Seeking a Needle in a Haystack

Recent Results from the B-Factory Experiments

Klaus Honscheid Ohio State University XIII Mexican School of Particles and Fields 2008

The Two Asymmetric Energy B Factories

Experimental Landscape (ca 2008)

Precision Physics and Rare Events

BaBar collected:

480 million $\Upsilon(4S) \rightarrow B\bar{B}$ 630 million $e^+e^- \rightarrow c\bar{c}$ 460 million $e^+e^- \rightarrow \tau^+\tau^-$

???

New Physics

Experimental Techniques: B meson reconstruction

Exploit kinematics of $e^+e^- \rightarrow \Upsilon(4S) \rightarrow B\overline{B}^0$ for signal selection

Beam-energy substituted mass

Energy difference

 $\Delta E = E_B^* - E_{beam}^*$

Honscheid, Ohio State University, San Carlos 200

0.15 0.2

0.15 0.2

ΔE (GeV)

AE (GeV)

0.05

0.1

Experimental Techniques: Single B Meson Beams

Lots of interesting modes include one or more neutrinos.

"Beams" with a single, monochromatic B and without c, QED etc would be very useful for : $B \rightarrow \tau v$, $B \rightarrow v v$, $B \rightarrow K v v$,...

Fully reconstruct one of the Bs and study the remaining of the event → closed kinematics, missing energy reconstruction

Part 1: The Elements of the CKM Matrix

4 Fundamental parameters of the Standard Model They cannot be predicted but can be measured

The CKM Elements $|V_{ub}|$ and $|V_{cb}|$

- The determination of the $|V_{ub}|$ and $|V_{cb}|$ relies on semileptonic decays \rightarrow only one hadronic current
- Tree decays insensitive to NP
- Two complementary approaches:
 - Exclusive: X fully reconstructed
 - Need form factor normalization (non-perturbative)
 - Inclusive: sum over many X states, with at most partial reconstruction of the X system

Use OPE in (1/m_b)ⁿ

Ionscheid Ohio State University

$|V_{cb}|$: Global fit of B \rightarrow DXIv

- Reconstruct D^{0} and D^{+} pairs (slow π from D^{*} not required).
- Binned 3D χ² fit to p_I, p_D, and cosine of angle between *B* and *DI*, all in CM frame.
- Fit for BFs and form factor slopes.

 $\begin{aligned} \mathcal{G}(1)|V_{cb}| &= (44.1 \pm 0.8 \pm 2.2) \times 10^{-3} \\ \mathcal{F}(1)|V_{cb}| &= (35.6 \pm 0.2 \pm 1.2) \times 10^{-3} \end{aligned}$

Lattice QCD : Form factor norm. at zero recoil.

 $G(1)|V_{cb}|$ meas. twice as precise as world average!

$$D^* \ell \nu : |V_{cb}| = (38.3 \pm 0.2 \pm 1.3 \pm 0.9) \times 10^{-3}$$

$$D \ell \nu : |V_{cb}| = (40.8 \pm 0.8 \pm 2.1 \pm 0.9) \times 10^{-3}$$

$B ightarrow \pi \ell u$ with semileptonic tag

- 383 million BB pairs
- Tag one B in $D^{(*)}/v$.
- Require a π / pair in rest of event and nothing else.
- Fit $\cos^2\phi_B$ in bins of q^2 .

Combined result

 $\mathcal{B}(B^0 \to \pi^- \ell^+ \nu) = (1.54 \pm 0.17 \pm 0.09) \times 10^{-4}$

- Consistent with world average.
- Inclusive vs exclusive $|V_{ub}|$ agreement acceptable.

