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Motivation
QCD in Landau gauge
QCD in Coulomb gauge

Gauge fixing

_ 1
(Euclidean) QCD Lagrangian £ = § (—vuD, +m)q + > tr (FuvFuv)

. i
Dp=0u—19A,, Fu = a [Du,Dy]

@ L invariant under gauge transformations
q _>qU =Uq, U :eigw :eigwao'a/Z
i i
A, — Al =U (Au+fa#) uf = —up,ut
g 9
@ infinitesimal transformation:
6q = igwq , 0A, = Dpw = duw —ig [Ay, W]

@ (covariant) gauge fixing:
oA, =0
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Motivation
QCD in Landau gauge
QCD in Coulomb gauge

Ghosts

@ change of variables: A, = Kz , OuAL=0

;s/D[A] :/D[U]/D[Z]detf

/D[U]/D[A]&(@MAN)det(é 6MDH)

OliTO/D[U]/D[A] exp <7$/d4x tr(auAu)2> /D[c,c‘:] exp (2/d4x tr(C 8MD#C))

@ ghosts c, C: spin zero fermions

/D[A] exp (-/d“x c) oc/D[A,c,E] exp (—/d“x cgf) ,

1 _ L
Lot =L+1r [ (8uAu)2 —-2C 8NDMC} , limit « — 0: Landau gauge

«
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Motivation
QCD in Landau gauge
QCD in Coulomb gauge

Gribov copies

@ problem: Kﬁ # A, with 8,}5 =0 = 9uA, exists, “Gribov copy”

@ Gribov (1978): A should only be integrated over the first Gribov region Q, where
(—08,Dy) is positive definite

@ Zwanziger (1994): more precisely, A should be integrated over the fundamental
modular region

/\:{xu

Gribov horizon 9%2:
FP(A) = det(-9,D,) =0 /D[A,C,E] c®(x)e°(y) exp (—/d“x £gf)

= /D[A,c,é] (x,a|(—8,Du) "y, b) exp (—/d“x ng)

bo o TN 4. . UV
/d X tr(ALAL) = n”Lljn/d xtr(AuAu)} cQ

@ ghost propagator

IR enhanced

@ Kugo-Ojima (1979) confinement criterion fulfilled =
color confinement

>
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Motivation
QCD in Landau gauge
QCD in Coulomb gauge

Numerical results

DSE vs. lattice results (163x32)

L T T T T T T ]
- lattice fit 2
r o B=2.15 1 ghost propagator 67
B=2.2
3 o p=23 )
_ o B=2.375
O B=2.45
NP Y v =252 i
o\r — DSE
I Dyson-Schwinger equations: Fischer,
Alkofer (2002); Lattice: Langfeld (2002)
1,
6 L
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Motivation

DSE vs. lattice results (163x32)

15

Z(p)

0.5

T T T T T T

-+ lattice fit

o PB=215
p=22

¢ p=23

A B=2375
p=2.45

v P=2525

DSE
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QCD in Landau gauge

QCD in Coulomb gauge

gluon propagator

Z(?) (s Pubv
pz " p?
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Motivation

QCD in Landau gauge

QCD in Coulomb gauge
Dyson-Schwinger equations
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Motivation

QCD in Landau gauge

QCD in Coulomb gauge

@ approximation in Yang-Mills theory (no quarks)

@i, 2N
1 1 &% U
CEOO@EGEE = CGOGEEEGGEE ']JZ’(W}F ™t ooy (}m
% \ p
g o
gﬁgﬁﬁ.ﬂ‘r@‘@;\
1 1 §
@ = Ry e—t

numerical solution: von Smekal, Hauck, Alkofer (1997); Fischer, Alkofer (2002)

@ in addition, ghost dominance + non-renormalization of the ghost-gluon vertex
= (Nc = 3)

