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Abstract. We present numeric®l-body simulation studies of large-scale structure fororatihe
main purpose of these studies is to analyze the several motddrk matter and the role they played
in the process of large-scale structure formation. We aealye standard and more successful case,
i.e., the cold dark matter with cosmological constax@PM). We compare the results of this model
with the corresponding results of other alternative madelparticular, the models that can be built
from the Newtonian limit of alternative theories of gravitige scalar-tensor theories. An specific
model is the one that considers that the scalar field is nanirmaily coupled to the Ricci scalar in
the Einstein-Hilbert Lagrangian that gives, in the Newgoniimit an effective gravitational force
that is given by two contributions: the standard Newtoniateptial plus a Yukawa potential that
comes from a massive scalar field. Comparisons of the modeiiome by analyzing the snapshots
of theN-body system at z=0 for several values of the SF parameters.
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INTRODUCTION

In this work we present some results about the role scalalsf(@F) play in cosmologi-
cal simulations, in particular on the process of large sstilecture formation. The main
goal of this work is to study the large scale structure foromaivhere the usual approach
is that the evolution of the initial primordial fluctuationergy density fields evolve fol-
lowing Newtonian mechanics in an expanding background[i¢ force between parti-
cles are the standard Newtonian gravitational force. Weesed that we can introduce SF
by adding a term in this force. This force will be of Yukawadypith two parameters,
A)[2]. We have been studying, in the past years, the effedts®kind of force on some
astrophysical phenomenal2, 3, 4, 5]. The Yukawa force camesNewtonian limit of
a scalar-tensor theory (STT) with the SF non-minimally dedgo gravitation[2]. It is
our purpose to find the role these scalar fields play on the ksrgle structure formation
processes. We start by discussing the stand@DM model and the general approach
in N-body simulations (See Bertschinger[6] for details). Thea present the modifica-
tions we need to do to consider the effects of a static SF arshaw the results of this
theory for the cosmological concordance model gk@DM universe[7]. To perform
the simulations we have modified a standard serial treedwelauthor has developed
[8] and the Gadget 1 [9] (see alkdt p: / / www. ast ro. i ni n. nx/ mar ) in order to
take into account the contribution of the Yukawa potential.



EVOLUTION EQUATIONS FOR A ACMD UNIVERSE

General Scalar-tensor theory and its Newtonian limit

Let us consider the Einstein field equations of a typical SOT[
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for the metricg,,, and for the massive S¢ we have
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where()' = %p. HereT,, is the energy-momentum tensor with tracew(p) andV (@)

are in general arbitrary functions that gobern kinetic anteptial contribution of the
SF. The potential contributioW,(¢), provides mass to the SF, denoted herergy.

The study of large-scale formation in the universe is gyesitihplified by the fact
that a limiting approximation of general relativity, Newian mechanics, applies in a
region small compared to the Hubble length 1 (cHO*l ~ 300th~! Mpc, wherecis the
speed of lightHp = 100h km/s/Mpc, is Hubble’s constant ark (0.5— 1)), and large
compared to the Schwarzschild radii of any collapsed objddte rest of the universe
affect the region only through a tidal field. The length scczng‘1 is of the order of the

largest scales currently accessible in cosmological @bfiens andH; 1~ 10% 1 yr
characterizes the evolutionary time scale of the universe.

Therefore, in the present study, we need to consider theemtkiof SF in the limit of
a static STT, and then we need to describe the theory in itsdean approximation,
that is, where gravity and the SF are weak (and time indepgphdad velocities of
dark matter particles are non-relativistic. We expect teelemall deviations of the SF
around the background field, defined herég@sand can be understood as the scalar field
beyond all matter. If one defines the perturbatigns (@) + ¢ andguy = Nuv + hyy,
wheren,,y is the Minkowski metric, the Newtonian approximation giy2p
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we have set@) = (1+ a)/Gn anda = 1/(3+ 2w). In the above expansion we have
set the cosmological constant term equal to zero, since lactgascales its influence
should be negligible. We only consider the influence of daalter due to the boson field
of massmsg governed by Eqg. (4), that is the modified Helmholtz equatitmwever, at
cosmological scales we do take into account the cosmolbgaestant contribution,
see below. Equations (3) and (4) represent the Newtoniandirthe STT with arbitrary
potentiaV (¢) and functionw( @) that where Taylor expanded aroufw. The resulting



equations are then distinguished by the const@gtsa, andA = hp/mggc. Herehp is
Planck’s constant.

The next step is to find solutions for this new Newtonian poétmgiven a density
profile, that is, to find the so—called potential-densityqateneral solutions to Egs.
(3) and (4) can be found in terms of the corresponding Greeratifons, and the new
Newtonian potential is[2, 4]
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The first term of EqQ. (5), is the contribution of the usual Nem&n gravitation (without
SF), while information about the SF is contained in the sdderm, that is, arising from
the influence function determined by the modified Helmholtez&a function, where the
couplingw (a) enters as part of a source factor.

