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1. Problems of high-spin description (N, A)

According to QCD baryons consist of three

valence quarks, 3q, + sea contributions

while mesons are built from gg + sea contributions.

Being composite objects, baryons and mesons

can be excited by external probes to states of

high spins which constitute their respective spectra.

According to Particle Data Group the spins of the
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N excitations (resonances) range from ;5 to 3.

Observed integer (meson) spins range from 0 to 6.

Some of the big questions on high-spins are:

e their formation by quarks in a way consistent with
the QCD Lagrangian,

e their consistent field-theoretic description.




2. Upgrading the Cornell potential towards
a trigonometric finite range potential

The Cornell potential predicted by Lattice QCD is

A [(l+1
V(r)z—?Jrar—F (:; ),

A =0.27GeV-fm, o = 0.89 GeV/fm.

Farmer’s question:

The Coulomb- plus linear terms coincide with the

lowest order Taylor decomposition of (—2B cotr),

2B 2B
—2Bcotr~—— + —r,
r 3

while the centrifugal barrier is part of the Taylor

expansion of

I(l+1) I(1+1)
2 . 2
[(l+1)csc” z = . + T




Is the Cornell potential an approximation to the
finite range potential (here dimensionless)

Vi(z) = —2bcot z+1(1 + 1) csc? z,
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d length parameter, b and z dimensionless?
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Infinite wall (asymptotic freedom)

Infinite wall piece =—> asymptotic freedom.

Gluon flux tube (string)

Linear piece=—> flux-tube interactions.

Coulomb piece = 1g exchange
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Master Schrodinger’s reply:

For z replaced by , the second polar angle in Ejy,
Vi(x) solves in E4 the Laplace-Beltrami equation
on the hypersphere, S3,

T1 + T2 +T3+2Tyg = R2, the curvatureis K = —=

and acts as counterpart to 1/r in E3, look at

[E. Schrédinger, Proc.Roy.Irish Acad. 46 A, 9 (1940)]

Our studies link V;(x) to QCD potentiology and
put it at work in N and A spectroscopy:

o /[Compean, M.K., J. Phys. A:Math.Gen. 39 (2006)]

o /[Compean, M.K., Bled Workshops in Physics, Letnik
7, 7 (2006): quant-phys/0610001 ]

o /M.K., Compean, hep-ph/0805.2404]




Curved space aspects of Vi(z):

Vi(z) takes its origin from curved S3 space

e There, z — x, cotx, with 0 < y < 7, satisfies the F}4
Laplace-Beltrami eq.

x
Ocot x=0, coty = —4,
T
meaning that cot x is a harmonic potential in FEy,

same as is 1/r in F3, which satisfies 62% = 0.

o =-(I+1)csc? x is the centrifugal barrier on S3:

1 1 1 0 0 L?
D — ——’C2:— -2 .
R? R? Lin2 x OX S X@x sin? X] ’
- 1 1 1 0 0 L?
2 — __L2:_ . 0_ z
v a? a? [Sinﬁ 90> 96 N sin? 9]

K?, L?, L? are the respective 4D-, 3D, and 2D angular

2
1 L

a? sin 62

mon forms of the S%, SZ barriers reflect general O(n)

momenta, — is the S? centrifugal barrier. Com-

properties. The y 5T = ; parametrization with

d = £ recovers V;(2).
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Curved space news :

e in F, the role of the radial coordinate of infinite
range in ordinary flat space, 0 < r < oo, has been
taken by the angular variable, y, of finite range.

e While the harmonic potential in F3 is central, in Fy

it 1s non-central.

e the inverse distance potential of finite depth in FEj3
is converted to an infinite barrier and therefore to a
confinement potential in Fj.

e Various parametrizations of x such like x = &,
x = tan™1 + etc. give rise to a variety of potentials
in ordinary three space. The first potential which
is central and will be shown to embed the Cornell
one, is in the focus of our study, while the second
is a non-central gradient potential with position
dependent reduced mass and is used in quantum

dots.

e The power of the curvature concept is to act as the
common prototype of confinement phenomena of
different disguises.

J




Exact Wave Functions and Energies of the
Trigonometrically Extended Cornell Potential

We define the TEC potential as:

_R2 I+ 1 _ ~
Vrec(x)=k ( —g ) _ 2GVRcotx, x=rVr.
214 sin”

The TEC Schrodinger equation:

[— /‘ih—2d—2‘|—VTEC (X)}X (X, ﬁ)

211 dx2
:(E( ) + h—2/<c> X (X\/E) ,

20

| We solve anew the TEC Schrodinger eq. on S3 |

Our respective wave functions:

~ : (R, —(K+1))
X(Kl)(Xa K) = Nk sin* ! X€ K+1R 2 (cot x),

2uG
VER?