G(p?) o (p?) ™", Z(p?) x (p?)?*, K =0.595

i

Z(p?)G?*(u?) — 297, p?>—0
47

OéS(MZ) =

analytical solution: Lerche, von Smekal (2002); Zwanziger (2002);
Pawlowski, Litim, Nedelko, von Smekal (2004); Schleifenbaum, Leder, Reinhardt (2006)
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Motivation
QCD in Landau gauge
QCD in Coulomb gauge

Coulomb gauge

@ consider Yang-Mills theory in canonical quantization, Weyl gauge: A3(x) =0

@ states i)(A) = ¢ (AY) for gauge transformations U(x)
(614) = [ DlAL&* (A)s(A)
@ Coulomb gauge: V-A = 0
é/D[A] :/D[U]/D[A] 5(V-A)FP(A), FP(A) = det(~V -D(A))
= (@l0) [ DIAO(Y - A)FP(A) 6" (A)U(A)

@ Gribov copies = restrict A-integration to the fundamental modular region A C Q
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Motivation
QCD in Landau gauge
QCD in Coulomb gauge

Christ-Lee Hamiltonian

Hamiltonian in Weyl gauge

H= 2/ [ 5A3(X) 6A:(x)

+ B&(x) - B¥(x)

9 cabc pb c a a
2 fabepb o pcl = = _—E2=F2
2 ],- i 6A3(X) I o

1
BR =  cicrFily = [v x A% 4

elimination of the longitudinal component E? (classical):
E® =E} +EF, EX=-V¢?, ¢ the color Coulomb potencial
Gauss’ law: D(A1) - E=D(A7) - (EL + Er) = —=D(A7) - Vé +ig [A7,Er] = pq

= —V - D(A7) ¢ = pq —ig [AT,E7]

= 600 = [ & (xal(=7 D) y,b) [h(y) + 6 AS () - ES v)]
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Motivation
QCD in Landau gauge

QCD in Coulomb gauge

= Coulomb gauge Hamiltonian, hermitian with respect to the scalar product in Coulomb
gauge: Christ-Lee Hamiltonian

= 1 J 6 a a
"= E/dsx <_ FP(AT) 5A$’j(x)FP(AT)5A$’j(X) +B(x)8; (X))

1 1
= [ d3d? 2(x) FP(A
45 [ X% g PO FP(AT)

x (x,a|(=V -D) "} (=V?)(=V - D)y, b) p°(y),

6

P00 = A0~ O RL00  x” es e

(taking into account that |E_|? = |V(=V - D)~ 1p|?)

singularity of (—V - D)~ at Q causes the growth of $?(x) for large |x| ( small p) and
hence the confinement

= direct access to the confining potential in Coulomb gauge, cf. Kugo-Ojima confinement
criterion in Landau gauge
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Motivation
QCD in Landau gauge
QCD in Coulomb gauge

Numerical results

@ variational approach: minimize

(H) :/D[A] 5(V - A)FP(A) 4 (A)H(A)

(properly normalized); ansatz for the vacuum functional:

U(A) o exp “ (P (P)AS (P)

p
(2m)3
= Dyson-Schwinger-type equations for fo(p) = Z (p?)/(2|p|) and the
"ghost propagator" G(p?)/p? [expectation value of (—V - D)~1]
@ two possible results in the IR

G(p?) o< (P?) ™", Z(p?) ox (p?)*"
withk = 0.398 or k=05

numerical solution: Szczepaniak, Swanson (2001); Feuchter, Reinhardt (2004); Epple, Reinhardt, Schleifenbaum
(2007); analytical solution: Zwanziger (2004); Schleifenbaum, Leder, Reinhardt (2006)

@ inclusion of form factor for the Coulomb potential inconsistent

@ latest lattice results point to < = 0.5 Burgio, Quandt, Reinhardt (2008)

@ suggestion: try to derive Dyson-Schwinger equations for equal-time correlation
functions
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Motivation
QCD in Landau gauge
QCD in Coulomb gauge

