

... for a brighter future

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

Lattice QCD advances in baryon physics

Ross D. Young

XIII Mexican School of Particles and Fields San Carlos, Sonora, Mexico 2–11 October 2008

in collaboration with R. Carlini, J. Roche, D. Leinweber & A. Thomas

Outline

- Major advances in lattice QCD: precision tool
 - Particularly in heavy-quark physics
 - Remain challenges in the light-quark and particularly baryons
- Introduction to lattice QCD
- Recent results in 2+1-flavour dynamical simulations
 - Baryon spectrum
- SU(3) chiral extrapolation to physical quark masses

2003

"High-Precision Lattice QCD Confronts Experiment"

HPQCD / UKQCD / MILC / Fermilab, PRL92,022001(2004)

1999

"Quenched Light Hadron Spectrum"

CP-PACS, PRL84,238(2000)

Ratio plot - Quenched QCD

Ratio plot - Quenched QCD

New (2004) FLIC fermion results

Ratio plot - Quenched QCD

New (2004) FLIC fermion results

Perturbative Limit

- At high-energies (or short distances) quarks become essentially "free"
- Quarks in a highly relativistic nucleon interact weakly

Small coupling - perturbative expansion reliable

Path Integral

Quantum Mechanics: Young's Double-slit

Infinite # of screens

Infinite # of slits

Superposition of all paths

What is the weight for each path?

QCD Partition Function

Down, Up, Strange, Charm, Bottom, Top Dimension of integration: $8 \times 4 \times 6 \times 12 \times 6 \times 12 \times \#$ points in space! vector potential = 165888 #points in space! colour x spin

Lattice QCD

□ Rotate to imaginary time: Euclidean space

 $Z^{E} = \int \mathcal{D}A\mathcal{D}\bar{\Psi}\mathcal{D}\Psi \exp\left(-S^{E}_{\text{QCD}}\right) \quad \text{Real, positive} \\ \text{weight} \\ PROBABILITY!$

Integrate fermion fields (Gaussian integral): $Z^{E} = \int \mathcal{D}A \det M_{f}[A] \exp\left(-S_{gluon}^{E}\right)$ Determinant difficult to calculate Neglect heavy quarks: charm, bottom, top Sometimes neglect light: Quenched Approx.

Discretise QCD Action

Derivatives -> Finite-difference eqns. Integrals -> Sums Gluon field ->

Gluon field -> "link variable": Path-ordered exponential between neighbour sites

Plaquette

Sum over all plaquettes reduces to continuum action as lattice spacing approaches zero

QCD Green's Functions

$$Z = \int \mathcal{D}U \det M_f[U] \exp\left(-S_{\text{gluon}}^{\text{LAT}}\right)$$
$$\langle \hat{O} \rangle = \frac{1}{Z} \int \mathcal{D}U \hat{O} \det M_f[U] \exp\left(-S_{\text{gluon}}^{\text{LAT}}\right)$$
$$\frac{\partial U}{\partial \theta} = \frac{1}{Z} \int \mathcal{D}U \hat{O} \det M_f[U] \exp\left(-S_{\text{gluon}}^{\text{LAT}}\right)$$

For moderate lattice size still require >10⁷-dimensional integration!

Monte Carlo Integration

$$\langle \hat{O} \rangle = \frac{1}{Z} \int \mathcal{D}U \hat{O} \det M_f[U] \exp\left(-S_{\text{gluon}}^{\text{LAT}}\right)$$

Generate ensemble of gauge configurations according to Boltzmann weight

 $\langle \hat{O} \rangle = \sum_{\{U\}} \hat{O}[U]$

Can reuse same list of gauge configurations for many observables

Extracting a Mass

- □ A low energy observable of QCD!
- Each gauge configuration, calculate quark propagator: Invert fermion matrix

