Electroweak Symmetry Breaking at the Terascale

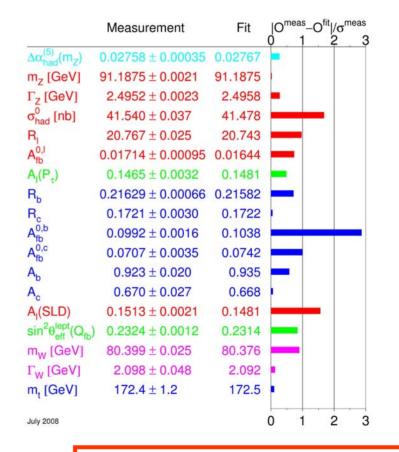
S. Dawson (BNL) October, 2008 XIII Mexican School of Particles and Fields

The Standard Model is Phenomenally Successful

➤ SM breaks electroweak symmetry and generates mass for the W and Z with a single scalar doublet, Φ

$$\lambda = \frac{M_h^2}{2v^2}$$

$$\lambda = \frac{M_h^2}{2v^2}$$


$$\nu = (\sqrt{2}G_F)^{-1/2}$$

- Minimal approach
- Higgs couplings to fermions and gauge bosons fixed in terms of masses

EW Measurements test SM

We have a model.... And it works to the 1% level

Consistency of precision measurements at multi-loop level used to constrain models with new physics

This fit ASSUMES SM

Higgs Couplings Fixed

- Standard model is chiral theory
 t_L is SU(2) doublet, t_R is SU(2) singlet
 - Quark and lepton masses are forbidden by SU(2) x U(1) gauge symmetry
 - > Mass term connects left_and righthanded fermions: $L \approx mf_L f_R$
 - SU(2) Higgs allows gauge invariant coupling

$$L \approx \frac{m_f}{v} \bar{f}_L \Phi f_R$$

Gauge Higgs Couplings

Higgs couples to gauge boson masses

$$(D_{\mu}\Phi)^{+}(D_{\mu}\Phi) \rightarrow \left(\frac{gv}{2}\right)^{2}W^{+\mu}W_{\mu}^{-}\left(1+\frac{h}{v}\right)+\dots$$

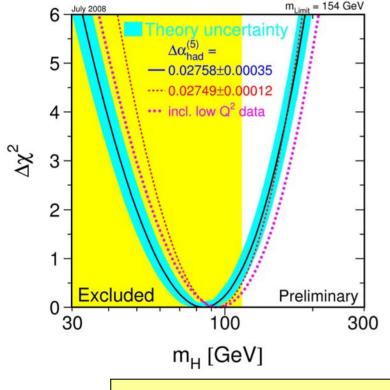
WWh coupling vanishes for v=0! Tests the connection of M_w to non-zero VEV

No Experimental Evidence for Higgs

SM requires scalar particle, h, with unknown mass


> M_h is ONLY unknown parameter of EW sector > Observables predicted using: M_Z , G_F , α , M_h > Higgs and top quark masses give quantum corrections:

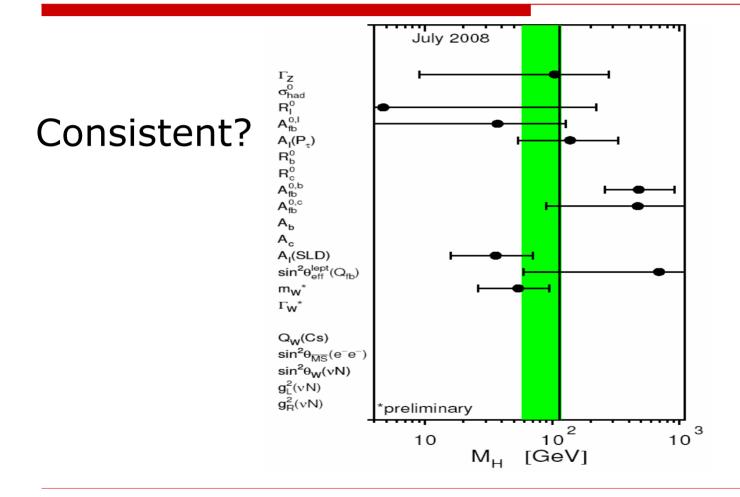
 \approx M_t², log (M_h)


