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Abstract. A framework of quantum mechanical chromodynamics (QMCD) is developed with the
aim to place the description of the nucleon on a comparable footing with Schrödinger’s quantum
mechanical treatment of the hydrogen atom. Such indeed turns out to be possible upon replacing the�
e ��� p � by a

�
q � qq � system, on the one hand, and the Coulomb potential by the recently reported

by us exactly solvable trigonometric extension of the Cornell (TEC) potential, on the other. The
TEC potential translates the inverse distance potential in ordinary flat space to a space of constant
positive curvature, the 3D hypersphere, a reason for which both potentials have the SO

�
4 � and

SO
�
2 � 1 � symmetries in common. In effect, the nucleon spectrum, inclusive its ∆ branch, acquire

the degeneracy patterns of the electron excitations with spin in 1H without copying them, however.
There are two essential differences between the N

�
∆ � and H atom spectra. The first concerns the

parity of the states which can be unnatural for the N and ∆ excitations due to compositeness of the
diquark, the second refers to the level splittings in the baryon spectra which contain besides the
Balmer term also its inverse of opposite sign. Our scheme reproduces the complete number of states
(except the hybrid ∆

�
1600 ��� , predicts a total of 33 new resonances, and explains the splittings of

the N and ∆ levels containing high-spin resonances. It also describes accurately the proton electric
charge form factor. We here calculate the potential in momentum space (instantaneous effective
gluon propagator) as a Fourier transform of the TEC potential and show that the concept of curvature
allows to avoid the integral divergences suffered by schemes based on power potentials. We find a
propagator that is finite at origin, likely to produce confinement. The advocated new potential picture
allows for deconfinement too as effect of space flattening in the limit of infinite radius of the 3D
hypersphere. The potential’s SO

�
4 ��� SO

�
2 � 1 � symmetries reflect AdS5 � CFT correspondence.

1 INTRODUCTION

A master piece of a quantum mechanical treatment of a two-body system is the
Schrödinger equation with the Coulomb potential in its application to the hydrogen
atom. The significance of this example is manifold but perhaps its most important facet
is the adequacy of the Coulomb potential for the � e 	 –p) system. From the perspective of
contemporary knowledge, the success of the Coulomb potential in getting the observed
positions of the H atom emission(absorption) lines right is due to the fact that quantum
electrodynamics is the correct fundamental gauge theory of electromagnetic interaction.
This is reflected by the property of the Coulomb potential of being the Fourier transform
of the instantaneous photon propagator from momentum to position space, and vice
versa. Fortunately, the Coulomb law has been figured out correctly before the rise of
QED and the form of the potential used in the Schrödinger equation for the H atom
has never been a subject of speculations and debates. Had this not been so, had one
to handle the H atom without previous knowledge on the empirical Coulomb law, one



most probably would have tried to employ the harmonic oscillator with the justification
that any interaction is approximately harmonic at small distances. As a result of such
inadequate treatment, the H atom spectrum would have evolved to a big enigma and one
would have ended up puzzled and debating why several predicted lines are “missing”
from the spectrum, why others, unpredicted, are there, why the line splittings are at odds
with the “theory” etc. One would have been forced to invent a variety of interactions
to compensate for the insufficiency of the harmonic oscillator picture and invoked a
plethora of free parameters to fit data. Considerations of the type are alerting about
the importance of being aware of the correct link between the potential model and the
underlying fundamental gauge theory and about the danger in creating fictitious enigmas
in effect of employing wrong potentials. Unfortunately, the power potentials of common
use in quark models do not qualify as related to all three QCD regimes. A big deal of the
enigmas of the baryon spectra might quite be, as emphasized above, fictitious and due to
the employment of inadequate potentials. Our point is that the correct QM limit of QCD
is hitted by the trigonometric potential that (i) satisfies the Laplace-Beltrami equation on
the space of constant positive curvature, the 3D hypersphere, (ii) captures the essentials
of QCD quark-gluon dynamics, and (iii) is the adequate one in reproducing

• the nucleon spectrum (including its ∆ branch),
• the proton electric charge form factor,
• an effective gluon propagator suited for confinement,
• the deconfinement as flattening of space.

The contribution is organized as follows. In the next section we present the TEC po-
tential. Section 3 is a brief review of our results on the solutions of the Schrödinger
equation for the quark-diquark (q–qq) system with the TEC potential in terms of Ro-
manovski polynomials. It also illuminates coincidence between predicted and empirical
spectra. In section 4 we show how our calculation reproduces accurately the proton elec-
tric charge form factor and highlight the construction of the instantaneous effective gluon
propagator. Finally, the scenario of deconfinement as shutting down the curvature of the
hypersphere is outlined in section 5. The presentations closes with concise conclusions.

