Neutrino Mass Seesaw Version 3 : Recent Developments

Ernest Ma Physics and Astronomy Department University of California Riverside, CA 92521, USA

Contents

- Neutrino Mass
- Gauge Coupling Unification
- LHC Phenomenology
- New U(1) Gauge Symmetry
- Scotogenic Radiative Neutrino Mass
- Fermion Triplet Dark Matter
- Conclusion

Neutrino Mass: Six Generic Mechanisms

Weinberg(1979): Unique dimension-five operator for Majorana neutrino mass in the standard model (SM):

$$\frac{f_{\alpha\beta}}{2\Lambda}(\nu_{\alpha}\phi^{0}-l_{\alpha}\phi^{+})(\nu_{\beta}\phi^{0}-l_{\beta}\phi^{+}) \Rightarrow \mathcal{M}_{\nu} = \frac{f_{\alpha\beta}v^{2}}{\Lambda}$$

Ma(1998): Three tree-level realizations: (I) fermion singlet N, (II) scalar triplet $(\xi^{++}, \xi^{+}, \xi^{0})$, (III) fermion triplet $(\Sigma^{+}, \Sigma^{0}, \Sigma^{-})$ [Foot/Lew/He/Joshi(1989)]; and three generic one-loop realizations (IV), (V), (VI).

Gauge Coupling Unification

It is well-known that gauge-coupling unification occurs for the minimal supersymmetric standard model (MSSM) but not the SM. The difference can be traced to the addition of gauginos and higgsinos, transforming under $SU(3)_C \times SU(2)_L \times U(1)_Y$ as (8,1,0), (1,3,0), $(1,2,\pm 1/2)$, and a second Higgs scalar doublet. Note that the fermion triplet (1,3,0) is what makes the $SU(2)_L$ and $U(1)_Y$ couplings meet at high enough an energy scale to be acceptable for suppressing proton decay.

The one-loop renormalization-group equations for the evolution of gauge couplings between M_1 and M_2 are

$$\alpha_i (M_1)^{-1} - \alpha_i (M_2)^{-1} = (b_i/2\pi) \ln(M_2/M_1),$$

where $\alpha_i = g_i^2/4\pi$, and the numbers b_i are determined by the particle content of the model. In the SM, these are $SU(3)_C$: $b_C = -11 + (4/3)N_f = -7$, $SU(2)_L$: $b_L = -22/3 + (4/3)N_f + 1/6 = -19/6$, $U(1)_Y$: $b_Y = (4/3)N_f + 1/10 = 41/10$, where $N_f = 3$ is the number of families and unification means $\alpha_C(M_U) = \alpha_L(M_U) = (5/3)\alpha_Y(M_U) = \alpha_U$. Using the input $\alpha_C(M_Z) = 0.122$, $\alpha_L(M_Z) = 0.0340$, $\alpha_Y(M_Z) = 0.0102$, it is easy to check that gauge couplings do not unify in the SM.

Model	$b_Y - b_L$	$b_L - b_C$	new fermions	new scalars
SM	7.27	3.83	none	none
MSSM	5.60	4.00	(1,3,0),(8,1,0)	(1,2,1/2)
			$(1,2,\pm 1/2)$	
m05	5.27	3.83	(1,3,0)	(1,3,0)×2
				$(8,1,0) \times 4$
bs07	5.60	3.00	(1,3,0), (8,1,0)	(1,3,0)
				(8,1,0)

If all particles transforming under $SU(2)_L \times U(1)_Y$ are at the electroweak scale, then $\ln(M_U/M_Z) \simeq$ $\sqrt{2\pi^2}[(3/5\tan^2\theta_W)-1]/G_F M_W^2(b_Y-b_L).$ Hence $M_{II} > 10^{16} \text{ GeV} \Rightarrow b_V - b_L < 5.7$. Ma(2005): all new particles \sim TeV. Bajc/Senjanovic(2007): color octets $\sim 10^8$ GeV. Instead of just one $(\Sigma^+, \Sigma^0, \Sigma^-)$ fermion triplet, let there be three copies at an intermediate scale M_I , then gauge-coupling unification $\sim 10^{16}~{
m GeV} \Rightarrow M_I \sim 10^{10}$ GeV, which is also the right scale for leptogenesis through the decay of the lightest Σ [Fischler/Flauger(2008)].

