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Abstract. Considerable work has been done on the one-loop effective action in combined electro-
magnetic and gravitational fields, particularly as a tool for determining the properties of light prop-
agation in curved space. After a short review of previous work, I will present some recent results
obtained using the worldline formalism. In particular, I will discuss various ways of generalizing
the QED Euler-Heisenberg Lagrangians to the Einstein-Maxwell case.
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THE WORLDLINE FORMALISM IN QED

Let us start with the “worldline” representation of the one-loop effective action in spinor
QED [1, 2]

Γ(A) = −1
2

∫
∞

0

dT
T

e−m2T
∫

x(T )=x(0)
Dx(τ)

∫
ψ(T )=−ψ(0)

Dψ(τ)e−
∫ T

0 dτL[x(τ)] (1)

Here m and T are the mass and proper time of the loop fermion, and the “worldline
Lagrangian” L is given by

L =
1
4

ẋ2 + ieẋµAµ +
1
2

ψ · ψ̇ − ieψ
µFµνψ

ν (2)

The x(τ) part of the double path integral in (1) runs over all closed trajectories in
spacetime with fixed periodicity in T , and by itself gives the effective action for a scalar
loop (up to the normalization). The ψ(τ) integral represents the spin degree of freedom,
and is over antiperiodic Grassmann functions, obeying ψ(τ1)ψ(τ2) =−ψ(τ2)ψ(τ1) and
ψ(T ) =−ψ(0). Similar worldline representations can be written for the effective action
with open scalar/spinor lines, at the multiloop level, and for other field theories; see [3]
for a review. However, it is only during the last fifteen years that such representations
have gained some popularity for actual state-of-the-art calculations. By now a number of
different techniques have been developed for the evaluation of worldline path integrals.
We will follow the “string-inspired” approach [4, 5], where one manipulates the path
integral into gaussian form, and then performs those gaussian integrals using worldline
correlators adapted to the periodicity conditions,



〈xµ(τ1)xν(τ2)〉 = −GB(τ1,τ2)δ
µν , GB(τ1,τ2) = |τ1− τ2|−

(
τ1− τ2

)2

T
− T

6

〈ψµ(τ1)ψν(τ2)〉 =
1
2

GF(τ1,τ2)δ
µν , GF(τ1,τ2) = sign(τ1− τ2)

(3)

This procedure leads, for example, with little effort to the following “Bern-Kosower
master formula” [6] for the one-loop N - photon amplitude in scalar QED:

Γ[{ki,εi}] = (−ie)N(2π)D
δ (∑ki)

∫
∞

0

dT
T

(4πT )−
D
2 e−m2T

N

∏
i=1

∫ T

0
dτi

×exp
{ N

∑
i, j=1

[1
2

GBi jki · k j + iĠBi jki · ε j +
1
2

G̈Bi jεi · ε j
]}

|lin(ε1,...,εN) (4)

Here ki and εi are the momentum and polarization of the ith photon, and each τi integral
represents one photon leg moving around the loop. The notation lin(ε1, . . . ,εN) means
that only terms linear in all polarization vectors are to be kept after expanding the
exponential. Apart from the worldline Green’s function GB(τi,τ j), which we abbreviate
by GBi j, also its first and second derivatives appear, ĠB12 = sign(τ1 − τ2)− 2 (τ1−τ2)

T ,

G̈B12 = 2δ (τ1 − τ2)− 2
T . The factor (4πT )−

D
2 in (4) represents the free path integral

determinant in D dimensions.
The corresponding representation of the N photon amplitude for the spinor loop case

differs from (4) (apart from a factor of −2) only by additional terms from the spin path
integral in (1). Those terms can be inferred from the scalar loop integrand through a
certain pattern matching rule [3, 5, 6].

A major advantage of the worldline formulation of QED is that it allows one to include
an external constant field Fµν in a particularly efficient way [7, 8]. Effectively, the
integral representation of a scalar or spinor QED amplitude in such a constant external
field is obtained from the corresponding one in vacuum by the following replacements
of the worldline Green’s functions and determinants,

GB(τ1,τ2) → GB(τ1,τ2) =
1

2(eF)2

(
eF

sin(eFT )
e−ieFT ĠB12+ieFĠB12−

1
T

)

GF(τ1,τ2) → GF(τ1,τ2) = GF12
e−ieFT ĠB12

cos(eFT )
(5)

(the trigonometric expressions are to be understood as power series in the field strength
matrix),



(4πT )−
D
2 → (4πT )−

D
2 det−

1
2

[
sineFT

eFT

]
(Scalar QED)

(4πT )−
D
2 → (4πT )−

D
2 det−

1
2

[
taneFT

eFT

]
(Spinor QED)

(6)

In particular, applying these changes in (4) yields a corresponding master formula for the
N - photon amplitudes in a constant field [7, 8]. This master formula, and its extension
to spinor QED, have been used for comparatively easy recalculations of the scalar
and spinor QED vacuum polarization tensors [9], as well as of the photon splitting
amplitudes in a magnetic field [10]. The determinant factors (6) by themselves (i.e.,
the N = 0 case) yield, after renormalization, the well-known effective Lagrangians of
Weisskopf and Schwinger [11] and Euler-Heisenberg [12],

Lscal(F) =
1

16π2

∫
∞

0

dT
T 3 e−m2T

[
(eaT )(ebT )

sinh(eaT )sin(ebT )
+

e2

6
(a2−b2)T 2−1

]
Lspin(F) = − 1

8π2

∫
∞

0

dT
T 3 e−m2T

[
(eaT )(ebT )

tanh(eaT ) tan(ebT )
− e2

3
(a2−b2)T 2−1

]
(7)

Here a,b are the two invariants of the Maxwell field, related to E, B by a2 − b2 =
B2−E2, ab = E ·B.

