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Abstract. Our aim is to put the partially successful analytic noncovariant approaches to Coulomb
gauge QCD on a firm and systematic basis. To this end, we develop a generating functional approach
to the equal-time correlation functions. In fact, such a functional is given in terms of the vacuum
wave functional, however, in a perturbative expansion of the equal-time correlation functions, the
vacuum wave functional has to be known completely to the corresponding order. In general, we find
many different contributions that correspond to one and the same Feynman diagram in the covariant
theory. A remarkable simplification occurs on summing up these different contributions. We analyze
the relatively simpler case of λφ 4 theory in detail and tentatively formulate new diagrammatic rules
directly for the sum of all contributions that correspond to the same proper Feynman diagram.
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Dyson-Schwinger equations as a semi-analytical tool have given access, for the first
time, to the deep infrared region of QCD (or Yang-Mills theory) in the Landau gauge [1].
In the so-called ghost dominance approximation, even a very simple analytical solution
exists in the far infrared [2, 3]. Recent efforts have gone into repeating this success
for QCD in the Coulomb gauge, the reason being that the color-Coulomb potential
appearing in the Hamiltonian in the latter gauge in principle gives direct access to the
long-range confining potential between color charges.

However, the usual covariant (four-dimensional) quantum field theoretic formulation
becomes rather awkward in the Coulomb gauge. Partially successful analytic calcula-
tions so far have used alternative noncovariant approaches in three (spatial) dimensions
[4], but a consistent solution of the corresponding nonperturbative equations includ-
ing the Coulomb potential does not exist in the approximations presently employed.
Nonetheless, an intriguing relation between Landau and Coulomb gauge QCD has been
uncovered in the ghost dominance approximation [3, 5]: equal-time correlation functions
in Coulomb gauge appear as the strict three-dimensional counterpart of the covariant
correlation functions in (four-dimensional) Landau gauge. The latest numerical evalua-
tion of equal-time correlation functions in the Coulomb gauge [6] seems to confirm this
scenario.

Given this analogy between Landau and Coulomb gauge, it seems worth while to de-
velop a representation of equal-time correlation functions that is analogous to covariant
correlation functions, with the hope to find the analogue of the Dyson-Schwinger equa-
tions for the equal-time correlation functions. In such a systematic approach, one may
expect to obtain consistent (approximate) solutions for Coulomb gauge QCD in the deep
infrared region.



With this goal in mind, we will analyze in this contribution a functional integral
representation of equal-time correlation functions in a slightly more general setting. For
concreteness, we will write all the formulae for scalar λφ 4 theory which spares us many
of the technical complications of QCD. All the structural results, however, are expected
to carry over to Coulomb gauge QCD without change.

In fact, it is very simple to write down a functional integral for equal-time correla-
tion functions, given that they are nothing but the the true vacuum expectation values
of products of the field operators. The Schrödinger representation of the field theory
directly yields for the n-point function in (3-)momentum space

〈φ(p1, t = 0)φ(p2, t = 0) · · ·φ(pn, t = 0)〉=
∫

D[φ ]φ(p1)φ(p2) · · ·φ(pn) |ψ(φ)|2 , (1)

where ψ(φ) is the true vacuum wave functional of the theory. The (absolute) square
|ψ(φ)|2 then plays the rôle of the exponential of the negative Euclidean classical action
in the corresponding representation of the covariant correlation functions (in Euclidean
space).

In order to write down the functional integral for the equal-time correlation functions
explicitly, we hence need an explicit expression for the vacuum wave functional. The
analogy with the covariant theory suggests to make an exponential ansatz for this wave
functional. We consider a full Volterra expansion of the exponent, but leave out all odd
powers of φ in the (φ →−φ) symmetric phase:

ψ(φ) = exp
(
−

∞

∑
k=1

1
(2k)!

∫ d3 p1

(2π)3 · · ·
d3 p2k

(2π)3 f2k(p1, . . . ,p2k)

×φ(p1) · · ·φ(p2k)(2π)3
δ (p1 + . . .+p2k)

)
. (2)

When we insert this ansatz into the Schrödinger equation Hψ(φ) = E0ψ(φ) and
equate the coefficient functions of corresponding powers of φ multiplying ψ(φ) on
both sides of the Schrödinger equation, we obtain an infinite tower of equations for
the coefficient functions in the Volterra expansion. The first few equations are[

f2(p1)
]2 ≡

[
f2(p1,p2)

]2

= m2 +p2
1 +

1
2

∫ d3q
(2π)3 f4(p1,p2,−q,q) (with p2 =−p1) , (3)[

f2(p1)+ . . .+ f2(p4)
]

f4(p1, . . . ,p4)

= λ +
1
2

∫ d3q
(2π)3 f6(p1, . . . ,p4,−q,q) , (4)[

f2(p1)+ . . .+ f2(p6)
]

f6(p1, . . . ,p6)