Correlation functions in Coulomb and Landau gauge

@ equal-time n-point correlation function in Coulomb gauge
(Af(p1,t = 0)AP(p2,t = 0)--- Al(pn,t = 0))
=/D[A] (V- A)FP(A) AR(P1)AP(P2) - - - A (Pn) [0 (A)?
1o (A) vacuum wave functional

@ similar to (Euclidean) functional integral in Landau gauge with (Az) — (A?), pu — Pi
e — [¢o(A)f

= functional integral techniques applicable with |1o(A)[2 = e =S

@ can we built on this analogy to derive Dyson-Schwinger equations for the equal-time
correlation functions in Coulomb gauge?
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Vacuum wave functional Exponential ansatz
Iterative perturbative solution

Ansatz in ¢* theory

@ consider \¢* theory for simplicity (the basic formalism should be the same for QCD):

BEN AP R
H=3 (277)3( (2)5¢(p)2)6¢(—p)

d3p; o d3p,
(2m)®  (2n)3

+ ¢(—p)(m? + p2)¢(p))

B(Pp1) - d(Pa)(2m)35(P1 + - .. + Pa)

@ exponential ansatz for the vacuum wave functional

> ds3 d3
¢)—exp( Z (2K)! /2:)13 : (2p§; fok (P, - - Pak)

k=

x @(p1) -+ p(P2x)(2m)35(p1 + ... + p2k))
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Vacuum wave functional Exponential ansatz
Iterative perturbative solution

Equations for coefficient functions

insert ansatz in Hig(¢) = Eguo(¢) and equate coefficients of ¢2K«($) on both sides
= infinite set of equations for the fak (P1, ..., P2k):
K

k
> 202(k — €) + 2] [fze(pl, <oy P2¢—1,—P1— - — P2¢—1) 2%
(=1 B 26+1

X fok—e)12(P2es - - - s P2k, PL + - - + Pzefl)]

symm. in (p; < pj)

1 d3q m2 +p2 | for 2k =2
=5 | 3ma fs2(P1 -, P2k, =0, Q) + A, for2k =4
(2m) 0 ., fork>6

1§>\ 2%

2
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Vacuum wave functional

[f2(p1)])? = [f2(P1, P2)]?

=m?+pf + % / %u(pl,pzfq,q) (P2 = —p1)
[f2(P2) + - -+ f2(pe)[fa(Pr. . Pa)
:A+%/%f6(ply---7p47—qm,

[f2(p1) + .- . +2(P6)]fe (P, - - -, P6)

= —[fa(p1,P2,P3, —P1 — P2 — P3)fa(P4, P5, P6, P1 + P2 + P3) + perms.]

1 [ diq
= — 1 —
+2/(2W)3 8(P1,---,P6,—9,0),
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Vacuum wave functional EX| n
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Q Vacuum wave functional
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Vacuum wave functional Exponential ansatz
Iterative perturbative solution

Perturbative expansion

f2(p) = /M2 +p2 + O(N) = wp + O(N),

A
fa(P1,..-,Pa) = m+o(>\2)5 >< +0()\),
1t 4

LER=d+5 [ S ot o)

N N A T
2(P) = 2 2wp J (27m)3 2wp + 2wy

- (O +om,

+0O(\?)
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Vacuum wave functional Exponential ansatz

Iterative perturbative solution

fs(p Pe) = X ( !
e Wpy + ..+ wpg \Wpy + Wp, + Wps + Wpy+pytpg

1
+(9 perms.)) +0(\3)
Wps + Wps + Wpg + Wpy+patps

S>—£ +(9perms.) + O(N),

fa(p1,...,pa) = X — (%Q +3 perms.) - ()Q( +2 perms.) + 0%,

re)=(—*- O - OO —& -+ o)
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Vacuum wave functional Exponential ansatz
Iterative perturbative solution