Cosmological evolution equations using a static STT

To simulate cosmological systems, the expansion of theeusgvhas to be taken
into account. Also, to determine the nature of the cosmokigmodel we need to
determine the composition of the universe, i. e., we needu® tpe values of); for
each componenf taking into account in this way all forms of energy densitigat exist
at present. If a particular kind of energy density is desatiby an equation of state of the
form p = wp, wherep is the pressure ana is a constant, then the equation for energy
conservation in an expanding backgroudpa®) = —pd(a®), can be integrated to give

p Oa 31w Then, the Friedmann equation for the expansion feaioris written as
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wherew; characterizes equation of state of speciEhe most familiar forms of energy
densities are those due to pressureless matterwyith O (that is, nonrelativistic mat-
ter with rest-mass-energy densitg? dominating over the kinetic-energy density?/2)
and radiation wittw; = 1/3. The density parameter contributed today by visible, ebnr
ativistic, baryonic matter in the universe ~ (0.01— 0.2) and the density parameter
that is due to radiation i©r ~ 2 x 10~°. In this work we will consider a model with
only two energy density contribution. One which is a preskass and nonbaryonic dark
matter withQpy ~ 0.3 that does not couple with radiation. Other, that will be sanco-
logical constant contributio®a ~ 0.7 with and equation of state = —p. The above
equation fora(t) becomes

= =H3 [QDM <%>3+Q/\] 2z (7)



Here, we employ a cosmological model with a static SF whiatoissistent with the
Newtonian limit given by Eqg. (5). Thus, the scale factut,), is given by the following
Friedman model,
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whereH = a/a, Qno andQxg are the matter and energy density evaluated at present,
respectively. We notice that the source of the cosmic ewmiuis deviated by the
term 1+ a when compared to the standard Friedman-Lemaitre modeteidre, it is

convenient to define a new density parameteﬂlf@/) = Q;/(1+ a). This new density
parameter is such thélﬁ?) + Qg\a) =1, which implies a flat universe, and this shall be

assumed in our following computations, where we cons(dﬁ-f),QS\a)) = (0.3,0.7).

For positive values ofr, a flat cosmological model demands to have a fatior o)
more energy content),, andQa) than in standard cosmology. On the other hand, for
negative values af one needs a factdfL+ o) lessQny, andQA to have a flat universe. To
be consistent with the CMB spectrum and structure formatimerical experiments,
cosmological constraints must be applied @nn order for it to be within the range
(-1,1) [11, 12, 13, 14].

The N-Body problem for dark matter

The Vlasov-Poisson equation in an expanding universe itbescthe evolution of the
six-dimensional, one-particle distribution functidri{x, p). The Vlasov equation is,
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wherex is the comoving coordinatg = max, mis the particle mass, arty is the
self-consistent gravitational potential given by the Borsequation,

O2dp(x) = 4Gy a2 [p(X) — po(t)]] (10)

wherepy is the background mass density. Egs. (9) and (10) form theovioisson
equation, constitutes a collisionless, mean-field appnation to the evolution of the full
N-body distribution. ArN-body code attempts to solve Eqs. (9) and (10) by repreggentin
the one-patrticle distribution function as

N
f(xp) = 3 3(x—x) 8(p—p) (11)

Substitution of (11) in the Vlasov-Poisson system of equetiyields the exact Newton’s
equations for a system of gravitating particles. See Ref. [6] for details.



In the Newtonian limit of STT of gravity, the Newtonian matiequation for a particle
i is written as[20]
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where the sum includes all periodic images of particlandFsg(r,a,A) is

Fer(r,a,A) = 1+a (1+ i) e /A (13)
A

which, for small distances comparediois Fsg(r <A, a,A) ~1+a (1+ %) and, for

long distances, iBsg(r > A, a,A) =~ 1, as in Newtonian physics.

RESULTS

In this section, we present results of cosmological sinmutgt of aACDM universe
with and without SF contribution. We use Z5garticles in box 256-1 Mpc size. We
have studied in the past/e&CDM model in a smaller box and with less resolution than
the present case[20], theCDM case that comes with Gadget 1.0[19], and the Santa
Barbara cluster[21].