A further extension to the two-loop level has been extensively applied to the study of
the two-loop corrections to the effective Lagrangians (7) [8, 13, 14].

See also [15, 16] for the calculation of derivative corrections to the effective La-
grangian at the one-loop level. Here the gaussian form of the path integral is reached
by Taylor expanding the background field at the loop center of mass, usually in Fock-
Schwinger gauge to achieve manifest covariance.

GENERALIZATION TO GRAVITATIONAL BACKGROUNDS

To include an additional background gravitational field, naively one might replace

S0 =
1
4

∫ T

0
dτ ẋ2 → 1

4

∫ T

0
dτ ẋµgµν(x(τ))ẋν (8)

The usual expansion around flat space gµν = δµν + κhµν would then yield a gravi-
ton vertex operator εµν

∫ T
0 dτ ẋµ ẋν eik·x. However, using this operator in a formal gaus-

sian integration leads to worldline integrands contaning ill-defined expressions such as
δ (0),δ 2(τi− τ j), . . .. This comes not unexpected, since path integration in curved space



is a subject notorious for its mathematical subtleties even in nonrelativistic quantum
mechanics (see., e.g., [17] and refs. therein). Fortunately, during the past decade these
issues have been intensively studied, and a consistent formalism has emerged for the
calculation of worldline path integrals in general electromagnetic-gravitational back-
grounds [18]. A detailed account of this recent development has been given in [19].
Here we can only mention that the main difficulty arises from the nontriviality of the
path integral measure in curved space, which leads to spurious UV divergences. Those
can be removed by regularization, but leave an ambiguity which has to be removed by
counterterms to the worldline Lagrangian. Those are regularization-dependent, and in
general non-covariant, the only known exception being one-dimensional dimensional
regularization. A further problem consists in the zero mode which appears in the per-
turbative expansion of the path integral. In the string-inspired approach this zero mode
must be fixed as the loop center-of-mass, but this leads to a nontrivial Fadeev-Popov
type determinant in the path integral.

Concerning previous applications of the worldline formalism in curved space, let us
mention (i) the calculation of various types of anomalies (see [19] and refs therein) (ii)
the (re)calculation of the one loop graviton self energy due to a scalar loop [20], spinor
loop [21], and loops due to vector and arbitrary differential forms [22] (iii) the first cal-
culation of the one loop photon-graviton amplitudes in a constant electromagnetic field
[23] (iv) the one loop photon vacuum polarization in a generic gravitational background
due to a scalar loop in the semiclassical approximation [24].

THE EFFECTIVE ACTION FOR EINSTEIN-MAXWELL THEORY

Pure Einstein-Maxwell theory is described by the action

Γ
(0)[g,A] =

∫
d4x

√
g
(

1
2κ2 R− 1

4
FµνFµν

)
(9)

(here and in the following we absorb the coupling e into F). In 1980, Drummond and
Hathrell [25] studied the one-loop corrections Γ

(1)
spin[g,A] to this action due to a spinor

loop, and calculated the terms in it quadratic in the electromagnetic field, and linear in
the curvature:

L
(DH)

spin =
1

180(4π)2m2

(
5RF2

µν −26RµνFµαFν
α +2Rµναβ FµνFαβ +24(∇αFαµ)2

)
(10)

The point of singling out these terms is that they contain the information on the mod-
ifications of light propagation by weak gravitational fields in the limit of zero photon
energies. In the following, our goal is to generalize this result to include the effect of a
constant external field nonperturbatively, i.e., we are looking for the gravitational cor-
rections to the Euler-Heisenberg Lagrangians (7) to linear order in the curvature. Here



it must be said that those flat space Lagrangians could be defined in either of two equiv-
alent ways: (i) by the constancy of the background field Fµν (ii) by the property of
carrying the full information on the low energy limits of the corresponding N - photon
amplitudes. The lowest order gravitational corrections could be defined either by gener-
alizing (i) to covariant constancy, or by generalizing (ii) by requiring that the effective
Lagrangians should carry the information on the low energy limits of the amplitudes
with N photons and with one graviton. These generalizations are not any more equiva-
lent, and we will adopt (ii) here rather than (i) (for the effective Lagrangian defined by
covariant constancy Avramidi has obtained a representation in terms of integrals over
the holonomy group [26]).