2 THE TEC QUARK CONFINEMENT POTENTIAL

Significant progress in understanding hadron properties has been reached through the
elaboration of the connection between the QCD Lagrangian and the potential models as
deduced within the framework of effective field theories [1], and especially through the
non-perturbative methods such as lattice simulations, the most prominent outcome being
the linear plus Coulomb confinement potential [2], [3]. The potentials derived from
the QCD Lagrangian have been most successful in the description of heavy quarkonia
and heavy baryon properties [4]. On the other hand, light flavor baryons are ordinarily
treated in terms of quark models based on SU � 6 � SF � O � 3 � L in combination with the
harmonic oscillator potential, a cumbersome scheme overcrowded with parameters,
“missing” resonances, and other peculiarities. Although the Cornell potential has found
applications also in nucleon and ∆ quark models [5], the provided level of quality in



the description of the non-strange sector stays below the one reached for the heavy
flavor sector. This behavior indicates that the one gluon exchange (giving rise to the
Coulomb(like) term) and the flux-tube interaction (associated with the linear part) do
not fully account for the complexity of the dynamics of three light quarks. Various
improvements have been under consideration in the literature such as screening effects
in combination with spin-spin forces (see [5] and references therein).

Very recently, the Cornell potential has been upgraded by us in [6] through its em-
bedding in an exactly solvable (in the sense of the Schrödinger equation, or, the Klein-
Gordon equation with equal scalar and vector potentials) trigonometric quark confine-
ment potential which takes its origin from early work by Schrödinger. To be specific,
around 1941 Schrödinger had the idea to solve the quantum mechanical Coulomb prob-
lem in the cosmological context of Einstein’s closed universe, i.e. on the three dimen-
sional (3D) hypersphere, S3

R, of a constant radius R [7]. In order to construct on S3
R the

counterpart of the flat-space inverse distance potential Schrödinger had to solve the cor-
responding four-dimensional Laplace-Beltrami equation. In result, after some straight-
forward algebra, he found the following potential� � χ ��� ccot χ � κ

h̄2

2µ
l � l � 1 �
sin2 χ

� const � κ � 1
R2 � (1)

Here χ stands for the second polar angle in E4, and the csc2 term describes the centrifu-
gal barrier on S3

R. Schrödinger’s prime result, the presence of curvature provokes that the
orbiting particle appears confined within a trigonometric potential of infinite depth and
the hydrogen spectrum shows only bound states. An especially interesting observation
was that the O � 4 � degeneracy of the levels observed in the flat space H atom spectrum
was respected by the curved space spectrum too in the sense that also there the levels
could be labeled by the standard atomic indices n, l, and m, and the energy depended on
n alone. An especially simple and convenient parametrization of the χ variable in terms
of r, also used by Schrödinger [7] is given by

χ � r
R

π � r
d
� d � R

π
� r

R
�	� 0 � 1 
�� κ ��
κ � 1

d2 � (2)

Here, the length parameter d assumes the róle of rescaled hyper-radius. Correspondingly,
the place of the genuine curvature, κ � 1 � R2, is taken by the rescaled one, 
κ � 1 � d2.

Setting now c ��� 2G � 
κ , and const= � h̄2 � �κ
2µ � 2µG

h̄2
, amounts to the following radial

Schrödinger equation,�
H0 � 
κ h̄2

2µ
d2

d � r � 
κ � 2 � � � r � 
κ � 
κ ��� X � r � 
κ � 
κ � ��� ε � 
κ ��� h̄2

2µ

κ � X � r � 
κ � 
κ � �

� � r � 
κ ��
κ � ��
κ h̄2

2µ
l � l � 1 �

sin2 � r � 
κ � � 2G � 
κ cot � r � 
κ � � h̄2 � 
κ
2µ

� 2µG

h̄2 � (3)

A similarly shaped potential is managed by SUSYQM [8] under the name of Rosen-
Morse I. The essential difference between Rosen-Morse I and

� � r � 
κ � 
κ � is the sup-



pression of the curvature in the former and its treatment as a central potential in ordinary
flat space.

It is now quite instructive to expand
� � r � 
κ � 
κ � in a Taylor series. In so doing, one

finds the following approximation,

� 2G � 
κ cotr � 
κ � 
κ h̄2

2µ
l � l � 1 �

sin2 � r � 
κ � � � 2G
r
� 2G 
κ

3
r � h̄2

2µ
l � l � 1 �

r2 � (4)

with 
κ � 1
d2 � π2

R2 .