=−
[

f4(p1,p2,p3,−p1−p2−p3) f4(p4,p5,p6,p1 +p2 +p3)

+ (9 permutations of the momenta)
]
+

1
2

∫ d3q
(2π)3 f8(p1, . . . ,p6,−q,q) . (5)



For a diagrammatic representation, we draw a “blob” with 2k external legs for
f2k(p1, . . . ,p2k) (taking the momenta as outgoing). The multiplication of two such
coefficient functions with one momentum in common (with opposite signs), as in
the first term on the right-hand side of Eq. (5), is represented as a contraction of the
corresponding legs (without assigning a factor to the “propagator”). The last term in
each of the equations is then represented as a loop, a contraction of two legs emerging
from the same “blob”.

This tower of equations can be solved iteratively in a perturbative expansion. To this
end, start with the vacuum functional of the noninteracting theory. With the notation
ωp = (m2 +p2)1/2, this gives

f2(p) = ωp +O(λ )≡ ( )−1 +O(λ ) , (6)

introducing a diagrammatic representation for ωp. Inserting this result in Eq. (4) and
considering f6(p1, . . . ,p4,−q,q) to be of higher order, we obtain

f4(p1, . . . ,p4) =
λ

ωp1 + . . .+ωp4

+O(λ 2)≡− +O(λ 2) . (7)

We can use the latter result and feed it back into Eq. (3) in order to obtain the contribution
to f2(p1) to order λ . According to our diagrammatic rules, we have to join two of the
legs of the vertex corresponding to f4(p1,p2,−q,q) to form a loop in order to represent
this contribution. We can also use our result (7) in Eq. (5) to find an expression for
f6(p1, . . . ,p6) to order λ 2 [consistently with Eq. (7)], considering f8(p1, . . . ,p6,−q,q)
there to be of higher order. Diagrammatically, this result for f6(p1, . . . ,p6) is represented
as a contraction of two legs from two different f4-vertices (we do not represent the
division through ωp1 + . . . + ωp6 graphically). We then go on to substitute the result
for f6(p1, . . . ,p6) back into Eq. (4) to obtain the one-loop corrections to f4(p1, . . . ,p4)
which in turn, when used in Eq. (3), lead to

f2(p) = ( )−1− − − − +O(λ 3) . (8)

The signs in front of the diagrams are chosen merely for later convenience.
In general, assuming that the lowest-order contribution to the coefficient function

f2k(p1, . . . ,p2k) is of the order λ k−1, we obtain a unique perturbative expansion of the
coefficient functions by iteratively solving the tower of equations obtained from the
Schrödinger equation for ψ(φ). We also get, from the rules stated above, a diagrammatic
representation of all the terms which will prove to be important later. The diagrams are
identical to the Feynman diagrams of covariant perturbation theory, in fact, it is plausible
from Eq. (8) that the iterative solution of the tower of equations for the coefficient
functions in the Volterra expansion produces all the connected Feynman diagrams of the
covariant theory. However, the mathematical expressions associated with these diagrams
are definitely different from covariant perturbation theory, and it is in fact not clear
whether a set of rules analogous to the Feynman rules can be given that allow to read off
the mathematical expressions directly from the diagrams.



We have now obtained an expression for the vacuum wave functional ψ(φ), albeit in
the form of a perturbative series, that we can use in the functional integral representation
(1) of the equal-time correlation functions. Writing |ψ(φ)|2 = exp(−S′), we can read
off the counterpart S′ of the (Euclidean) classical action from Eq. (2). Let us suppose
that ψ(φ) takes real values, then the coefficient functions in a Volterra expansion of
S′ are given directly by 2 f2k(p1, . . . ,p2k). For a perturbative evaluation of the equal-
time correlation functions we can hence follow the procedures of common covariant
perturbation theory. In particular, we can use Feynman diagrams with “bare propagators”
(2ωp)−1 and vertices −2( f2(p)− ωp) and −2 f2k(p1, . . . ,p2k) for 2k ≥ 4. The fact
that there is an infinite number of vertices has an important consequence for a first
intent to formulate Dyson-Schwinger equations for the equal-time correlation functions:
each equation in this infinite tower of equations would have an infinite number of
terms by itself, which would make it very difficult to find sensible approximations in
a nonperturbative regime like the deep infrared regime of QCD.

Each of the vertex functions −2 f2k(p1, . . . ,p2k) is an infinite power series in λ .
Nevertheless, we can use the results obtained before for a perturbative determination
of the equal-time correlation functions. Then to a given n-point equal-time correlation
function to a fixed order λ ` there are contributions from several vertex functions to
different orders. The diagrammatic representation of the correlation functions in terms
of the “propagator” and the vertices coming from the Volterra expansion of the (exponent
of the) vacuum wave functional can be merged with the diagrammatic representation of
the coefficients of this latter expansion. As a result, we get several different contributions
in this merged representation that correspond to one and the same Feynman diagram in
covariant perturbation theory.

