
Cosmological simulations: the role of scalar fields
M.A. Rodríguez-Meza

Depto. de Física, Instituto Nacional de Investigaciones Nucleares, Col. Escandón, Apdo. Postal
18-1027, 11801 México D.F.

marioalberto.rodriguez@inin.gob.mx; http://www.astro.inin.mx/mar

Abstract. We present numericalN-body simulation studies of large-scale structure formation. The
main purpose of these studies is to analyze the several models of dark matter and the role they played
in the process of large-scale structure formation. We analyze the standard and more successful case,
i.e., the cold dark matter with cosmological constant (ΛCDM). We compare the results of this model
with the corresponding results of other alternative models, in particular, the models that can be built
from the Newtonian limit of alternative theories of gravitylike scalar-tensor theories. An specific
model is the one that considers that the scalar field is non-minimally coupled to the Ricci scalar in
the Einstein-Hilbert Lagrangian that gives, in the Newtonian limit an effective gravitational force
that is given by two contributions: the standard Newtonian potential plus a Yukawa potential that
comes from a massive scalar field. Comparisons of the models are done by analyzing the snapshots
of theN-body system at z=0 for several values of the SF parameters.
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INTRODUCTION

In this work we present some results about the role scalar fields (SF) play in cosmologi-
cal simulations, in particular on the process of large scalestructure formation. The main
goal of this work is to study the large scale structure formation where the usual approach
is that the evolution of the initial primordial fluctuation energy density fields evolve fol-
lowing Newtonian mechanics in an expanding background[1].The force between parti-
cles are the standard Newtonian gravitational force. We will see that we can introduce SF
by adding a term in this force. This force will be of Yukawa type with two parameters (α,
λ )[2]. We have been studying, in the past years, the effects ofthis kind of force on some
astrophysical phenomena[2, 3, 4, 5]. The Yukawa force comesas a Newtonian limit of
a scalar-tensor theory (STT) with the SF non-minimally coupled to gravitation[2]. It is
our purpose to find the role these scalar fields play on the large scale structure formation
processes. We start by discussing the standardΛCDM model and the general approach
in N-body simulations (See Bertschinger[6] for details). Then, we present the modifica-
tions we need to do to consider the effects of a static SF and weshow the results of this
theory for the cosmological concordance model of aΛCDM universe[7]. To perform
the simulations we have modified a standard serial treecode the author has developed
[8] and the Gadget 1 [9] (see alsohttp://www.astro.inin.mx/mar) in order to
take into account the contribution of the Yukawa potential.



EVOLUTION EQUATIONS FOR A ΛCMD UNIVERSE

General Scalar-tensor theory and its Newtonian limit

Let us consider the Einstein field equations of a typical STT[10]
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for the metricgµν and for the massive SFφ we have
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∂φ . HereTµν is the energy-momentum tensor with traceT, ω(φ) andV(φ)

are in general arbitrary functions that gobern kinetic and potential contribution of the
SF. The potential contribution,V(φ), provides mass to the SF, denoted here bymSF.

The study of large-scale formation in the universe is greatly simplified by the fact
that a limiting approximation of general relativity, Newtonian mechanics, applies in a
region small compared to the Hubble lengthcH−1 (cH−1

0 ≈ 3000h−1 Mpc, wherec is the
speed of light,H0 = 100h km/s/Mpc, is Hubble’s constant andh≈ (0.5−1)), and large
compared to the Schwarzschild radii of any collapsed objects. The rest of the universe
affect the region only through a tidal field. The length scalecH−1

0 is of the order of the
largest scales currently accessible in cosmological observations andH−1

0 ≈ 1010h−1 yr
characterizes the evolutionary time scale of the universe.

Therefore, in the present study, we need to consider the influence of SF in the limit of
a static STT, and then we need to describe the theory in its Newtonian approximation,
that is, where gravity and the SF are weak (and time independent) and velocities of
dark matter particles are non-relativistic. We expect to have small deviations of the SF
around the background field, defined here as〈φ〉 and can be understood as the scalar field
beyond all matter. If one defines the perturbationsφ = 〈φ〉+ φ̄ andgµν = ηµν + hµν ,
whereηµν is the Minkowski metric, the Newtonian approximation gives[2]
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∇2φ̄ −m2
SFφ̄ = −8παρ , (4)

we have set〈φ〉 = (1+ α)/GN andα ≡ 1/(3+ 2ω). In the above expansion we have
set the cosmological constant term equal to zero, since on galactic scales its influence
should be negligible. We only consider the influence of dark matter due to the boson field
of massmSF governed by Eq. (4), that is the modified Helmholtz equation.However, at
cosmological scales we do take into account the cosmological constant contribution,
see below. Equations (3) and (4) represent the Newtonian limit of the STT with arbitrary
potentialV(φ) and functionω(φ) that where Taylor expanded around〈φ〉. The resulting



equations are then distinguished by the constantsGN, α, andλ = hP/mSFc. HerehP is
Planck’s constant.

