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Abstract. The 331 models with three families appear in a natural way by using the anomaly
cancellations. In the present work we want to study the possibility to unify this class of models
with three families into a SU(7) gauge group. The fermion contents are given by 7∗, 21 and 35∗
irreducible representations.

Since the birth of the Standard Model (SM) many attempts have been done to go
beyond it, and solve some of the problems of the model such as the charge quantization,
the number of families and the unification of the gauge couplings. In some cases the
unification is done by taking a simple group of grand unification, arising the so called
Grand Unification Theories (GUT), where the three interactions described by SM are
treated as only one [1], the most common GUT’s are SO(10) and E6. The first condition
for these kind of theories is an equal value for the three couplings at certain scale
of energy, MU . This condition cannot be fulfilled by the simplest grand unification
schemes with the minimal SM particle content and taking the precision low-energy
data. However, the Minimal Supersymmetric Standard Model (MSSM) can achieve this
scenario for the coupling constants [2]. Of course, there are other possibilities for the
unification. Another challenge is to unify the color and electroweak interactions with
the three families of the SM in a GUT. And by symmetry breaking get an ansatz for the
mass matrices at low energy in order to predict masses and mixing angles of the quarks
and leptons.

In particular, the model based on the SU(3)C ⊗ SU(3)L ⊗U(1)X gauge group (here-
after 331 models) is an interesting choice that could address problems like the charge
quantization [3] and the existence of three families based on cancellation of anomalies
[4]. In the present work, we consider the possibility of embedding 331 models [5] into
a grand unified theory (GUT) SU(7)[6].

We define the operator of electromagnetic charge as the linear combination Q =
T3 + aY , where a parameter is the normalization of the hypercharge. In this way, the
a parameter becomes free, and we could reverse the problem in a certain way, since we
have in many cases an allowed region for a and we could ask what groups of grand
unification (if any) could lead to values of a admitted by our scheme. Let us elaborate
about this possibility. After working some 331 models with one or three families, we
can see that in some of them is possible to find a scale MX and a normalization factor



a that gives unification of the coupling constants (UCC) [7]. Notwithstanding, UCC
imposes some restrictions on a, and by using these values we can look for simple groups
containing a 331 group and fixing an a belonging to the allowed interval mentioned
above. Some good examples of GUT are E6, and SU (7). The group E6 can be broken
into SU (3)C⊗SU (3)L⊗SU (3)R or SU (6)L⊗SU (2). But they are models of one family.
On the other hand, the 331 models of three families can be embedded into SU (7), thus,
we shall study the later scenario in more detail.

The combination of irreducible representations free of anomalies, permits to acco-
modate those 331 models with three families taking into account the branching rules
of the scheme SU(7) → SU(3)C ⊗ SU(3)L⊗U(1). There are different combinations of
irreps anomaly free using Ψα

(1)
[7], Ψαβ

(3)
[21] and Ψαβγ

(2)
[35], where the subindex means

the anomaly coefficient, the bracket coefficient means the dimension and the labels
α,β ,γ = 1, · · · ,7 are SU(7) indices. Models can be classified if no irrep appears more
than once, i.e., a linear combination like Ψ(−1)α ⊕Ψαβ

(3) ⊕Ψ(−2)αβγ ; but the same irrep

can be repeated such as 5×Ψ(−1)α ⊕Ψαβ
(3)

⊕Ψαβγ
(2)

. The branching rules according to
(SU(3)c,SU(2)L) are given by

Ψα
⊕Ψαβ

⊕Ψαβγ = [(3,1)+(1,2)+(1,1)+(1,1)]7 ⊕ [(3∗,1)+(3,2)

+ (3,1)+(3,1)+(1,1)+(1,2)+(1,2)+(1,1)]21
⊕ [(1,1)+(3,2)+(3,1)+(3,1)+(3∗,1)+(3∗,2)

+ (3∗,2)+(3∗,1)+(1,1)+(1,1)+(1,2)]35 (1)

The electromagnetic charge of the particles can be chosen by defining the hypercharge
which is a linear combination of the U(1) factors of the SU(7). This will be also done
by imposing the condition that the singlet of color (3,1) of the 7 irrep has electric charge
q = ±1/3,±2/3,±4/3,±5/3 or that the electric charge of the leptonic singlets are ±1,
0.

Assuming an unification scheme with the simple group SU(7) and passing through a
331 model with three families to SM, we get the scheme

SU(7)→ SU(3)c⊗SU(3)L⊗U(1)X → SU(3)c⊗SU(2)L⊗U(1)Y .

The assignment of the electromagnetic charge is of the form

Q = T3L +αY a +βY b + γY c
≡ T3L +aY

a2
≡ α2 +β 2 + γ2

where Y a, Y b, Y c have the same normalization as the T3L, Y generators, and they cor-
respond to the U (1) abelian subgroups induced from different subalgebras of SU(7) ⊃
SU (n)L⊗SU (m)C⊗U(1)a, where SU (n)L ⊃ SU(2)L⊗U(1)b and SU (m)C ⊃ SU(3)c⊗

U(1)c. If the fundamental representation 7 is decomposed as in Eq. (1), the most general
assignment is

Q = diag(q,q,q,b,c,c−1,1−3q−2c−b). (2)

And we can choose the charge of (3,1) to be −1/3 and those of (1,2) as (1,0). Then

Q = diag(−1/3,−1/3,−1/3,b,1,0,−b) (3)



From the following possible SU (7) maximal subalgebras

Model I SU (4)C ⊗SU (3)L ⊗U (1)a

Model II SU (3)C ⊗SU (4)L ⊗U (1)a

Model III SU(6)L⊗U(1)a
→ SU (3)C ⊗SU (3)L⊗U (1)c

⊗U (1)a

we can settle three different assignments for the hypercharge according to the scheme
in Eqs. (2) and (3). For example, Model I is known in the literature as the Pati Salam
model.

In particular, we find that some 331 models with three families, can be properly
embedded in a grand unification scenario with SU (7). This scheme will be depend of the
normalization of the hypercharge or choosing the electric charge of the singlet particles
of the fundamental representation.
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