This is most easily seen in an example: let us represent the “propagator” (2ωp)−1

as and use the diagrammatic representation of the “vertices” −2 f2k(p1, . . . ,p2k)
described before (disregarding in the diagrams the factors of two that arise from the
square of the vacuum functional). We list all the contributions to the 2-point equal-time
correlation function with the topology

in the merged diagrammatic representation:

1. = contraction of from f2(p1,p2) with

2. = contraction of from f4(p1, . . . ,p4) with

3. = contraction of from f6(p1, . . . ,p6) with

4. = contraction of from f4(p1, . . . ,p4) with

Now, there is a different way of calculating equal-time correlation functions, which is
by projecting the usual covariant correlation functions to equal times by integrating over



the energy variables in the momentum representation,

〈φ(p1, t = 0) · · ·φ(pn, t = 0)〉=
∫ d p0

1
2π

· · · d p0
n

2π
〈φ(p1, p0

1) · · ·φ(pn, p0
n)〉 . (9)

As might have been expected, the projection of a given covariant Feynman diagram to
equal times gives the same result as the sum of all diagrams in the merged representation
with the same topology as the covariant diagram. We have actually used the represen-
tation (9) to check the results obtained in the way described before, explicitly for λφ 4

theory up to two-loop order for the 2-point function and to one-loop order for the 4-point
function. It is important to mention that the actual determination of the mathematical ex-
pressions for the n-point equal-time correlation functions for n ≥ 4 is much simpler in
the way we have described here than by using Eq. (9).

We have also calculated the gluon and ghost 2-point equal-time correlation functions
to one-loop order in Yang-Mills theory in Coulomb gauge in both ways, via the solution
of the Schrödinger equation with the Christ-Lee Hamiltonian to determine ψ(A) to
the corresponding order, and from the equal-time projection of the four-dimensional
correlation functions obtained recently in Ref. [7].

In the course of the calculations we have observed that the sum of diagrams with the
same topology in the merged representation leads to expressions that are remarkably
simpler than the expressions corresponding to the individual diagrams themselves. A
typical example would be

=
1
2

(−2λ )2

(2ωp)2

∫ d3q
(2π)3

d3q′

(2π)3
1

2ωq′

1
2ωp +2ωq′

× 1
2ωp +2ωq +2ωq′

1
(ωp +ωq +ωq′ +ωp+q+q′)2 (10)

(p is the external momentum), to be compared with the result for the sum of all diagrams
with this topology,

1
3!

(−2λ )2

(2ωp)3

∫ d3q
(2π)3

d3q′

(2π)3

2ωp +ωq +ωq′ +ωp+q+q′

2ωq 2ωq′ 2ωp+q+q′ (ωp +ωq +ωq′ +ωp+q+q′)2 . (11)

In the latter expression, all the factors appearing in the denominator can be attributed
to the propagators and the elementary vertices [cf. Eq. (7)], except for one extra factor
2ωp, which is evidently not the case for Eq. (10). What is more, the expression (11) is
very simply related to

=
1
3!

(−2λ )2

(2ωp)2

∫ d3q
(2π)3

d3q′

(2π)3

× 1
2ωq 2ωq′ 2ωp+q+q′ (ωp +ωq +ωq′ +ωp+q+q′)2 , (12)



and the latter is obtained directly from the Feynman rules with the “bare propagator”
and the elementary vertex only. We will term the latter type of diagram an “F-diagram”,
and the sum of all diagrams with the same topology an “E-diagram”.

The expression (11) can be obtained from (12) by multiplying with ωk for every prop-
agator (with momentum k) in the diagram and adding, and then dividing by a similar sum
of ωk restricted to the external propagators of the diagram. We call this formal proce-
dure of turning an F-diagram into an E-diagram the “E-operator”. It has been found to
work for all diagrams considered so far, even in Coulomb gauge Yang-Mills theory, in
the following sense: to find the contribution to an n-point equal-time correlation func-
tion from all diagrams in the merged representation with a given topology, write down
the corresponding F-diagram and apply the E-operator to all factors with independent
momentum flows. If this tentative rule should turn out to be correct to all orders, we will
have found a method to write down the contributions to a given order in λ to any equal-
time correlation function immediately, analogously to the Feynman rules for covariant
correlation functions. We can even hope to establish Dyson-Schwinger-type equations
(with a finite number of terms in every equation) for the equal-time correlation functions,
but they will most probably involve fictitious n-point correlation functions correspond-
ing to the sum of all F-diagrams with n external legs.
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