Examples

1
o )
2wp, wp; + ...+ wp, +2wq

@ _ )\72 d3q d3q’ 1
2wp J (27)3 (2m)3 2wp + 2wy
« 1 1
2wp + 2wq + 2wgr (wp + wq + wqr + Wpiqiqr)?
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Perturbative expansion
Coulomb gauge Yang-Mills theory

Correlation functions
E-operator

Equal-time and covariant correlation functions (with F. Astorga)

@ equal-time n-point correlation function

(6(p1,t =0+ 6(pnt = 0) = [ DIe]6(p1) - dlpr)e ™,
with
= [to(8)%, = Z (2k)' fak(P1, -, P2x) @(P1) -+~ B(P2k)
@ use common perturbation theory with “bare” propagators (2wp)~! and vertices
(2f2(p) — 2wp) and 2fx (p1, - - -, P2k), 2k > 4

@ relation to covariant correlation functions:

dp?® 0
(6(prt = 0)-+6(pnt = 0)) = [ T2+ T2 (6(p1,p9) - 6(pi, pR))
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Perturbative expansion
Coulomb g

Correlation functions - -~
E-operator

Example

different contributions to the 2-point correlation function with topology @

o @ = contraction of @ from f(py1, p2) with

—— = (ZWp)71

) @ = contraction of >©< from f4(p1, .. ., Ps) With ——
o @ = contraction of ~>—§ from fg(py, ..., Pe) With ——

° @ = contraction of > > from f4(py, ..., ps) with ——
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Perturbative expansion

. . Coulomb gauge Yang-Mills theory
Correlation functions o
E-operator

for example,

1 (2))2 / d3q d3q’ 1 1
69 2 (2wp)2 ) (27)3 (27)3 2wgr 2wp + 2wy
y 1 1
2wp 4 2wq + 2wy (wp + wq + Wy + Wpiqiqr)?

sum of all diagrams with topology @:

1 (23 / d’q d%’ 2wp + wq + Wy + Wp gt
3! (2wp)? (

27)3 (27)3 2wq 2wqr 2wy qrqr (Wp + wq + Wy + Wpiqiqr)?

remarkable simplification; all factors in the denominator (except for one extra factor 2wp) are

provided by —— and >< contrary to @; similarly for all topologies
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Perturbati
Coulomb gauge Yang-Mills theory

Correlation functions - -~
E-operator

Outline

e Correlation functions

@ Coulomb gauge Yang-Mills theory
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Correlation functions - uge Yang iy
E-operator

Vacuum wave functional

Z E 0 (P Pk)

> 1
wolar) <o (=3 (27r)3""<27r el

X A2 ((p1) -~ AL (P)(2m)%6(p1 + ... + pk))

= coefficient functions

15(P1:P2) = wpy ] (p2)0% = f e = €73 e 7%+ 0(6")

with
wp = |p|
mm = ghost loop (from the Faddeev-Popov determinant)

= “pare” Coulomb potential 1/(47|x — x'|)

Toward Dyson-Schwinger equations for equal-time correlation functions
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Perturbati ansion
Coulomb gauge Yang-Mills theory

Correlation functions - -~
E-operator

-9
Wp; + Wp, + Wpsg

+ (P2, — P3,)dik + (3, — P1j)dki] + O(g%)

A«i% +0(9%)
2o (p1, -+ Pa) = :2"5;( - :}*w{ - :}:{ +0(g%)

35 (p1,P2,P3) = 3¢5 [(pLk — P2k )di
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Perturbative expansion
Coulomb gauge Yang-Mills theory

Correlation functions - -~
E-operator

Equal-time 2-point correlation function

(A3 i (p1)AY ;(p2))

:m+m§:3W+wn§:}w+ £ +0(g%)

1 4 2Neg? d3gq 1

- [2wp1 3 (20p,)° ) (27) 2g

1 2Ncg? / dq 1+ (p1-G)% wi, —wh
2 (2wp,)? J (2m)3 2wq (p1 — a)?

