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I What happens as we approach the Planck scale?
I How do we go from a fundamental theory to field theory as

we know it?
I How are the gauge, Yukawa and Higgs sectors related at a

more fundamental level?
I How do particles get their very different masses?
I What is the nature of the Higgs?



Search for understanding relations between parameters

addition of symmetries.

N = 1 SUSY GUTs.

Complementary approach: look for RGI relations among
couplings at GUT scale −→ Planck scale

⇒ reduction of couplings

⇒ FINITENESS

resulting theory: less free parameters ∴ more predictive

scale invariant .



Dimensionless sector of all-loop finite SU(5) model

prediction for Mtop, large tanβ

Can be extended to Soft Supersymmetry Breaking (SSB)
sector expressed only in terms of

I g (gauge coupling) and
I M (unified gaugino mass)

too restrictive
Constraint can be relaxed • sum-rule for soft scalars

• better phenomenology
Confronting with low energy precision data

I Discriminate among different models
I ⇒ Prediction for Higgs mass and s-spectra



Reduction of Couplings
A RGI relation among couplings Φ(g1, . . . ,gN) = 0 satisfies

µdΦ/dµ =
N∑

i=1

βi ∂Φ/∂gi = 0.

gi = coupling, βi its β function
Finding the (N − 1) independent Φ’s is equivalent to solve the

reduction equations (RE)

βg (dgi/dg) = βi ,

i = 1, · · · ,N
I completely reduced theory contains only one independent

coupling and its β function
I complete reduction: power series solution of RE
I uniqueness of the solution can be investigated at one-loop

Zimmermann, Oehme, Sibold



I The complete reduction might be too restrictive, one may
use fewer Φ’s as RGI constraints

I Reduction of couplings is essential for finiteness

finiteness: absence of∞ renormalizations
⇒ βN = 0

I In SUSY no-renormalization theorems

I ⇒ only study one and two-loops

I guarantee that is gauge and reparameterization
invariant at all loops



Finiteness

A chiral, anomaly free, N = 1 globally supersymmetric gauge
theory based on a group G with gauge coupling constant g has
a superpotential

W =
1
2

mij Φi Φj +
1
6

C ijk Φi Φj Φk ,

Requiring one-loop finiteness β(1)
g = 0 = γ

j(1)
i gives the

following conditions:∑
i

T (Ri) = 3C2(G) ,
1
2

CipqC jpq = 2δj
i g

2C2(Ri) .

C2(G) = quadratic Casimir invariant, Cijk = Yukawa coup., T (Ri ) Dynkin index of Ri .

I restricts the particle content of the models
I relates the gauge and Yukawa sectors



I One-loop finiteness⇒ two-loop finiteness
Jack, Jones, Mezincescu and Yao

I One-loop finiteness restricts the choice of irreps Ri , as well
as the Yukawa couplings

I Cannot be applied to the susy Standard Model (SSM):
C2[U(1)] = 0

I The finiteness conditions allow only SSB terms

It is possible to achieve all-loop finiteness βn = 0:
Lucchesi, Piguet, Sibold

1. One-loop finiteness conditions must be satisfied
2. The Yukawa couplings must be a formal power series in g,

which is solution (isolated and non-degenerate) to the
reduction equations



RGI in the Soft Supersymmetry Breaking Sector

Supersymmetry is essential. It has to be broken, though. . .

−LSB =
1
6

hijk φiφjφk +
1
2

bij φiφj +
1
2

(m2)j
i φ

∗ iφj +
1
2

M λλ+ H.c.

The RGI method has been extended to the SSB of these
theories.

I One- and two-loop finiteness conditions for SSB have been
known for some time

Jack, Jones, et al.

I It is also possible to have all-loop RGI relations in the finite
and non-finite cases

Kazakov; Jack, Jones, Pickering



SSB terms depend only on g and the unified gaugino mass M
universality conditions

h = −MC, m2 ∝ M2, b ∝ Mµ

Very appealing! But too restrictive;
it leads to phenomenological problems:

I The lightest susy particle (LSP) is charged. Yoshioka; Kobayashi et al

I It is incompatible with radiative electroweak breaking.
Brignole, Ibáñez, Muñoz

Possible to relax the universality condition to a sum-rule for the
soft scalar masses

⇒ better phenomenology.
Kobayashi, Kubo, Mondragón, Zoupanos



Soft scalar sum-rule for the finite case
Finiteness implies

C ijk = g
∑
n=0

ρijk
(n)g

2n ,

The one- and two-loop finiteness for h gives

hijk = −MC ijk + · · · = −Mρijk
(0) g + O(g5) .

Assume that lowest order coefficients ρijk
(0) and (m2)i

j satisfy
diagonality relations

ρipq(0)ρ
jpq
(0) ∝ δ

j
i , (m2)i

j = m2
j δ

i
j for all p and q.

We find the the following soft scalar-mass sum rule

( m2
i + m2

j + m2
k )/MM† = 1 +

g2

16π2 ∆(1) + O(g4)

for i, j, k with ρijk
(0)
6= 0, where ∆(1) is the two-loop correction,

∆(1) = −2
X

l

[(m2
l /MM†)− (1/3)] T (Rl ) ,

which vanishes for the universal choice.