0805.2408 [hep-ex]

348 fb⁻¹

K. Honscheid, Ohio State University, San Carlos 2008

LCSR, unquenched and quenched LQCD give consistent results ! Experimental q² data are used to improve form factors (several methods)

Unitarity of the First Row

$|V_{us}|$ from τ decays

 $|V_{us}|$ from the hadronic τ decays in final states with kaons

$$\frac{B(\tau^- \to K^- \nu_{\tau})}{B(\tau^- \to \pi^- \nu_{\tau})} = \frac{f_K^2}{f_\pi^2} \frac{|V_{us}|^2}{|V_{ud}|^2} \frac{(1 - m_K^2 / m_{\tau}^2)^2}{(1 - m_\pi^2 / m_{\tau}^2)^2}$$

Tag-side

 U_{τ} •

● U(S)

Signal Side

oe/μ/π/Κ

BaBar, Preliminary

$$\frac{\mathcal{B}(\tau \to K^{-} \nu_{\tau})}{\mathcal{B}(\tau \to \pi^{-} \nu_{\tau})} = 0.06531 \pm 0.00056 \pm 0.00093$$

Assume universal couplings Using f_{K}/f_{π} =1.189 ±0.007 from Lattice QCD E.Follana *et al.* Phys. Rev. Lett. 100, 062002 (2007)

 $|V_{us}| = 0.2255 \pm 0.0023$ Consistent with $|V_{us}|$ from K_{ℓ^3} , K_{ℓ^2}

$|V_{us}|$ from τ decays

 $|V_{us}|$ from the hadronic τ decays in final states with kaons

$$\frac{B(\tau^- \to K^- \nu_{\tau})}{B(\tau^- \to \pi^- \nu_{\tau})} = \frac{f_K^2}{f_\pi^2} \frac{|V_{us}|^2}{|V_{ud}|^2} \frac{(1 - m_K^2 / m_{\tau}^2)^2}{(1 - m_\pi^2 / m_{\tau}^2)^2}$$

 $\tau \rightarrow K^- \nu$

$$\frac{\mathcal{B}(\tau \to K^- \nu_{\tau})}{\mathcal{B}(\tau \to \pi^- \nu_{\tau})} = 0.06531 \pm 0.00056 \pm 0.00093$$

Assume universal couplings Using f_K/f_{π} =1.189 ±0.007 from Lattice QCD E.Follana *et al.* Phys. Rev. Lett. 100, 062002 (2007)

 $|V_{us}| = 0.2255 \pm 0.0023$ Consistent with $|V_{us}|$ from K_{ℓ^3}, K_{ℓ^2}

Theory error in BaBar $B \rightarrow X_{d\gamma}$ does not include error for using ~50% of states - i.e does heavy quark duality still hold ?

Part 2: CP Violation in the Standard Model

CP Violation in the Standard Model

To incorporate CP violation

g ≠ g*

(coupling has to be complex)

Mixing Induced CP violation

Golden mode $B^0 \rightarrow J/\psi K_s$: CP eigenstate, high rate, theoretically clean

sin2 β from $B^0 \rightarrow J/\psi K^0$

One dominant decay amplitude

No direct CPV expected $S_{J/\psi K_S^0} \approx \sin 2\beta$, $C_{J/\psi K_S^0} \approx 0$ Theoretical uncertainty in predictions ~1%

 $\begin{array}{lll} S_{(c\bar{c})K^0} &=& 0.691 \pm 0.029 \pm 0.014 \\ C_{(c\bar{c})K^0} &=& 0.027 \pm 0.020 \pm 0.016 \\ & \text{stat.} & \text{syst.} \end{array}$

Still statistics limited! Consistent with Belle measurement

sin2 β from $B^0 \rightarrow J/\psi K^0$

One dominant decay amplitude $B^0 \overset{\overline{b}}{d} \xrightarrow{\overline{c}} J/\psi$ $S_d \overset{\overline{c}}{K}^0$ No direct CPV expected $S_{J/\psi K^0_S} \approx \sin 2\beta$, $C_{J/\psi K^0_S} \approx 0$ Theoretical uncertainty in predictions ~1%

 $\begin{aligned} S_{(c\bar{c})K^0} &= 0.691 \pm 0.029 \pm 0.014 \\ C_{(c\bar{c})K^0} &= 0.027 \pm 0.020 \pm 0.016 \\ \text{stat. syst.} \end{aligned}$

Still statistics limited! Consistent with Belle measurement

Compilation of Results

Is $sin(2\beta)$ universal?