Everything is calculable....*testable theory*

Understanding Higgs Limit

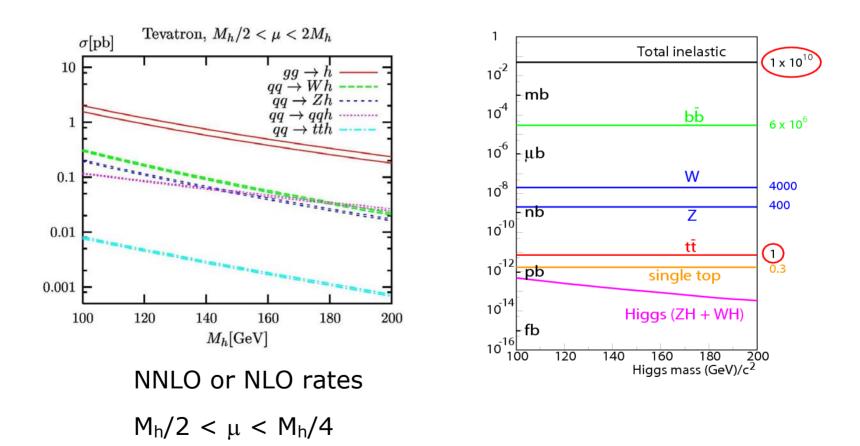
Theory: Input M_Z, G_F, α \rightarrow Predict M_W

Precision Measurements Limit M_h

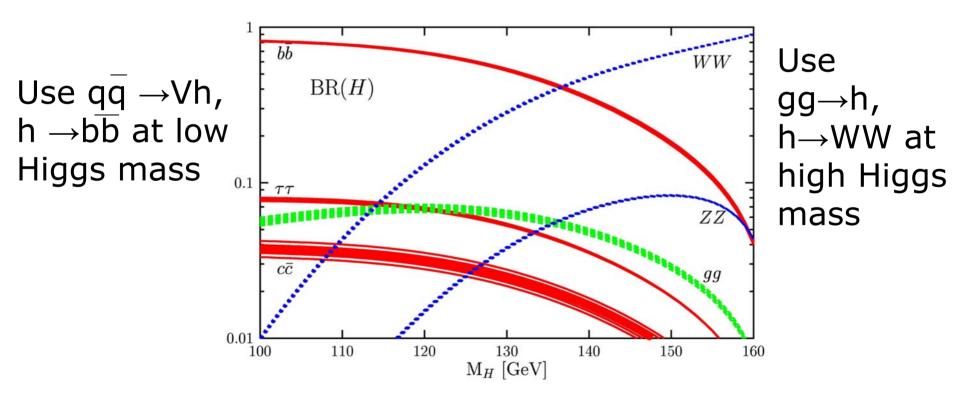


➢ LEP EWWG (July, 2008):

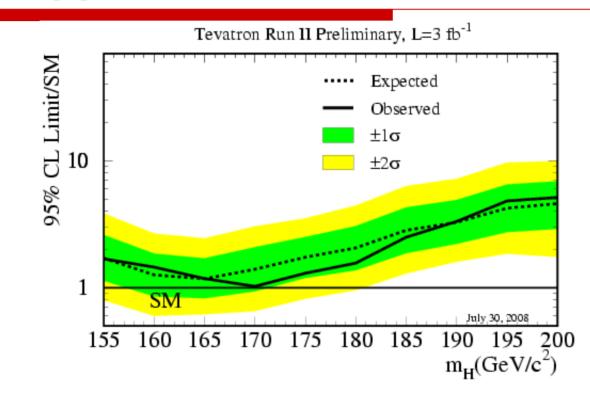
- > M_t =172.4 ± 1.2 GeV
- > $M_h = 84^{+34}_{-26} \text{ GeV}$
- M_h < 154 GeV (one-sided 95% cl)
- M_h < 185 GeV (Precision measurements plus direct search limit)