All-loop sum rule

One can generalize the sum rule for finite and non-finite cases
to all-loops!!

Possible thanks to renormalization properties of N = 1 susy
gauge theories. Kazakov et al; Jack, Jones et al; Yamada; Hisano, Shifman

The sum-rule in the NSVZ scheme is Kobayashi, Kubo, Zoupanos

m2
i + m2

j + m2
k = |M|2{ 1

1− g2C(G)/(8π2)

d ln C ijk

d ln g
+

1
2

d2 ln C ijk

d(ln g)2 }

+
∑

l

m2
l T (Rl )

C(G)− 8π2/g2
d ln C ijk

d ln g
.

Interesting: Finite sum rule satisfied also in certain certain class
of orbifold models in which the massive states are organized
into N = 4 supermultiples, if d ln C ijk/d ln g = 1.



Several aspects of Finite Models have been studied

I SU(5) Finite Models studied extensively
Rabi et al; Kazakov et al; López-Mercader, Quirós et al; M.M, Kapetanakis, Zoupanos; etc

I One of the above coincides with a non-standard
Calabi-Yau SU(5)× E8 Greene et al; Kapetanakis, M.M., Zoupanos

I Finite theory from compactified string model also exists
(albeit not good phenomenology) Ibáñez

I Criteria for getting finite theories from branes exist
Hanany, Strassler, Uranga

I Realistic models involving all generations exist
Babu, Eckbahrt, Gogoladze

I Some models with SU(N)k finite ⇐⇒ 3 generations,
good phenomenology with SU(3)3

Ma, M.M, Zoupanos

I Relation between commutative field theories and finiteness
studied Jack and Jones

I Proof of conformal invariance in finite theories Kazakov



SU(5) Finite Models

We study two models with SU(5) gauge group. The matter
content is

3 5 + 3 10 + 4 {5 + 5}+ 24

The models are finite to all-loops in the dimensionful and
dimensionless sector. In addition:

I The soft scalar masses obey a sum rule
I At the MGUT scale the gauge symmetry is broken and we

are left with the MSSM
I At the same time finiteness is broken
I The two Higgs doublets of the MSSM should mostly be

made out of a pair of Higgs {5 + 5} which couple to the
third generation

The difference between the two models is the way the Higgses
couple to the 24

Kapetanakis, Mondragón, Zoupanos; Kazakov et al.



The superpotential which describes the two models takes the
form

W =
3∑

i=1

[
1
2

gu
i 10i10iHi + gd

i 10i5i H i ] + gu
23 102103H4

+gd
23 10253 H4 + gd

32 10352 H4 +
4∑

a=1

gf
a Ha 24 Ha +

gλ

3
(24)3

find isolated and non-degenerate solution to the finiteness
conditions



The finiteness relations give at the MGUT scale

Model A
I g2

t = 8
5 g2

I g2
b,τ = 6

5 g2

I m2
Hu

+ 2m2
10 = M2

I m2
Hd

+ m2
5

+ m2
10 = M2

I 3 free parameters:
M, m2

5
and m2

10

Model B
I g2

t = 4
5 g2

I g2
b,τ = 3

5 g2

I m2
Hu

+ 2m2
10 = M2

I m2
Hd
− 2m2

10 = −M2

3

I m2
5

+ 3m2
10 = 4M2

3

I 2 free parameters:
M, m2

5



Phenomenology

The gauge symmetry is broken below MGUT , and what remains
are boundary conditions of the form Ci = κig, h = −MC and
the sum rule at MGUT , below that is the MSSM.

I We assume a unique susy breaking scale
I The LSP is neutral
I The solutions should be compatible with radiative

electroweak breaking
I No fast proton decay

We also
I Allow 5 % variation of the Yukawa couplings at GUT scale

due to threshold corrections
I Include radiative corrections to bottom and tau, plus

resummation (very important!)
I Estimate theoretical uncertainties



We look for the solutions that satisfy the following constraints:

I Right masses for top and bottom FeynHiggs
I The decay b → sγ MicroOmegas
I The branching ratio Bs → µ+µ− MicroOmegas
I Cold dark matter density ΩCDMh2 MicroOmegas

The lightest MSSM Higgs boson mass
The SUSY spectrum

FeynHiggs, Suspect, FUT



TOP MASS
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BOTTOM MASS
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Higgs
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LOSP and Coloured Particles
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LOSP and coloured particles that satisfy B physics and loose
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Challenging for LHC



Results

When confronted with low-energy precision data

only FUTB µ < 0 survives

No solution for g-2, very constrained from dark matter
I Mtop ∼ 172 GeV 4 %
I mbot (MZ ) ∼ 2,8GeV 8 %
I MHiggs ∼ 122− 126 GeV 3 GeV
I tanβ ∼ 44− 46

Extension to 3 fams on its way with flavour symmetry;
with 6R⇒ neutrino masses

in this case dark matter candidate is not LSP, results may
change



Finite SU(N)k Unification

Consider N = 1 supersymmetric gauge theories based on the
group

SU(N)1 × SU(N)2 × ...× SU(N)k

with matter content

(N,N∗,1, ...,1) + (1,N,N∗, ...,1) + ...+ (N∗,1,1, ...,N)

with β-function coefficient in the renormalization-group
equation of each SU(N) gauge given by

b =

(
−11

3
+

2
3

)
N + nf

(
2
3

+
1
3

)(
1
2

)
2N = −3N + nf N.

nf = 3⇔ b = 0, FINITE
independently of the values of N and k

Ma, M.M., Zoupanos



Possible Models

Minimum requirements:
I leads to the SM or the MSSM at low energies
I it predicts correctly sin2θW .