The next step is to find solutions for this new Newtonian potential given a density
profile, that is, to find the so–called potential–density pairs. General solutions to Eqs.
(3) and (4) can be found in terms of the corresponding Green functions, and the new
Newtonian potential is[2, 4]
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The first term of Eq. (5), is the contribution of the usual Newtonian gravitation (without
SF), while information about the SF is contained in the second term, that is, arising from
the influence function determined by the modified Helmholtz Green function, where the
couplingω (α) enters as part of a source factor.

Cosmological evolution equations using a static STT

To simulate cosmological systems, the expansion of the universe has to be taken
into account. Also, to determine the nature of the cosmological model we need to
determine the composition of the universe, i. e., we need to give the values ofΩi for
each componenti, taking into account in this way all forms of energy densities that exist
at present. If a particular kind of energy density is described by an equation of state of the
form p = wρ , wherep is the pressure andw is a constant, then the equation for energy
conservation in an expanding background,d(ρa3) = −pd(a3), can be integrated to give
ρ ∝ a−3(1+w). Then, the Friedmann equation for the expansion factora(t) is written as
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wherewi characterizes equation of state of speciei. The most familiar forms of energy
densities are those due to pressureless matter withwi = 0 (that is, nonrelativistic mat-
ter with rest-mass-energy densityρc2 dominating over the kinetic-energy densityρv2/2)
and radiation withwi = 1/3. The density parameter contributed today by visible, nonrel-
ativistic, baryonic matter in the universe isΩB ≈ (0.01−0.2) and the density parameter
that is due to radiation isΩR ≈ 2×10−5. In this work we will consider a model with
only two energy density contribution. One which is a pressureless and nonbaryonic dark
matter withΩDM ≈ 0.3 that does not couple with radiation. Other, that will be a cosmo-
logical constant contributionΩΛ ≈ 0.7 with and equation of statep = −ρ . The above
equation fora(t) becomes

ȧ2

a2 = H2
0

[

ΩDM

(a0

a

)3
+ΩΛ

]

−
k
a2 (7)



Here, we employ a cosmological model with a static SF which isconsistent with the
Newtonian limit given by Eq. (5). Thus, the scale factor,a(t), is given by the following
Friedman model,
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whereH = ȧ/a, Ωm0 andΩΛ0 are the matter and energy density evaluated at present,
respectively. We notice that the source of the cosmic evolution is deviated by the
term 1+ α when compared to the standard Friedman-Lemaitre model. Therefore, it is
convenient to define a new density parameter byΩ(α)

i ≡ Ωi/(1+α). This new density

parameter is such thatΩ(α)
m +Ω(α)

Λ = 1, which implies a flat universe, and this shall be

assumed in our following computations, where we consider(Ω(α)
m ,Ω(α)

Λ ) = (0.3,0.7).
For positive values ofα, a flat cosmological model demands to have a factor(1+ α)
more energy content (Ωm andΩΛ) than in standard cosmology. On the other hand, for
negative values ofα one needs a factor(1+α) lessΩm andΩΛ to have a flat universe. To
be consistent with the CMB spectrum and structure formationnumerical experiments,
cosmological constraints must be applied onα in order for it to be within the range
(−1,1) [11, 12, 13, 14].

The N-Body problem for dark matter

The Vlasov-Poisson equation in an expanding universe describes the evolution of the
six-dimensional, one-particle distribution function,f (x,p). The Vlasov equation is,

∂ f
∂ t

+
p

ma2 ·
∂ f
∂x

−m∇ΦN(x) ·
∂ f
∂p

= 0 (9)

wherex is the comoving coordinate,p = ma2ẋ, m is the particle mass, andΦN is the
self-consistent gravitational potential given by the Poisson equation,

∇2ΦN(x) = 4πGN a2 [ρ(x)−ρb(t)]] (10)

whereρb is the background mass density. Eqs. (9) and (10) form the Vlasov-Poisson
equation, constitutes a collisionless, mean-field approximation to the evolution of the full
N-body distribution. AnN-body code attempts to solve Eqs. (9) and (10) by representing
the one-particle distribution function as

f (x,p) =
N

∑
i=1

δ (x−xi)δ (p−pi) (11)

Substitution of (11) in the Vlasov-Poisson system of equations yields the exact Newton’s
equations for a system ofN gravitating particles. See Ref. [6] for details.



In the Newtonian limit of STT of gravity, the Newtonian motion equation for a particle
i is written as[20]
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where the sum includes all periodic images of particlej, andFSF(r,α,λ ) is
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which, for small distances compared toλ , is FSF(r < λ ,α,λ ) ≈ 1+α
(

1+ r
λ
)

and, for
long distances, isFSF(r > λ ,α,λ ) ≈ 1, as in Newtonian physics.

RESULTS

In this section, we present results of cosmological simulations of aΛCDM universe
with and without SF contribution. We use 2563 particles in box 256h−1 Mpc size. We
have studied in the past aΛCDM model in a smaller box and with less resolution than
the present case[20], theΛCDM case that comes with Gadget 1.0[19], and the Santa
Barbara cluster[21].