2Ncg? d®q [1—(P1-8)?] (2wp, +wq + wpy+q)

+ 2
(2wp,)® J (27)3  2wq 2wpy1q (wpy + wg + wpy+q)?

p2g% + (p1 - 9)?

g (200% ra+ (P1+0)?

ﬂ 81 (p1)6%° (2m)%5(p1 + p2) + O(g*)
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ansion
Coulomb gauge Yang-Mills theory

Correlation functions - -~
E-operator

@ ghost loop cancels against FP(At) from the integration measure in the scalar product

@ checked against a calculation with straightforward Rayleigh-Schrddinger perturbation
theory
Campagnari, unpublished

@ consistent with the results for (A7 | (p1)AR j (p2)) from

covariant perturbation theory
Watson, Reinhardt (2007, 2008)
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Perturba pansion
Coulomb gauge Yang-Mills theory

Correlation functions - or
E-operator

Summary

@ equal-time correlation functions can be derived from a generating functional given in
terms of the vacuum wave functional (as it must be)

@ organization of the corresponding perturbative series: in order to determine a certain
n-point function to a given order, not only the corresponding term in the vacuum wave
functional has to be known to the same order, but also higher (and lower) terms to the
corresponding orders

@ here exemplified for ¢* theory; same rules apply to Coulomb gauge Yang-Mills theory,
at least for the two-point functions to one-loop order

@ for practical calculations of equal-time correlation functions, the method using the
vacuum wave functional will generally be much quicker than integrating the covariant
correlation functions over the zero- or energy-components

@ from the representation of the generating functional, Dyson-Schwinger equations can
be derived for the equal-time correlation functions: not only an infinite tower of
equations, but also an infinite number of terms in every single equation

Axel Weber Toward Dyson-Schwinger equations for equal-time correlation functions



. N fills theory
Correlation functions <0

€
E-operator

Outline

e Correlation functions
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Perturbal on
Coulomb gauge Y Aills theory

Correlation functions §
E-operator

(@]17]1[e]0]4

observation for A¢* theory:

contribution to (¢(p1)¢(p2)) with topology @
1 (202 / d%q d3q’ 2wp + wg + Wy + Wpiqig
3! (2wp)® J (27)3 (27)% 2wq 2wqr 2wpiqig’ (Wp + wq + Wy + Wpiggr)?

“E-diagram”, notation E [@} ;
compare with the “F-diagram” @

1 (20?2 d3q d3q’ 1
3! (2wp)? ) (27m)2 (27)% 2wq 2w 2wpqiqr (Wp + wg + Wyr + Wpigrqr)?

from the Feynman rules with propagator —— = (2wp) ! and vertex
—2A
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. N ills theory
Correlation functions <0

E-operator

@ the E-operator maps @ to E [@] by

@ multiplying with wy for every propagator (with momentum k) and adding

9 dividing through the corresponding sum restricted to the external propagators

@ applying the E-operator to every “independent factor” (independent momentum flow) of
every (linked) F-diagram appears to generate all equal-time correlation functions

@ it may be possible to establish Dyson-Schwinger-type equations for the equal-time
correlation functions (E-diagrams), mixing the latter with F-diagrams
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Conclusions

Conclusions

@ a simple analytical approximation to Dyson-Schwinger equations gives a successful
description of Landau gauge QCD in the deep infrared; one would like to have a similar
approach to Coulomb gauge QCD where the color Coulomb potential gives a direct
description of confinement; our suggestion is to try and derive Dyson-Schwinger
equations for equal-time correlation functions to this end

@ we show in detail how equal-time correlation functions can be derived from a
generating functional given in terms of the vacuum functional; the latter can be
determined order by order in a perturbative expansion; the determination of a given
correlation function to all orders involves the complete vacuum wave functional

@ a simpler way of calculating equal-time correlation functions seems to exist in terms of
the E-operator; it appears possible to derive Dyson-Schwinger-type equations directly
for the equal-time correlation functions
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