The initial linear power spectrum was generated using thiadiformula by Klypin
& Holtzman[15] for the transfer function. This formula is dght variation of the
common BBKS fit[16]. It includes effects from baryon suppmies but no baryonic
oscillations. We use the standard Zel'dovich approxinfi@] to provide the initial
256° particles displacement off a uniform grid and to assignrtiiial velocities
in a 256h~1 Mpc box. The starting redshift ig, = 50 and we choose the following
cosmology:Qpw = 0.314 (whereQpy includes cold dark matter and baryon€g =
0.044,Qp = 0.686,Hy = 71 km/s/Mpc,0g = 0.84, andn = 0.99. Particle masses are in
the order of 10 x 10'° M.,. The individual softening length was 20 kfit This choice
of softening length is consistent with the mass resolutairbg the number of particles.
All these values are in concordance with measurements ohalogjical parameters
by WMAP[18]. The initial condition is in the Cosmic Data Bameb page lit t p:
/1t8web. | anl . gov/ peopl e/ hei t mann/t est 3. ht m ). See Heitmann et al.
2005[7] for more details.

We now present the results for tAdCDM model previously described. Because the
visible component is the smaller one and given our intemestdt the consequences of
including a SF contribution to the evolution equations, madel excludes gas patrticles,
but all its mass has been added to the dark matter. We resteiatalues ofa to the
interval(—1,1) [11, 12, 13, 14] and usk = 1,5,10,20 Mpc/h, since these values sweep
the scale lengths present in the simulations. In Fig. 1 wevskgy snapshots at redshift
z=0 of our ACDM model. Fig. 1 (a) presents the standard case without.&Ftlhe
interaction between bodies is through the standard Neamopotential. In (b), (c), (d),
and (e) we show the case with= 1, andA = 1,5,10,20 Mpc/h, respectively. In (f)
and (9)A =5 Mpc/h anda = —1/2 and—1/4, respectively. One notes clearly how
the SF modifies the matter structure of the system. The mastatic cases are (e) and
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FIGURE 1. x-ysnapshots a= 0 of aACDM universe without and with SF. See text for details.

(f) where we have used = 1 andA = 20 Mpc/h, anda = —1/2 andA =5 Mpc/h,
respectively.

We now analyze the general effect that the constahas on the dynamics. The role
of a in our approach is as follows. On one hand, to construct a ftatealwe have set
the conditior@r(ﬁ) + QE\O’) =1, which implies havind1+ a) times the energy content
of the standard\CDM model. This essentially means that we have an incremeat b
factor of (1+ a) times the amount of matter, for positive valuesogfor a reduction of
the same factor for negative valuesafIncreasing or reducing this amount of matter
affects the matter term on the r.h.s. of the equation of mofi®), but the amount



affected cancels out with the terff+ o) in the denominator of (12) stemming from
the new Newtonian potential. On the other hand, the fdétpraugments (diminishes)
for positive (negative) values af for small distances compared Ag resulting in more
(less) structure formation for positive (negative) valoésx compared to thé\CDM
model. For > A the dynamics is essentially Newtonian.

Therefore, for cases in which we use=5 Mpc/h we have the following. In the case
of (c), forr < A, the effective gravitational pull has been augmented byctofeof 2,
in contrast to case (f) where it has diminished by a factor/8f ih model (g) the pull
diminishes only by a factor of 3/4. That is why one observes fa A more structure
formation in (c), less in (f), and lesser in model (g). Theeeffis then, for a growing
positivea, to speed up the growth of perturbations, then of halos aen ¢ clusters,
whereas negative values f — —1) tend to slow down the growth. Whereas in models
(b), (c), (d) and (e) where we keep= 1 and takeA = 1,5,10,20 Mpc/h, we observe
less structure in case (b) to more structure in case (e)ingafes intermediate structure
formation cases. In spite of that the effective gravitasiaonstant has been augmented
by a factor of 2 the importance of the Yukawa contributionesysmall for distances
r > A. That is way we observe this behavior.

CONCLUSIONS

The theoretical scheme we have used is compatible with tdzsgrvations because we
have defined the background field constanp >= GN1(1+ a). A direct consequence
of the approach is that the amount of matter (energy) has iodveased for positive
values ofa and diminished for negative values@fwith respect to the standardCDM
model in order to have a flat cosmological model. Quantiéfgivour model demands to
haveQ/(1+ a) =1 and this changes the amount of dark matter and energy ofdgdelm
for a flat cosmological model, as assumed. The general gtentl effect is that the
interaction including the SF changes by a fadtgg(r,a,A) ~ 1+ o (1+ %) forr <A

in comparison with the Newtonian case. Thus,dor 0 the growth of structures speeds
up in comparison with the Newtonian case. For the 0 case the effect is to diminish
the formation of structures. For> A the dynamics is essentially Newtonian. However,
this preliminar analysis we have done is insufficient to gise clear conclusions on the
role played by SF in the large-scale structure formatiorcgss. We will need to do a
systematic study of the evolution of the two-point corrielafunction which is a mesure
of galaxy clustering. We also will need to compute the massgpgpectrum and velocity
dispersions of the halos. Therefore, we will be able makeriatic comparisons with
observations. This work is in process and will be publishamhs
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