Choose quark
configuration
with desired
quantum numbers
$$M = (D + m)$$

Sum over all spatial
sites at sink:
Projects out states
of zero momenta

Euclidean Evolution

$$\begin{aligned} \text{Correlation function} \qquad & C_N(t, \vec{p}) = \sum_{\vec{x}} e^{i\vec{p}.\vec{x}} \langle \Omega | \chi_N(x) \overline{\chi}_N(0) | \Omega \rangle \\ & C_N(t, \vec{p}) = \sum_{\alpha, \vec{q}} \sum_{\vec{x}} e^{-i\vec{p}.\vec{x}} \langle \Omega | \chi_N(x) | \alpha(\vec{q}) \rangle \langle \alpha(\vec{q}) | \overline{\chi}_N(0) | \Omega \rangle , \\ & = \sum_{\alpha, \vec{q}} \sum_{\vec{x}} e^{-i\vec{p}.\vec{x}} \langle \Omega | e^{-i\hat{q}.x} \chi_N(0) e^{+i\hat{q}.x} | \alpha(\vec{q}) \rangle \langle \alpha(\vec{q}) | \overline{\chi}_N(0) | \Omega \rangle , \\ & = \sum_{\alpha, \vec{q}} \sum_{\vec{x}} e^{-i(\vec{p}-\vec{q}).\vec{x}} e^{-E_{\alpha}t} \langle \Omega | \chi_N(0) | \alpha(\vec{q}) \rangle \langle \alpha(\vec{q}) | \overline{\chi}_N(0) | \Omega \rangle , \\ & = \sum_{\alpha, \vec{q}} \delta(\vec{p}-\vec{q}) e^{-E_{\alpha}t} \langle \Omega | \chi_N(0) | \alpha(\vec{q}) \rangle \langle \alpha(\vec{q}) | \overline{\chi}_N(0) | \Omega \rangle , \\ & = \sum_{\alpha, \vec{q}} e^{-E_{\alpha}(\vec{p})t} \langle \Omega | \chi_N(0) | \alpha(\vec{p}) \rangle \langle \alpha(\vec{p}) | \overline{\chi}_N(0) | \Omega \rangle . \end{aligned}$$

Ground States

Effective mass plots

Nucleon Mass

Nucleon Mass

New Simulation Results - LHPC

Everything to O(3/2)

Lattice Simulation Results: LHPC

Power counting estimate for O(2)

- If we adopt conventional wisdom "4 pi fpi"
 - Physical point

$$\mathcal{O}(2) \sim \frac{m_{\eta}^4}{(4\pi f_{\pi})^4} \sim 5\%$$

Lattice masses

$$\mathcal{O}(2) \sim \frac{m_{\eta}^4}{(4\pi f_{\pi})^4} \sim 11\%$$

Best fit to lightest 2 quark masses

• Poor fit $\eta \chi^2/{
m dof} \sim 40$

 $m_\pi \lesssim 0.35 \,\mathrm{GeV}$ $m_K \lesssim 0.6 \,\mathrm{GeV}$

- "Best" fit $M_0 \sim 0.27 \,\mathrm{GeV}$
- Empirical suggestion

$$\mathcal{O}(2) \sim \left(\frac{m_{\eta}}{\Lambda_B}\right)^4 \sim 300\%$$

 $\Lambda_B \sim 0.6 \,\mathrm{GeV}$

What about Finite-Range Regularisation (FRR)?

- Introduce a resummation of higher-order terms with a single parameter
- Chiral loop integrals modified to cut-off divergences

$$\int_0^\infty dk \, \frac{k^4}{k^2 + m^2} \left(\frac{\Lambda^2}{\Lambda^2 + k^2}\right)^4$$

Upon renormalisation gives identical expansion to O(3/2)

Text book: $M_B^{(3/2)} = M_0 + \delta M^{(1)} + \delta M^{(3/2)} + 0$

FRR:
$$M_B^{(3/2)} = M_0 + \delta M^{(1)} + \delta M^{(3/2)} + \mathcal{O}(\frac{m_{PS}^4}{\Lambda})$$

Regularisation parameter?

- Model-indepence of EFT only exists if results independent of this cutoff
- Can the lattice results select a preferred scale to regularise the EFT?

Fits to 2 lightest LHPC points

Meson masses - LHPC

Fits to 2 lightest LHPC points

Fits to 2 lightest LHPC points

More new lattice results: PACS-CS

Same regularisation scale

Fit to 4 lightest PACS-CS points

Consistency in LECs?

Consistent extrapolation of lattice results to SU(3) chiral limit

Consistency of lattice at finite "a"

Precision comparison with experiment

Beyond Masses - Hyperon Axial Charges

- * Linear chiral extrapolations
- * SU(3) $_{\rm (naive)}$ chiral fits $\chi^2/dof\sim 100$

Beyond Masses - Hyperon Axial Charges

Quark-mass dependence of axial charges

- Gives information on SU(3) breaking in nucleon structure functions
 - Important for separation *u*, *d* & s contributions to nucleon spin
- Further can investigate charge-symmetry violations in nucleon structure functions
 - Could provide important constraint for future low-energy precision electroweak searches for new physics: PV-DIS@JLab

Precision Electroweak

 G_E^s

Weak Charge of the proton

New limits on low energy EW parameters

New limits on low energy EW parameters

New limits on low energy EW parameters

Lower bound on "New Physics" energy scale

Future Q-weak measurement

Conclusions

- Baryon precision competing with meson sector
- Further extensions to investigate problems that are less well known experimentally
- Potential to obtain lattice QCD constraints for low-energy precision measurements