The finite range potential,
� � r� 
κ � 
κ � , is the exactly solvable trigonometric

extension to the infinite range Cornell potential, and will be referred to as
TEC potential. The latter captures remarkably well the essentials of QCD
quark-gluon dynamics as it interpolates between the Coulomb potential (as-
sociated with one gluon exchange in the perturbative regime) and the infinite
well (describing free though trapped quarks as in the regime of the asymptotic
freedom) while passing through a region of essentially linear growth (associ-
ated with gluon flux-tube interactions in the non-perturbative regime).

Besides Schrödinger, eq. (3) has been solved by various authors using different
schemes. The solutions obtained in [9] are built on top of Jacobi polynomials of imagi-
nary arguments and parameters that are complex conjugate to each other, while ref. [10]
expands the wave functions of the interacting case in the free particle basis. The most
recent construction in our previous work [11] instead relies upon real Romanovski poly-
nomials. In the χ variable in eq. (2) our solutions to eq. (3) take the form,

X � Kl � � χ � 
κ � � N � Kl � sinK � 1 χe 	 bχ
K � 1 R

� 2b
K � 1 � 	 � K � 1 ���

K 	 l � cotχ � � b � 2µG� 
κ h̄2 �
K � 0 � 1 � 2 � � � � � l � 0 � 1 � � � � � K � (5)

where N � Kl � is a normalization constant. The R
� α � β �
n � cotχ � functions are the non-

classical Romanovski polynomials [12, 13] which are defined by the following Ro-
drigues formula,

R
� α � β �
n � x � � eα cot � 1 x � 1 � x2 � 	 β � 1 � dn

dxn e 	 α cot � 1 x � 1 � x2 � β 	 1 � n � (6)

where x � cotr � 
κ (see ref. [14] for a recent review).

The energy spectrum of
� � r � 
κ ��
κ � is calculated as

EK � 
κ � � � G2

h̄2
2µ

1
� K � 1 � 2 � 
κ h̄2

2µ
� � K � 1 � 2 � 1 � � l � 0 � 1 � 2 � � � � � K � (7)

where EK � εK � h̄2 � �κ
2µ � 2µG

h̄2
� H0. Giving � K � 1 � the interpretation of a principal

quantum number n � 0 � 1 � 2 � � � � (as in the H atom), one easily recognizes that the energy



in eq. (7) is defined by the Balmer term and its inverse of opposite sign, thus revealing
SO � 4 � as dynamical symmetry of the problem. Stated differently, particular levels bound
within different potentials (distinct by the values of l) carry same energies and align to
levels (multiplets) characterized by the four dimensional angular momentum, K. The
K-levels belong to the irreducible SO � 4 � representations of the type � K2 � K2 � . When the
confined particle carries spin-1/2, as is the case of electrons in quantum dots, or quarks in
baryons, one has to couple the spin, i.e. the � 12 � 0 ��� � 0 � 12 � representation, to the previous
multiplet, ending up with the (reducible) SO � 4 � representation

�
Klm � s � 1

2 � ��� K
2
� K

2
���	� � 1

2
� 0 � � � 0 � 12 ��
 � (8)

This representation contains K parity dyads and a state of maximal spin, Jmax � K � 1
2 ,

without parity companion and of either positive (π � � ) or, negative (π � � ) parity,

1
2 � � � � � � � K � 1

2
� � � � K � 1

2
� π � �Klm � s � 1

2 � � (9)

The parity dyads have underlying angular momenta differing by one unit (i.e. ∆l � 1),
and can not be given the interpretation of parity doublets which reside in different Fock
spaces built on top of either scalar or pseudo scalar vacuum. As we shall see below
this scenario turns to be remarkably adequate for the description of non-strange baryon
properties.

3 SO 
 4 � DEGENERACIES IN THE N AND ∆ SPECTRA

The spectrum of the nucleon continues being under debate despite the long history of
the respective studies (see refs. [15], [16] for recent reviews). Unprejudiced inspection
of the data reported by the Particle Data Group [17] reveals a systematic degeneracy of
the excited states of the baryons of the best coverage, the nucleon � N � and the ∆ � 1232 � .
Our case is that

• levels and level splittings of the nucleon and ∆ spectra match remarkably well the
spectrum in eq. (7).