Let's try this for the next angle: α

• Access to α from the interference of a $b \rightarrow u$ decay (γ) with $B^0 B^0$ mixing (β)

How to estimate $|\alpha - \alpha_{eff}|$: Isospin analysis

- Use SU(2) to relate decay rates of different *hh* final states ($h \in {\pi, \rho}$)
- B \rightarrow hh can have I=0 or 2 but gluonic penguins only contribute to I=0 (by Δ I=1/2 rule) $\Rightarrow A^{+0} = \tilde{A}^{-0}$
- Need to measure several related B.F.s
 - Works for $\pi\pi$, $\rho\rho$, $\rho\pi$ systems

Alpha: $B \rightarrow \pi\pi$ system

 $B^0 \to \pi^0 \pi^0$

Branching fraction and timeintegrated CP asymmetry.

 $\mathcal{B}^{00} = (1.83 \pm 0.21 \pm 0.13) \times 10^{-6}$ S^{00} not possible (no vertex) $C^{00} = -0.43 \pm 0.26 \pm 0.05$

Final analysis: 465 M BB

Alpha: $B \rightarrow \rho \rho$ system

New from BaBar: $B^0 \rightarrow \rho^0 \rho^0$ (arX iv:0807.4977)

 $\mathcal{B} = (0.92 \pm 0.32 \pm 0.14) \times 10^{-6}$ $f_L = 0.75^{+0.11}_{-0.14} \pm 0.04$ $S^{00} = +0.3 \pm 0.7 \pm 0.2$ $C^{00} = +0.2 \pm 0.8 \pm 0.3$

3.1 σ evidence for $\rho^0 \rho^0$

New from Belle: $B^{0} \rightarrow \rho^{0} \rho^{0}$: $\mathcal{B} = (0.4 \pm 0.4 \pm 0.2) \times 10^{-6}$

World averages: $\mathcal{B}_{\rho 0 \rho 0} = (0.72 \pm 0.28) \times 10^{-6}$ $\mathcal{B}_{\rho + \rho -} = (24.2 \pm 3.2) \times 10^{-6}$ $\mathcal{B}(\rho^0 \rho^0) \iff \mathcal{B}(\rho^+ \rho^-)$

Summary for α

 B^{\pm} → DK: no time dependence; extract γ from rates and CP asymmetries but b → u amplitude is small (for example r_B (DK⁻) = 0.16 ± 0.05 ± 0.01 ± 0.05 Belle)

Summary for *γ*

The CKM Model has passed the experimental test

New Targets

- Effects of TeV new physics \rightarrow deviations from SM
- LFV and new source of CPV
- Hidden flavor symmetry and its breaking

Courtesy of S. Sekula

Courtesy of S. Sekula

Can we find evidence for New Physics in Heavy Flavor Decays?

Part 3: Where to look for New Physics?

Charged Higgs Bound

Short-distance physics appears in the Wilson coefficients. C_7 , C_9 , C_{10} important for $b \rightarrow s \ l^+l^-$ Magnitude of $|C_7| \approx 0.33$ known from $B \rightarrow X_S \gamma$, but sign not constrained. $|C_9|^2 + |C_{10}|^2$ constrained by $b \rightarrow s \ l^+l^-$ BF, but not relative sign.