N (k1) 18 a normalization constant

b= K=012.. 1=01,.K

require the non-classical Romanovski polynomials
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with weight function

w®) (z)=(1+ x2)5_1e_°‘COt_1 . x =cotz,

w9 = (1 + 22)~!: Cauchy (Breit-Wigner) distrib.,
w10 = (1 4 22)~*: Student’s ¢ distribution,
and built up from the Rodrigues formula as

N, am
(B,0) () — nl 2ym, ,(8,2)
R, (x) = W) (2) da ((1 + )" w (az)) :

® /Compean, M.K., J. Phys. A:Math.Gen. 39, 547 (2006)]

® [Raposo, Weber, Alvarez-Castillo, M.K., C. Eur. J. Phys. 5,
253 (2007) ]

The K-levels belong to O(4) irreps (£, £).
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For a particle with spin-1/2 within Vrgc one has to

1 1 K K . . . .
couple (5, O) P (O, 5) to (7, 7) finding its exitations
as part of

1 K K 1 1
| TEC Degeneracy Patterns: |

K parity dyads

1+ 1\* 1
— L | K — = K = —).
and a state of maximal spin,
Jmax=| K + LY’ € |KlI = 1)
max 9 m,Ss = 9

without parity companion and of either natural
(m = (—=1)%) or, unnatural (7 = (—)L*1) parity

J
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3.50(4)/S0O(2,1) symmetries of the potential
and its link to the AdS5;/CFT algebraic aspects

. 2 ~ 2
2p

O(4) symmetry.

- G? 1 R,
H(H):HO— h_2 K:2 I 1 + HZK ,
2p

K2 Kim >=[(K +1)? — 1]|Klm > .
/M. K., Moshinsky, Smirnov, PRD 64, 11405 (2001)].

SO(2,1) symmetry for G restricted to G = g(K + 1):

J? =T+ J; = JZ, Jlim’ >=j(1 - j)|jm’ >,
J.im' >=m'|jm' >, m'=j5+n, j=101+1

[M.K., C. Compean, hep-ph/0805.2404]




AdS5/CFT algebraic aspects:

AdSs: S0(3,2) D S0(2,2) DSO(2,1) D SO(2)
J m/
CFT: S50(4,2) D 50(1,4) D50(4) D SO(3) D SO(2)
K [ m.

The TEC potential matches the

e QCD dynamics aspects,
o AdS5/CFT algebraic aspects.

It links the algebraic aspects of AdS5/CFT
correspondence to QCD potentiology.
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4. TEC at work: N and A spectroscopy.

Fitting potential parameters to the N spectrum gives
G = 237.55 MeV- fm, k = 0.019 fm —2, g = 1.057 fm 1.

K+1

I

6 §1(2080) Pi;(1900) Dys2200) Fyr(1990) Gisf2250) y

P11(2100) D,3{2080) F,5(2000) G,7i2190) H,4(2220)

Es = 2134.33 MeV

5 —— Jv=90,* E; = 1935 MeV

5,(1650) P.;(1720) D,s;(1675) Fir{=—)
4 D= E = 1764 MeV
P,1(1710) Dy(1700) F,,{1680)

3 J‘]‘[ — 5,!‘2+ E3 = 1612.3‘3 ME‘I
511(1535)
2 D,,(1520) E, = 1441.5 MeV
P44 (1440)
1 P11(539)
>
1 3 5 7 9 1 g

N levels in the TEC potential and the ¢ — (qq) picture.
Complete data show prominent SO(4)/S0(2,1) degeneracy]
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K+1,
$1(2180)  Ps(——) Dy(2350) Fy(23%0) G;,(2400) y (o490
6 “——  E,=2165.33 MeV
Pul-=)  Dyl—)  Fi5(2000) G:r{2200)  Hy(2300)
5 — Jr=8L%  Eg= 2048 MeV
S..(1900) P..(1920) D.(1930)
4 | = = = =190 g, = 1944.5 MeV
Py(1910) D;(1940)  Fy;(1905)
3 —— Jr=3LY  E,=1845.33 MeV
5.,(1620)
2 2a1700) E,= 1712 MeV
P.,(1750)
1 P::(1232)
-
1 3 5 7 9 11 J
l, 34, 50, 7, 8, M,

A levels in the TEC potential and the ¢ — (qq) picture.
Complete data show prominent O(4)/S0O(2,1) degeneracy.

A total of 33 “missing” N and A resonances.
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Nucleon electric charge form factor:

G =<psldo(r)lp: >, Q°=-¢"=—(¢5 —q°),
|r|
RlO—Nlo sin %6 7,

Y

G%:/o dr |(721o(|r|)) sin [q||r|

ql|r|

:b(b2 +1) - 16b|a|
q] q* +4(26%2 —1)q2 + 1662(b%2 + 1)’

with § = qd; reminder: b= 2£5 4 =

Quadratic denominator relates to the dipole
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(Q%)

Gy

0 15 3
Q*[GeV?|

green line: our analytic formula from

[ Compean, M.K., EPJA 39, 1(2007)],] hep-ph:0805.2404]
corresponding to k = 0.019 fm 2 fitted to spectra.
middle blue line: fit to the proton mean square
charge radius, V< r2 > = 0.87 fm , x = 0.009 fm~2

lowest blue line: Bethe-Salpeter calculation by
Ch. Haupt, Ph.D. thesis,

www.itkp.uni—bonn.de/~haupt/talks/Internal/2005.pdf

J
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5. Curvature parameter and deconfinement

TEC is a two-parameter potential, the strenght G,
2
=7
confinement-deconfinement transition

and the curvature, kK = as driver of the

When curvature goes down, High-lying “curved”
states approach “flat” scattering states of the
1/r piece for both the energy and wave functions.