The N and ∆ spectra: The measured nucleon resonances with masses below 2 � 5 GeV
fall into the three K � 1 � 3 � 5 levels in eq. (9) with only the two F17 and H1 � 11 states still
“missing”, a systematics anticipated earlier by one of us (M.K.) in refs. [18] on the basis
of pure algebraic considerations. Moreover, the level splittings follow with an amazing
accuracy eq. (7). The nucleon spectrum in the quark-diquark picture of internal structure,
shown in Fig. 1, is fitted by the following parameters of the “curved” potential in eq. (3),

µ � 1 � 06 fm 	 1 � G � 237 � 55 MeV � fm � d � 2 � 31 fm � (10)

Almost same set of parameters, up to a modification of d to d � 3 fm, fits the ∆ � 1232 �
spectrum, which exhibits exactly same degeneracy patterns, and from which only the



FIGURE 1. Assignments of the reported N excitations to the K levels of the S3
R potential, � �

r
� �

κ � �
κ � ,

in eq. (3), taken as the quark-diquark confinement potential. The potential parameters are those from
eq. (10). Double bars represent parity dyads, single bars the unpaired states of maximum spin. The notion
L2I � 2J

� � � � has been used for resonances “missing” from a level. The model predicts two more levels of
maximal spins Jπ � 5 � 2 � , and Jπ � 9 � 2 � , respectively, which are completely “missing”. In order not to
overload the figure with notations, the names of the resonances belonging to them have been suppressed.
The predicted degenerate energy (equal to the degenerate rest mass) of each level is given to its most right.

three P31 � P33, and D33 states from the K � 5 level are “missing”. Remarkably, none
of the reported states, with exception of the ∆ � 1600 � resonance, presumably a hybrid,
drops from the systematics. The unnatural parity of the K � 3 � 5 levels requires a
pseudo scalar diquark. For that one has to account for an 1 	 internal excitation of the
diquark which, when coupled to its maximal spin 1 � , can produce a pseudo scalar in
one of the possibilities. The change of parity from natural to unnatural can be given
the interpretation of a chiral phase transition in baryon spectra. Levels with K � 2 � 4
have been attributed to entirely “missing” resonances in both the N and ∆ spectra. To
them, natural parities have been assigned on the basis of a detailed analysis of the
(1p-1h) Hilbert space of three quarks and its decomposition in the

�
Klm � s � 1

2 � basis
[18]. We accommodate 37 from the reported 38 non-strange resonances and predict a
total of 33 unobserved resonances of a dominant quark-diquark configurations in the
N and ∆ � 1232 � spectra with masses below � 2500 MeV, much less but any other of
the traditional models. Some of the predicted states throughout might be suppressed in
depending on the scale of chiral symmetry restoration.

In our previous work [6], the potential in eq. (3) has been considered in the spirit of
SUSYQM as a central two-strength parameter potential in E3 and without reference to
S3

R, a reason for which the values of the parameter accompanying the csc2 term had to
be taken as integer ad hoc and for the only sake of a better fit to the spectra, i.e., without
any deeper justification. Instead, in the present work,

� � χ � κ � in eq. (1), is identified as
a non-central one-strength parameter potential in which the strength of the csc2 term
has been uniquely fixed by the S3

R geometry.



4 MOMENTUM SPACE PHYSICS FROM TEC

In this section we shall test the potential parameters in eq. (10) and the wave functions
in eqs. (3), (5) in the calculation of the proton electric charge form-factor, the touch
stone of any spectroscopic model. As everywhere through the paper, the internal nu-
cleon structure is approximated by a quark-diquark configuration. In conventional three-
dimensional flat space the electric form factor, G p

E �
�
q
� � , is defined in the standard way

as the matrix element of the charge component, of the proton electric current between
the states of the incoming, and outgoing, electrons in the dispersion process [6]. The
mean square charge radius is then defined in terms of the slope of the electric charge

form factor at origin as, � r2 � � � 6
∂Gp

E
��� q � �

∂ � q � 2
��� � q � 2 � 0 � On S3

R, the three-dimensional radius

vector, r, has to be replaced by, r̄ with
�
r̄
� � Rsinχ � sinχ � � κ . The evaluation of the

form-factor as four-dimensional Fourier transform requires the four-dimensional plane
wave,

eiq � x̄ � ei � q ��� r̄ � cosθ � e
i � q � sinχ�

κ cosθ � �
r̄
� � Rsinχ � sinχ� κ � (11)

The latter refers to a z axis chosen along the momentum vector (a choice justified in
elastic scattering where q0 � 0), and a position vector of the confined quark having in
general a non-zero projection on the extra dimension axis in E4. The integration volume
on S3

R is given by sin2 χ sinθdχdθdϕ . The explicit form of the nucleon ground state
wave function obtained from eq. (5). The charge form factor obtained in this manner is
displayed in Fig. 2 together with data.