LHC Phenomenology

If Σ exists at the TeV scale, it may be probed at the LHC. Its production is by pairs from quark fusion via the electroweak gauge bosons with a cross section of the order 1 fb for m_{Σ} of about 1 TeV, and rising to more than 10^2 fb if m_{Σ} is 300 GeV. The mass splitting between Σ^0 and Σ^{\pm} is radiative and comes from electroweak gauge interactions. For large m_{Σ} , it is about 168 MeV, thus allowing $\Sigma^{\pm} \to \Sigma^0 \pi^{\pm}$ and $\Sigma^0 l^{\pm} \nu$. The dominant decays are however $\Sigma^{\pm} \rightarrow \nu W^{\pm}, l^{\pm}Z(h)$ and $\Sigma^0 \to l^{\pm} W^{\mp}, \nu Z(h)$ unless a symmetry forbids them.

del Aguila/Aguilar-Saavedra(2008):

final state	$m_N(100 \text{ GeV})$	$m_{\xi}(300 \text{ GeV})$	m_{Σ} (300 GeV)
6 leptons			×
5 leptons			$28 { m fb}^{-1}$
$l^{\pm}l^{\pm}l^{\pm}l^{\mp}$			$15~{ m fb}^{-1}$
$l^+l^+l^-l^-$		$19 \mathrm{fb}^{-1}$	7 fb $^{-1}$
$l^{\pm}l^{\pm}l^{\pm}$		_	30 fb ⁻¹
$l^{\pm}l^{\pm}l^{\mp}$	$< 180 { m ~fb^{-1}}$	3.6 fb $^{-1}$	$2.5 {\rm fb}^{-1}$
$l^{\pm}l^{\pm}$	$< 180 { m ~fb^{-1}}$	17.4 fb $^{-1}$	$1.7 { m fb}^{-1}$
l^+l^-	×	15 fb^{-1}	80 fb ⁻¹
l^{\pm}	×	×	×

New U(1) Gauge Symmetry

Ma(2002) : Consider $SU(3)_C \times SU(2)_L \times U(1)_Y \times U(1)_X$ with $(u, d)_L \sim (3, 2, 1/6; n_1), u_R \sim (3, 1, 2/3; n_2),$ $d_R \sim (3, 1, -1/3; n_3), (\nu, e)_L \sim (1, 2, -1/2; n_4),$ $e_R \sim (1, 1, -1; n_5), \Sigma \sim (1, 3, 0; n_6).$

Absence of the axial-vector anomaly requires $[SU(3)]^2 U(1)_X : 2n_1 - n_2 - n_3 = 0.$ $[U(1)_Y]^2 U(1)_X : n_1 - 8n_2 - 2n_3 + 3n_4 - 6n_5 = 0.$ $U(1)_Y [U(1)_X]^2 : n_1^2 - 2n_2^2 + n_3^2 - n_4^2 + n_5^2 = (3n_1 + n_4)(7n_1 - 4n_2 - 3n_4)/4 = 0.$

 $n_4 = -3n_1 \Rightarrow U(1)_Y$, so $n_2 = (7n_1 - 3n_4)/4$ will be assumed from now on. In that case, $n_3 = (n_1 + 3n_4)/4$ and $n_5 = (-9n_1 + 5n_4)/4$. $[SU(2)]^2 U(1)_X : 3n_1 + n_4 - 4n_6 = 0.$ Mixed gravitational-gauge anomaly $U(1)_X$: $6n_1 - 3n_2 - 3n_3 + 2n_4 - n_5 - 3n_6 = 3(3n_1 + n_4 - 4n_6)/4 = 0.$ $[U(1)_X]^3$: $6n_1^3 - 3n_2^3 - 3n_3^3 + 2n_4^3 - n_5^3 - 3n_6^3 =$ $3(3n_1 + n_4)^3/64 - 3n_6^3 = 0.$ Hence $n_6 = (3n_1 + n_4)/4$ satisfies all 3 conditions. If a fermion multiplet $(1, 2p + 1, 0; n_6)$ is used, the only solutions are p = 0 [$U(1)_{B-L}$] and p = 1 [$U(1)_X$].

The scalar sector of this $U(1)_X$ model consists of two Higgs doublets (ϕ_1^+, ϕ_1^0) with charge $(9n_1 - n_4)/4$ which couples to charged leptons, and (ϕ_2^+, ϕ_2^0) with charge $(3n_1 - 3n_4)/4$ which couples to up and down quarks as well as to Σ . To break the $U(1)_X$ gauge symmetry spontaneously, a singlet χ with charge $-2n_6$ is added, which also allows the Σ 's to acquire Majorana masses at the $U(1)_X$ breaking scale. Adhikari/Erler/Ma(2008): The new gauge boson X may be accessible at the LHC. Its decay branching ratios could determine the parameter $r = n_4/n_1 = \tan \phi$.