Two limits:
o k — 0,
e K\V/K — k, k constant,

~ ;—>O G2 1
EK(F':> r ﬁ n27
2p
o KV Rk G? 1 h2
EK(H) s _?ﬁ 2—1{2
2% I

Possible because of the common SO(4)/S0O(2,1)
symmetries shared by the TEC and 1/r potentials.

e Barut,Wilson, J.Phys.A:Math.Gen. 20, 6271 (1987)
e Vinitsky et al., Phys. Atom. Nucl.56, 321 (1993)
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As curvature goes down because of thermal
dependence, confinement fades away, an ob-
servation that is suggestive of a deconfinement
scenario controlled by the curvature parameter
of the TEC potential.

Deconfinement as flattening of space considered by
o F. Takagi, PRD 35, 2226 (1987)

within the context of a AdSs black hole universe
as bag scenario.

Advantage of our scheme:

Temperature dependent space flattening par-
alleled by regression of the “curved” TEC- to
the flat 1/r potential, and correspondingly, by
regression of the TEC wave functions from the
confined to the 1/r wave-functions from the
deconfined phases.




6. Conclusions

The trigonometrically extended Cornell potential,
Vrec(x), with x = &7, succeeds in providing the

e practically complete description of NV and A spectra
(modulo the hybrid A(1600)) explaining their
prominent SO(4)/SO(2,1) degeneracy patterns, level
splittings, number of the (so far) observed states,

e prediction of a minimum (compared to other models)
of unobserved states (a total of 33), of leading quark-
diquark configuration,

e description of the confinement-deconfinement transi-
tion in terms of a temperature dependent curvature
parameter (curvature shut-down),

e knowledge on the “before” (confinement) and “after”
(deconfinement) wave functions and consequently
of the explicit temperature evolution of matrix
elements,

e link between the algebraic AdSs/CFT aspects to
QCD potentiology.

e scenario of Quantum Mechanical CromoDynamics

(QMCD)

- /
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Next goal: putting high-spins on equal footing

with Spin—%

TEC levels/ Rarita-Schwinger fields correspondence:

K K 1 1
<§7 5) X [ (5,()) D (0, 5) }ﬁA,ul...uK %Y w — \IJIH---MK

e First construct a consistent wave equation for a
point-like ¥, and get a fundamental gs = 2 value

(done),
e Next calculate g1 ™C of D13(1520) with the respective
2

TQC quark wave function and extract the effect of
the internal structure as (2 — g;FEC> (pending).
2
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4. Consistent high-spin Lagrangians.

High-spin description within the conventional
Rarita-Schwinger approach is inconsistent:

e Electromagnetically interacting fields propagate
acausally (Velo-Zwanziger problem),

e Cross sections depend on undermined off-shell

parameters.

4.1 New ways. Poincaré covariant projectors.

Suggested in:
[M.K., Foundations of Physics, 33, 781 (2003)].

Employ the two Casimir invariants of the Poincaré
group, P? | and W? to pin down spin-3/2 in 1,
by means of the Poincaré covariant projector:

Pl(j’jz,?)/2)¢(m,3/2) Z Qpl(im,3/2) 7

m,3/2 2

U




Fully executed in

1. [Napsuciale, M.K., Rodriguez, Fur. Phys. J. A 29,
289 (2006)] (single spin-3/2),

2. [Napsuciale, Rodriguez, Delgado-Acosta, Kirchbach,
Phys. Rev. D 77, 014099 (2008)] (single spin-1).

Principal results:

e Causal propagation of electromagnetically interact-
ing spin—% fields,

e Causality fixes the giromagnetic ratio to gs = 2,

e Unitarity fixes g1 = 2 for any vector particle, be it
Abelian or non-Abelian,

e The massless spin—% theory of is unique,

e The massive Spin—%theory depends on two parame-
ters, a, and b, which can be treated in terms of gauge
fixing, meaning 't Hooft-like propagation of ,,:

J




The electromagnetically gauged spin—% wave equation

that is consistent with causality, i.e. it is free from
the Velo-Zwanziger pathology suffered by the Rarita-
Schwinger framework reads:

, o, THTY
( (7r2 — m2) 9ap — 193 ( a 5 gaB — € Faﬁ)
1
+§ (7(1 f _47Ta)7T5
! — Yo P =0 =2
t3(Ma =7 )y )97 =0, gz =2

Spin—% propagator in ¢, = A4, ® [(%,0) D (0, %)] :

Particular ( b — oo) gauge,

Compares with the
spin-1 't Hooft propagator in A4,, = (%, %)

H'tHooft — p*—E{m?
() p2 —m? + ¢
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5. Summary...
UNDER CONTROL: Both the

e internal structure consistent with QCD and data,

e external space-time propagation consistent with
relativity,

of high-spins as

CHRIEORE )R-

.... Perspectives

LOTS of WORK, ...... si nos dejan!
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