FIGURE 2. The Gp
E form factor as a function of Q2 � � q2 and calculated for various curvature

parameters. The upper line corresponds to the curvature as fitted to the nucleon spectrum, the curvature
leading to the middle line has been fitted to the experimental value of the mean square of the charge
radius,

� �
r2 	 � 0 
 87 fm. The lowest line follows from a Bethe-Salpeter calculation based upon an

instanton induced two-body potential and has been presented in ref. [19]. Data compilation taken from
[19].

Next we calculate the potential in momentum space. As already mentioned in the
introduction, it is a well known fact that in QED the Fourier transform of the (static)
Coulomb potential, generates in momentum space the instantaneous � q0 � 0 � photon
propagator. We apply same concept to construct the Fourier transform of the TEC



potential with the aim to obtain the potential in momentum space, equivalently, an
instantaneous effective gluon propagator, as needed for example in Faddeev three-body
calculations. In so doing we found that if treated as a central potential in ordinary flat
position space, the Fourier integral is divergent and one needs to introduce a π range
correlation function in order to get it finite. Power potentials are known to suffer same
pathology. In contrast to this, on the hypersphere the Fourier transform is well defined
and the result is displayed on Fig. 3.

FIGURE 3. The TEC potential in position space (left) and its Fourier transform to momentum-space
(right). Solid and dashed lines refer to the TEC potential treated as “curved” and “flat”, respectively. The
latter needs a π-range correlation taken as

�
1 � sin2N r

� �
κ � here.

5 CURVATURE SHUT-DOWN:THE DECONFINEMENT

Introducing the curvature parameter in the trigonometrically extended Cornell confine-
ment potential opens an intriguing venue toward deconfinement as a S3

R curvature shut-
down. It can be shown that high-lying bound states from the TEC confinement potential
approach scattering states of its underlying � 1 � r flat space piece. Stated differently,
the TEC confinement gradually fades away with vanishing curvature and approaches
deconfinement. In the direct κ � 0 limit, the second term of the r.h.s. in eq. (7) vanishes
and the spectrum becomes the one of H atom(like) bound states. In the softer � κK � k
(small κ , big K) limit, where “k” is a constant, the term in question approaches the scat-
tering continuum of the underlying Coulomb(like) piece. In effect, the

� � χ � κ � spectrum
collapses down to the spectrum of its ordinary Coulomb(like) piece,

EK � κ � κ � 0� � � G2

h̄2
2µ

1
n2 � h̄2

2µ
k2 � l � 0 � 1 � 2 � � � � � n � 1 � (12)

The rigorous proof that also the wave functions of the complete TEC potential collapse
to those of the corresponding Coulomb(like) problem for vanishing curvature is a bit
more involved and can be found in [10].

Deconfinement as a gradual flattening of space has earlier been considered by Takagi
[20]. Compared to [20], our scheme brings the advantage that the flattening of space
is paralleled by a temperature driven regression of the TEC potential in eq. (3) to its



underlying flat Coulomb(like) piece, and correspondingly, by the temperature driven
regression of the TEC wave functions from the confined to the Coulomb(like) wave
functions from the deconfined phases.

5. SUMMARY

We demonstrated importance of hitting the correct quantum mechanical limit of QCD
in terms of a potential harmonic on the S3

R hypersphere that captures the essentials of
all three regimes of QCD. In effect of the SO � 4 � � SO � 2 � 1 � symmetries of the potential
(which link it to AdS5 � CFT correspondence [21] as shown in [22]) each N and ∆
spectra acquire a well pronounced level structure in accord with data. All the observed
resonances (except the hybrid ∆ � 1600 � ) fit into the levels and the number of the “miss-
ing” states (with masses below 2500 MeV) is significantly reduced compared to other
schemes. Correct proton charge electric form factor and an effective gluon propagator
anticipating confinement count to the further merits of the scheme developed, not to
forget the possibility for deconfinement as curvature shut-down.

Work supported by CONACyT-México under grant number CB-2006-01/61286. Contri-
bution based on a talk by M.K. and poster by C.B.C. presented at the the XIII Mexican
School on Particles and Fields, 2-11 October, San Carlos Sonora, México, 2008.
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