Scotogenic Radiative Neutrino Mass

Deshpande/Ma(1978): Add to the SM a second scalar doublet (η^+, η^0) which is odd under a new exactly conserved Z_2 discrete symmetry, then η^0_R or η^0_T is absolutely stable. This simple idea lay dormant for almost thirty years until Ma, Phys. Rev. D 73, 077301 (2006). It was then studied seriously in Barbieri/Hall/Rychkov(2006), Lopez Honorez/Nezri/Oliver/Tytgat(2007), Gustafsson/Lundstrom/Bergstrom/Edsjo(2007), and Cao/Ma/Rajasekaran, Phys. Rev. D 76, 095011 (2007).

Radiative Neutrino Mass: Zee(1980): (IV) $\omega = (\nu, l), \omega^c = l^c, \ \chi = \chi^+, \eta = (\phi_{1,2}^+, \phi_{1,2}^0), \langle \phi_{1,2}^0 \rangle \neq 0.$ Ma(2006): (V) [scotogenic = caused by darkness] $\omega = \omega^c = N \text{ or } \Sigma, \ \chi = \eta = (\eta^+, \eta^0), \langle \eta^0 \rangle = 0.$ N or Σ interacts with ν , but they are not Dirac mass partners, because of the exactly conserved Z_2 symmetry, under which N or Σ and (η^+, η^0) are odd, and all SM particles are even. Using $f(x) = -\ln x/(1-x)$,

$$(\mathcal{M}_{\nu})_{\alpha\beta} = \sum_{i} \frac{h_{\alpha i} h_{\beta i} M_{i}}{16\pi^{2}} [f(M_{i}^{2}/m_{R}^{2}) - f(M_{i}^{2}/m_{I}^{2})].$$

Fermion Triplet Dark Matter

If η_R^0 or η_I^0 is dark matter, then its mass is 45 to 75 GeV. If N is dark matter, then all masses are of order 350 GeV or less, and its Yukawa couplings have to be large [Kubo/Ma/Suematsu(2006)], in which case flavor-changing radiative decays such as $\mu \to e \gamma$ are too big without some rather delicate fine tuning. Ma/Suematsu(2008): Use radiative seesaw version 3, then Σ^0 is a better dark-matter candidate because, unlike N, it has gauge interactions.

Since Σ^{\pm} is naturally just 168 MeV heavier than Σ^{0} , coannihilation is an important mechanism for obtaining the correct dark-matter relic abundance. Using

 $\sigma(\Sigma^0 \Sigma^0) |v| \simeq 2\pi \alpha_L^2 / m_{\Sigma}^2, \quad \sigma(\Sigma^{\pm} \Sigma^{\pm}) |v| \simeq \pi \alpha_L^2 / m_{\Sigma}^2,$ $\sigma(\Sigma^{+} \Sigma^{-}) |v| \simeq 37\pi \alpha_L^2 / m_{\Sigma}^2, \quad \sigma(\Sigma^0 \Sigma^{\pm}) |v| \simeq 29\pi \alpha_L^2 / m_{\Sigma}^2,$ $m_{\Sigma} \text{ is estimated to be in the range 2.28 to 2.42 TeV to}$ reproduce the observed data $\Omega h^2 = 0.11 \pm 0.006$ for its relic abundance. The Yukawa couplings of Σ may now be appropriately small, not to upset the experimental constraints from flavor-changing radiative decays.

Σ as lepton and N as baryon:

Assuming neutrino mass seesaw version 3, Σ should then be considered a lepton triplet. In that case, the fermion singlet N may in fact be reassigned as a baryon. The crucial missing link is a scalar diquark $h \sim (3, 1, -1/3)$ with baryon number B = -2/3, so that udh, $u^c d^c h^*$, and $d^c Nh$ are allowed. Thus N has B = 1, but since it is a gauge singlet, it is also allowed a large Majorana mass. Hence additive B breaks to multiplicative $(-)^{3B}$ and the decays of the lightest N would produce a baryon asymmetry of the Universe, in analogy to leptogenesis.

Conclusion

Using the fermion triplet $(\Sigma^+, \Sigma^0, \Sigma^-)$ as the seesaw anchor for neutrino masses (version 3), many new and interesting possibilities of physics beyond the SM exist. (1) It may be the missing link for gauge-coupling unification in the SM without going to the MSSM. (2) It is easier to detect at the LHC than N. (3) It may be associated with a new U(1) gauge boson. (4) It may be the source of radiative neutrino masses. (5) It may be dark matter with a mass around 2.35 TeV.