With our definition of the generalized Euler-Heisenberg Lagrangian, we have to get
all terms involving arbitrary powers of Fµν and one factor of Rµνκλ or ∇µ∇ν . As in
the flat space case, the path integrals are gaussianized by a Taylor expansion at the loop
center-of-mass x0, made covariant by combining Fock-Schwinger gauge and Riemann
normal coordinates [27]

Aµ(x0 + y) = −1
2

Fµν(x0)yν − 1
3

Fµν ;α(x0)yν yα

−1
8

[
Fµν ;αβ (x0)+

1
3

Rαµ
λ

β (x0)Fλν(x0)
]

yα yβ yν + · · ·

gµν(x0 + y) = gµν(x0)+
1
3

Rµαβν(x0)yαyβ + ....

(11)

Concentrating on the spinor loop case, the effective Lagrangian then is obtained in the
following form,

Lspin = − 1
8π2

∫
∞

0

dT
T 3 e−m2T det−

1
2

[
tan(FT )

FT

]〈
e−Sint

〉
S0

(12)

Here S0 denotes the quadratic part of the worldline action, which is (after a rescaling to
the unit circle)

S0 =
∫ 1

0
dτ

(
1

4T
gµν(x0)ẏµ ẏν − i

2
Fµν(x0)ẏµyν +

1
2

gµν(x0)ψµ
ψ̇

ν − iT Fµν(x0)ψµ
ψ

ν

)
(13)

It yields again the generalized worldline Green’s functions of (5), only that in taking
powers of the field strength matrix the lowering and raising of indices involves the metric
gµν(x0). The interaction part involves the terms coming from the replacement (8), as
well as a ghost part Sgh from the path integral measure, and a term SFP representing the
contribution from the Fadeev-Popov determinant mentioned above:



Sint = Sgrav +Sgh +Sem +Sem,grav +SFP (14)

Sgrav +Sgh =
∫ 1

0
dτ

{
1

12T
Rµαβνyαyβ

[
ẏµ ẏν +aµaν +bµcν +2α

µ
α

ν

]

+
1
6

Rµαβν yα yβ
ψ

µ
ψ̇

ν +
1
6
(Rµαλβ +Rµβλα)ẏα yλ

ψ
µ

ψ
β

}

Sem =
∫ 1

0
dτ

[
− i

3
Fµν ;α

(
ẏµ yν +3T ψ

µ
ψ

ν

)
yα − i

8
Fµν ;αβ

(
ẏµ yν +4T ψ

µ
ψ

ν

)
yα yβ

]
Sem,grav = − i

24

∫ 1

0
dτRαµ

λ
β Fλν

[
ẏµ yν +8T ψ

µ
ψ

ν

]
yα yβ

SFP = −1
3

∫ 1

0
dτ η̄µRµ

αβν yαyβ
η

ν (15)

It is then a matter of simple combinatorics to arrive at our final result, an integral
representation of the leading gravitational correction to the (unrenormalized) Euler-
Heisenberg Lagrangian [28]:

Lspin = − 1
8π2

∫
∞

0

dT
T 3 e−m2T det−1/2

[
tan(FT )

FT

]
×

{
1+

iT 2

8
Fµν ;αβ G αβ

B11

(
Ġ µν

B11−2G µν

F11

)
+

iT 2

8
(
Fµν ;βα +Fµν ;αβ

)
Ġ µβ

B11G
να
B11 +

T
3

Rαβ G αβ

B11

− iT 2

24
FλνRλ

αβ µ

(
Ġ νµ

B11 G αβ

B11 + Ġ αµ

B11 G νβ

B11 + Ġ β µ

B11 G να
B11 +4G µν

F11 G αβ

B11

)
+

T
12

Rµαβν

(
Ġ µα

B11Ġ
βν

B11 + Ġ µβ

B11Ġ
αν
B11 +

(
G̈ µν

B11−2gµν
δ (0)

)
G αβ

B11

+Ġ αβ

B11 G µν

F11 + Ġ νβ

B11 G µα

F11−G αβ

B11

(
Ġ µν

F11−2gµν
δ (0)

))
−1

6
T 3Fαβ ;γ Fµν ;η

∫ 1

0
dτ1

(
Ġ αν

B12 Ġ β µ

B12 G γη

B12 + Ġ αν
B12 G βη

B12 Ġ γµ

B12

+
3
2

G γη

B12 G αµ

F12 G βν

F12

)}
(16)

(τ2 = 0).



As a check on (16), we have verified that an expansion to order RFF reproduces the
result of Drummond-Hathrell up to total derivative terms:

Lspin = − 1
8π2m2

[
− 1

72
RF2

µν +
1

180
RµνFµαFν

α

+
1

36
Rµναβ FµνFαβ − 1

180
(∇αFµν)2 +

1
36

Fµν Fµν

]
Lspin−L

(DH)
spin = − 1

8π2m2

{
1

36
∇

α(FµνFµν ;α)+
1

15

[
∇α(Fµ

α
∇β Fµβ )−∇β (Fµ

α
∇αFµβ )

]}
(17)

As to possible applications of the Lagrangian (16), let us mention that it contains the
information on (i) the one graviton - N photon amplitudes in the low energy limit (ii) the
modified photon dispersion relations in the background of a strong electromagnetic and
weak gravitational field (iii) the Schwinger pair production rate in such a field.
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