The initial linear power spectrum was generated using the fitting formula by Klypin
& Holtzman[15] for the transfer function. This formula is a slight variation of the
common BBKS fit[16]. It includes effects from baryon suppression but no baryonic
oscillations. We use the standard Zel’dovich approximation[17] to provide the initial
2563 particles displacement off a uniform grid and to assign their initial velocities
in a 256h−1 Mpc box. The starting redshift iszin = 50 and we choose the following
cosmology:ΩDM = 0.314 (whereΩDM includes cold dark matter and baryons),ΩB =
0.044,ΩΛ = 0.686,H0 = 71 km/s/Mpc,σ8 = 0.84, andn = 0.99. Particle masses are in
the order of 1.0×1010 M⊙. The individual softening length was 20 kpc/h. This choice
of softening length is consistent with the mass resolution set by the number of particles.
All these values are in concordance with measurements of cosmological parameters
by WMAP[18]. The initial condition is in the Cosmic Data Bankweb page (http:
//t8web.lanl.gov/people/heitmann/test3.html). See Heitmann et al.
2005[7] for more details.

We now present the results for theΛCDM model previously described. Because the
visible component is the smaller one and given our interest to test the consequences of
including a SF contribution to the evolution equations, ourmodel excludes gas particles,
but all its mass has been added to the dark matter. We restrictthe values ofα to the
interval(−1,1) [11, 12, 13, 14] and useλ = 1,5,10,20 Mpc/h, since these values sweep
the scale lengths present in the simulations. In Fig. 1 we show x–y snapshots at redshift
z= 0 of our ΛCDM model. Fig. 1 (a) presents the standard case without SF, i.e., the
interaction between bodies is through the standard Newtonian potential. In (b), (c), (d),
and (e) we show the case withα = 1, andλ = 1,5,10,20 Mpc/h, respectively. In (f)
and (g)λ = 5 Mpc/h andα = −1/2 and−1/4, respectively. One notes clearly how
the SF modifies the matter structure of the system. The most dramatic cases are (e) and



FIGURE 1. x–y snapshots atz= 0 of aΛCDM universe without and with SF. See text for details.

(f) where we have usedα = 1 andλ = 20 Mpc/h, andα = −1/2 andλ = 5 Mpc/h,
respectively.

We now analyze the general effect that the constantα has on the dynamics. The role
of α in our approach is as follows. On one hand, to construct a flat model we have set

the conditionΩ(α)
m +Ω(α)

Λ = 1, which implies having(1+α) times the energy content
of the standardΛCDM model. This essentially means that we have an increment by a
factor of(1+α) times the amount of matter, for positive values ofα, or a reduction of
the same factor for negative values ofα. Increasing or reducing this amount of matter
affects the matter term on the r.h.s. of the equation of motion (12), but the amount



affected cancels out with the term(1+ α) in the denominator of (12) stemming from
the new Newtonian potential. On the other hand, the factorFSF augments (diminishes)
for positive (negative) values ofα for small distances compared toλ , resulting in more
(less) structure formation for positive (negative) valuesof α compared to theΛCDM
model. Forr ≫ λ the dynamics is essentially Newtonian.

Therefore, for cases in which we useλ = 5 Mpc/h we have the following. In the case
of (c), for r ≪ λ , the effective gravitational pull has been augmented by a factor of 2,
in contrast to case (f) where it has diminished by a factor of 1/2; in model (g) the pull
diminishes only by a factor of 3/4. That is why one observes for r < λ more structure
formation in (c), less in (f), and lesser in model (g). The effect is then, for a growing
positiveα, to speed up the growth of perturbations, then of halos and then of clusters,
whereas negativeα values (α →−1) tend to slow down the growth. Whereas in models
(b), (c), (d) and (e) where we keepα = 1 and takeλ = 1,5,10,20 Mpc/h, we observe
less structure in case (b) to more structure in case (e), passing for intermediate structure
formation cases. In spite of that the effective gravitational constant has been augmented
by a factor of 2 the importance of the Yukawa contribution is very small for distances
r ≫ λ . That is way we observe this behavior.

CONCLUSIONS

The theoretical scheme we have used is compatible with localobservations because we
have defined the background field constant< φ >= G−1

N (1+α). A direct consequence
of the approach is that the amount of matter (energy) has to beincreased for positive
values ofα and diminished for negative values ofα with respect to the standardΛCDM
model in order to have a flat cosmological model. Quantitatively, our model demands to
haveΩ/(1+α) = 1 and this changes the amount of dark matter and energy of the model
for a flat cosmological model, as assumed. The general gravitational effect is that the
interaction including the SF changes by a factorFSF(r,α,λ ) ≈ 1+α

(

1+ r
λ
)

for r < λ
in comparison with the Newtonian case. Thus, forα > 0 the growth of structures speeds
up in comparison with the Newtonian case. For theα < 0 case the effect is to diminish
the formation of structures. Forr > λ the dynamics is essentially Newtonian. However,
this preliminar analysis we have done is insufficient to giveus a clear conclusions on the
role played by SF in the large-scale structure formation process. We will need to do a
systematic study of the evolution of the two-point correlation function which is a mesure
of galaxy clustering. We also will need to compute the mass power spectrum and velocity
dispersions of the halos. Therefore, we will be able make sistematic comparisons with
observations. This work is in process and will be published soon.
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