds; = —d7* + 7% dy* + dz?

Assume
e =¢€(7), P = P(7)

for local energy density € and pressure p in the fluid
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e |deal CFT fluid

Stress energy tensor:
T,u,l/ — nguilibrium _ (6 _|_p)u,uuy 4+ inj
where u* is local 4-velocity of the fluid, u? = —1.
From conformal invariance
TH=0 = =3P

Conservation law in boost-invariant frame:

y 4 €
(9MTM =0 = 8T€:—§;

Scaling of €, s (entropy density), 17 (shear viscosity), I’ (temperature), 7 (relaxation time)
eo<7_4/3, Tocel/4o<7'_1/3, nocsocT?’OCT_l

TWOCT_l(XTl/S
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e First-order dissipative CFT fluid dynamics:

Stress energy tensor:

__ mequtlibrium
Tl“/ — T,uy + Tuv Tpy X1 (v,uuz/ + V,,uM — trace)
=
5 4de 4n
7_6 = — — — -
37 372
From scaling, viscous correction becomes subdominant as 7 — oQ:
—4/3 1
€ T T
T T T2 T2

Thus we expect approach to equilibrium in boost-invariant frame to correspond to late-time

dynamics
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e Second-order dissipative CFT fluid dynamics:

de 4e¢ 1
B I )
dt 37'_|_7'
THd_(I) — %Q _ P — éT_Hq)_ lﬁq)?
dr 371 3 T 2 n?
where
— 3
¢ = -II;

From scaling, 7 — o0 limit corresponds effectively to 7, — 0 and second-order hydro is
reduced to a first order hydro

—>Clearly, as in this limit relaxation is instantaneous, it is not surprising that causality is violated
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e Second-order dissipative N’ = 4 SYM plasma

()= SN2 T, ()= gelr),  n(r)=Cmo (5)

C
=5 n-et ()"

where C, 1o, TIQI, \Y are some constants.

From second order hydrodynamic equations as 7 — oQ:

e(T 3 2
Q — 74/3 _ 2N0 T2 4 [—778 ~3 (UOTH — A?)] 783 4+ 0 (7_10/3)

C 2
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Janik-Peschanki proposal for the SUGRA dual to boost-invariant ' = 4 SYM dynamics

Given symmetries of the problem, most general truncation of type 1IB SUGRA takes form

1 dz?
dsig = e 2¥(72) {—2 [—eQOL(T’Z")dT2 + 202202 4 GQC(T’Z)CZ:CQJ + %}
2 2

_|_€6/50z(7',z) (dS5)2

for the Einstein frame metric;
Fs = Fs++Fs5, F5 = —4Quwss, ¢ =¢(T,2)

for the 5-form (()) is constant related to the rank of the gauge group) and the dilaton

Q=1 &  Rass=1
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Asymptotically as z — 0
{a,b,c,a, ¢} — O
however,
a(t,z) ~ O (2*) #0
—We try to construct a nonsingular geometry everywhere in the bulk, subject to the above

boundary conditions

—> evaluate stress-energy tensor one-point correlation function

5
NE g (7) =
21 2—0 z4

(T (7)) =

= extract from (T},, (7))
e(t),  p(7)

and interpret results in the framework of dissipative relativistic fluid dynamics
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From the 1-point correlation function of the boundary stress-energy tensor in the expanding

boost-invariant geometry at a/3-level, we find that the energy density is given by

N? . 2a(v,7) 2
V= —
272 v—0 pd7rd/3 7 T1/3

Explicitly, we find:

(r) = N2(6+576y+~01) 1 N?2/234 (15667 +8+1d1) 1
)= 1272 T4/3 4872 T2

N231/2
86472

where 07 is an arbitrary constant.

_|_

1
(12+24 In 24+ (261 In 2 + 6; + 7086 + 42121n 2)) 75 HO(10/%)
T
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To match the string theory result with the second-order hydro expectations we need to recall
the equation of state for the N/ = 4 SYM plasma

3
e(T) = g7r2N2T4 (1+ 157)

and the N/ = 4 SYM relaxation time 71, computed from equilibrium correlation functions

T 2—1n2 N 375
[ 27 47 !
Ultimately, we find:
- = —(1+ 120 = 1+ 215
. = g (1+1207), ; 5 (1+2159)

Notice that the ratio of shear viscosity to the entropy density agrees with the results obtained

from the equilibrium correlation functions.
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