New physics may modify the C's or introduce additional terms (e.g., scalar, pseudoscalar)

 $B \rightarrow K^{(*)} / / Signals$

. Honscheid, Ohio State University, San Carlos 2008

349 fb⁻¹

Good agreement with SM BF

657M

- Obtain partial BF in 6 bins in q^2 ; extrapolate the total BF.
- $BF(B \rightarrow K^* \parallel) = (10.8 \pm 1.0 \pm 0.9) \times 10^{-7}$
- $BF(B \rightarrow KII) = (4.8^{+0.5}_{-0.4} \pm 0.3) \times 10^{-7}$

photon pole

$$\frac{d\Gamma}{d\cos\theta_K} = \frac{3}{2}F_L\cos^2\theta_K + \frac{3}{4}(1 - F_L)(1 - \cos^2\theta_K)$$

K. Honscheid, Ohio State University, San Carlos 2008

Search for $B \rightarrow \tau v$

SM decay proceeds via W-annihilation diagram

$$\mathcal{B}^{SM}(B^+ \to \tau^+ \nu_{\tau}) = 9.3 \times 10^{-5} \left[\frac{f_{B^+}}{196 \, MeV} \right]^2 \left[\frac{|V_{ub}|}{0.00367} \right]^2$$

- → B (B→τν)= ($0.78^{+0.09}_{-0.13}$) x 10-4 (CKM fitter 2008 prediction)
- Sensitive to new physics charged current

• Analysis:

- Undetected neutrinos result in large missing energy and few kinematic constraints – high background.
- Reduce the background by reconstructing the second B ("tag B") in the event in the copious decay mode $B^- \rightarrow D^{*0}I^-v_1$
- Reconstruct $B^+ \rightarrow \tau^+ \upsilon_{\tau}$ with $\tau^+ \rightarrow I^+ \upsilon_{bar}$ or $\tau^+ \rightarrow h^+ \upsilon$, where $h = \pi$, ρ , or a_1
- Require no additional charged tracks in the event

b

 (H^{+},W^{+})

New Belle Result on $B^+ \rightarrow \tau^+ \nu$

Method: Tag B on one side (hadronic tag or $D^{(*)} I v$ tag) Look for τ signature with "extra" energy in the ECAL Use 657 M BB with $D^{(*)}I v$ tag

It doesn't have to be a B meson decay

Can we find a light Higgs before the LHC is repaired?

The Next-to-Minimal Supersymmetric Standard Model (NMSSM) adds a Higgs singlet [*] \rightarrow extra Higgs boson, A⁰, *can be light*.

$$Y(3S) \to \gamma A^0; A^0 \to \chi \chi (invisible)$$

Channel could dominate for a light component of the dark matter (χ)

Parameter Scanblue points: $m_A < 2m_{\tau}$ red points: $2m_{\tau} < m_A < 7.5 \text{ GeV}$ green points: 7.5 GeV < $m_A < 8.8 \text{ GeV}$ black points: 8.8 GeV < $m_A < 9.2 \text{ GeV}$

hep/ex arXiv:0807.1427

K. Honscheid, Ohio State University, San Carlos 2008

tanβ=10, μ=150 GeV,

10-3

 10^{-4}

 10^{-5}

10-6

 10^{-}

-0.5

[*] c.f. PRL 95:041801,2005

and PRD 76:051105,2007

0.0

The fraction of the A⁰

which is non-singlet

0.5

 $\rightarrow \gamma \, A^0)$

3R(Y

M_{1.2.3}=100, 200, 300 GeV

Experimental Approach

Search for an invisiblydecaying particle recoiling against a single photon

Photon Selection:

- EMC shower shape, acceptance, etc.
- Veto events where there is activity in the muon system opposite the photon (veto $e^+ e^- \rightarrow \gamma \gamma$)
- Veto photons in regions where the muon system has gaps

Additional Constraints

No activity in the tracking system (track veto)
Maximum energy requirement on remaining photons (<100 MeV total energy)

A Y(3S) $\rightarrow \gamma$ + Invisible Candidate

K. Honscheid. Ohio State University. San Carlos 2008

We reject this background by vetoing correlations between our signal photon and activity in the muon system

Total Signal Efficiency:

High Energy Region: 10-11%

Low Energy Region: 20%

Recent BaBar Searches for LFV: $\tau \rightarrow 3\ell$ and $\tau \rightarrow \ell \omega$