MODELS:

I SU(3)C × SU(3)L × SU(3)R 4

I SU(3)4 → SU(3)C predicted value of αs be too small. 8

I SU(4)4 non-susy unification at scale of 4× 1011 GeV. 8

I SU(4)3 either sin2 θW wrong or an unbroken U(1) coupled
to everything. 8

Lots of interest lately in these finite or reduced theories, since
they could provide a bridge between strings or branes and
ordinary GUTs

Ibáñez; Kachru and Silverstein



Finite SU(3)3

Invariant is (N,N∗,1)(1,N,N∗)(N∗,1,N)
Could come from the compactification of E8 → E6 over a
Calabi-Yau manifold, or via coset space dimensional reduction,
with a Wilson line

E8 → E6 → SU(3)3 → MSSM → SM

We consider the SU(3)3 between MGUT and MPlanck ,
below MSSM
For the unification of couplings to hold the cyclic symmetry Z3
must be imposed

q → λ→ qc → q

Now we have βg = 0, search for unique solutions.



SU(3)C × SU(3)L × SU(3)R with quarks transforming as
De Rújula, Georgi, and Glashow; Lazarides, Panagiotakopoulos, and Shafi

q =

d u h
d u h
d u h

 ∼ (3,3∗,1), qc =

dc dc dc

uc uc uc

hc hc hc

 ∼ (3∗,1,3)

and leptons transforming as

λ =

N Ec ν
E Nc e
νc ec S

 ∼ (1,3,3∗)

The breaking down of

SU(3)3 → SU(3)C × SU(2)L × SU(2)R × U(1)YL+YR

is achieved with the (3,3) entry of λ, and the further breaking of
SU(2)R × U(1)YL+YR to U(1)Y with the (3,1) entry.



The superpotential is

f Tr(λqcq) +
1
6

f ′ εijkεabc(λiaλjbλkc + qc
iaqc

jbqc
kc + qiaqjbqkc)

With 3 families: most general superpotential contains 11f
couplings, and 10f ′ couplings, subject to 9 conditions, due to
the vanishing of the anomalous dimensions of each superfield:∑

j,k

fijk (fljk )∗ +
2
3

∑
j,k

f ′ijk (f ′ljk )∗ =
16
9

g2δil ,

where fijk = fjki = fkij ; f ′ijk = f ′jki = f ′kij = f ′ikj = f ′kji = f ′jik

Quarks and leptons receive masses when the scalar part of the
superfields Ñ1,2,3 and Ñc

1,2,3 obtain vevs

(Md )ij =
∑

k

fkij〈Ñk 〉, (Mu)ij =
∑

k

fkij〈Ñc
k 〉,

(Me)ij =
∑

k

f ′kij〈Ñk 〉, (Mν)ij =
∑

k

f ′kij〈Ñc
k 〉.



Since we have MSSM⇒ two Higgs doublets
we choose the linear combinations coupled to the third
generation

Ñc =
∑

i

aiÑc
i

and
Ñ =

∑
i

biÑi

this can be done by choosing appropriately the masses in the superpotential, León et al

I Then these two Higgs doublets couple to the three families
differently providing the freedom to understand their
different masses and mixings

I We need to fulfill the second (and most difficult) finiteness
requirement for all-loop finite theories

I Solutions give all-loop or two-loop finite models, with
Universal soft terms or with the sum rule



Phenomenology

Phenomenology of the models was analyzed for an all-loop
finite and a two- finite case.
Best results (so far) for the two-loop finite model:

mtop ∼ 170−173 GeV tanβ ∼ 58 MHiggs ∼ 120−125 GeV , µ > 0

with a charged LSP τ̃

LSP = χ0 ∼ 300− 600 GeV

Notice: it involves three generations, it requires a discrete
symmetry.
A more thorough analysis is under way.

Heinemeyer, Ma, M.M., Zoupanos



Conclusions

I Finiteness: powerful, interesting and intriguing principle⇒
reduces greatly the number of free parameters

I completely finite theories
i.e. including the SSB terms, that satisfy the sum rule.

I Confronting the SU(5) models with low-energy precision
data does distinguish among models:

I FUTB µ < 0 survives (remarkably)
I large tan β
I s-spectrum starts above ∼ 400 GeV
I a prediction for the Higgs Mh ∼ 122− 126 GeV
I no solution for g−2, constrained from dark matter

I Extension to three fams with 6R on its way
I Detailed study of finite SU(3)3 ⇐⇒ 3 generations in

progress