Search for tri-lepton final states with 6 distinct combinations of electrons and muons

	${\cal B}(au o \ell \ell \ell)$
SM+v-mixing (PRL95(2005)41802,EPJC8(1999)513)	10^{-14}
SUSY Higgs (PLB549(2002)159, PLB566(2003)217)	10^{-7}
SM+Heavy Majorana $ u_{ m R}$ (PRD66(2002)034008)	10^{-10}
Non-Universal Z' (PLB547(2002)252)	10^{-8}
SUSY SO(10) (NPB649(2003)189, PRD68(2003)033012)	10^{-10}
mSUGRA+seesaw (EPJC14(2000)319, PRD66(2002)115013)	10^{-9}
MSSM+seesaw (PRD66 (2002) 057301) $\mathcal{B}(\tau \rightarrow \mu \gamma)$: $\mathcal{B}(\tau \rightarrow \mu \gamma)$	$(\mu\mu)$: $\mathcal{B}(\tau \rightarrow \mu\eta) = 1.5$: 1:8.4

Search for $\tau^+ \rightarrow l^+\omega$ (using electron and muon final states and $\omega \rightarrow \pi^+\pi^-\pi^0$). Observation of either is an unambiguous sign of new physics.

Part 4: Where do we go from here?

Where do we go from here?

- BaBar is complete
- Belle
 - Start Y(5S) run (+ some 2S)
 - Shutdown for upgrade
- CLEO-c is complete
- Tevatron
 - 8 fb⁻¹ (2009)
- The near term future will be in Europe: LHCb
- Will there be a new accelerator dedicated to heavy flavor physics?

LHCb is waiting for data

Where do we go from here?

- BaBar is complete
- Belle
 - Start Y(5S) run (+ some 2S)
 - Shutdown for upgrade
- CLEO-c is complete
- Tevatron
 - 8 fb⁻¹ (2009)
- The near term future will be in Europe: LHCb
- Will there be a new accelerator dedicated to heavy flavor physics?

LHCb is waiting for data

K. Honscheid, Ohio State University, San Carlos 2008

If we had 50 times more data...

- With 75 ab⁻¹ of data we could ask:
- Are there new *CP*-violating phases in *b,c* or τ decay ?
 Are there new right-handed currents ?
 Are there new loop contributions to flavor-changing neutral currents
 Are there new Higgs fields ?
 Is there lepton flavor violation?
 - Is there new flavor symmetry that elucidates the CKM hierarchy ?

Site of the proposed Super-B Factory in Italy

mpus of Tor Vergata University in Rom

Image NASA

- Very high initial luminosity, 10³⁶
- It is asymmetric : 4 on 7 GeV
- Ring magnets, RF, vacuum componens can reused from PEP-II
- Reuse BaBar magnet, CsI as the basis for an upgraded detector
- Polarized beams possible
- Flexible design: Y region, charm & tau threshold regions
 - Time scales
 - European Roadmap process (2008-2009) (INFN, ECFA, CERN Strategy Group) INFN→Ministry
 - Regione Lazio funded digging the SuperB tunnel!
 - Luminosity in 2015

K. Honscheid, Ohio State University, San Carlos 2008

Summary

- The 2 B-Factories continue to produce a wealth of new physics results
- CP Violation in the B sector is firmly established
 The CKM paradigm is established as the source
 - of CP violation & flavor mixing in the SM

- Wolfenstein parameterization: $\lambda \sim 0.23, A \sim 0.8,
 ho \sim 0.2, \eta \sim 0.4$
- Precision measurements of the magnitudes of the CKM elements are now available (experimental uncertainties) $\sigma(|V_{cb}|) \sim 2-3\%$
 - σ(|V_{ub}|) ~ 5%
 - σ(|V_{td}|) ~ 1-2%
- New upper limits for rare decays as low as 10⁻⁸ We are still looking for that needle in the haystack..