Best fit in region excluded by direct searches

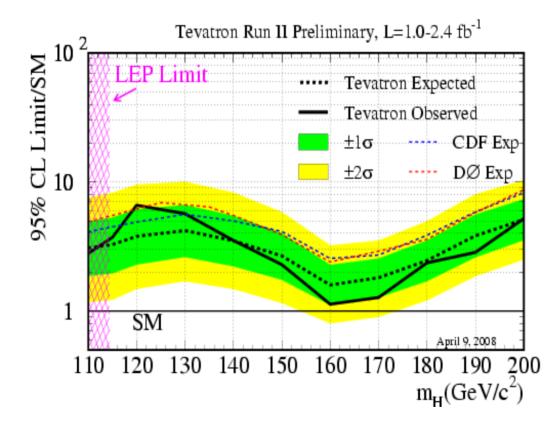
Higgs Mass From Individual Measurements



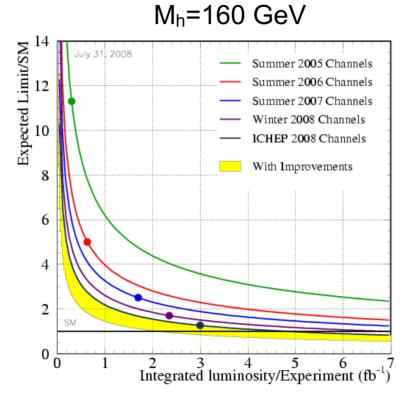
LEPEWWG


Higgs at the Tevatron

Higgs Branching Ratios

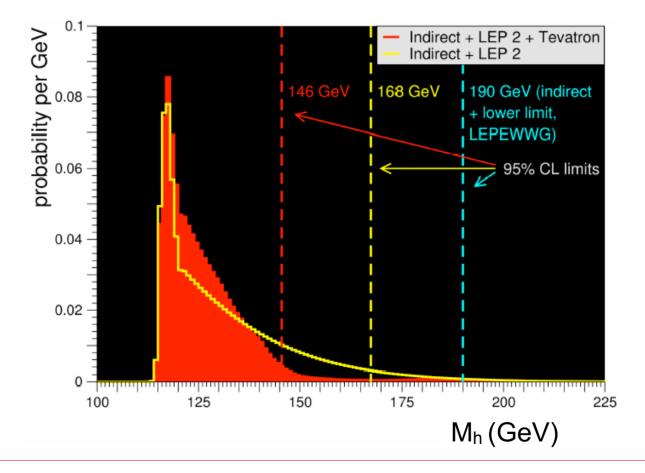


SM Higgs Searches at Tevatron


95% CL exclusion of SM Higgs at 170 GeV

SM Higgs Searches at Tevatron

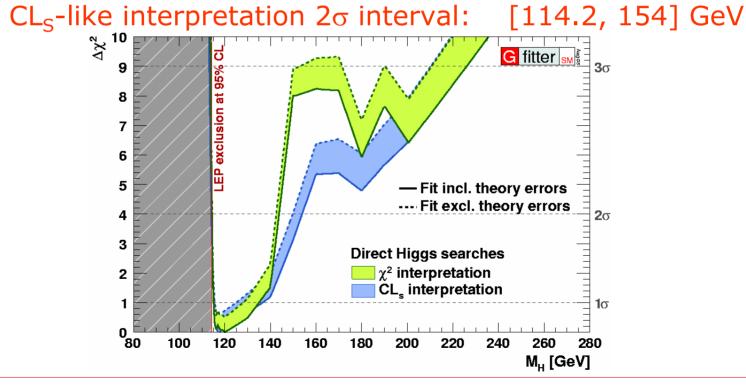
CDF/D0 combination with 3 fb⁻¹ coming. Expected sensitivity < 3 x SM @ M_h =115 GeV


Will Fermilab find the Higgs?

➢It's not just luminosity

Herndon, ICHEP 2008

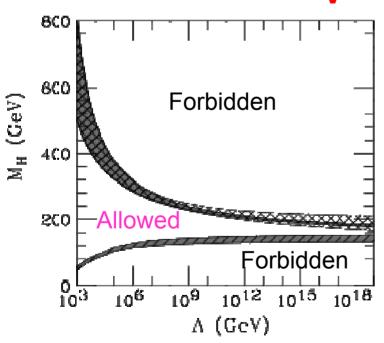
Tevatron Results Starting to Limit M_h



Erler, ICHEP08, arXiv:0809.2366

Tevatron Limits Have Impact on M_h

Higgs limit including Tevatron and LEP direct search:


χ² 2σ interval: [114.4, 144] GeV

Haller, ICHEP08, Gfitter analysis

Light Higgs Theoretically Attractive

 \succ Extrapolate Higgs potential to high scale Λ

 $V = \lambda (\Phi^+ \Phi - v^2)^2$

Standard Model is only consistent to Planck scale for 130 GeV < M_h < 180 GeV

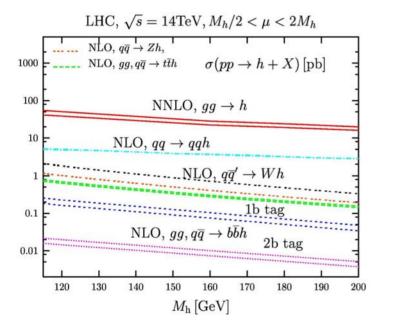
Heavy Higgs implies new physics at some low scale

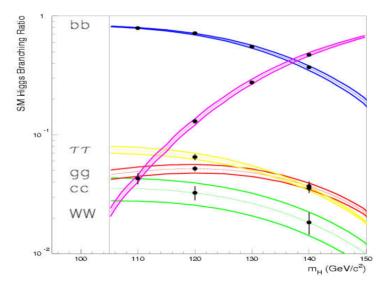
The signs

- All the evidence points towards a light Higgs boson
 - Consistency of precision EW measurements with measured M_W and M_t
 - Theoretical prejudices also suggest that if there is a SM Higgs boson, it will be light
- ➢ Will we find it at the LHC?

Eagerly Awaiting the LHC

- Sept 10, first particles injected in LHC
- Collisions in spring, 2009
- What can we learn from early data sets? (10 fb⁻¹)

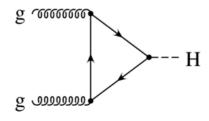



LHC Higgs Theory Challenges

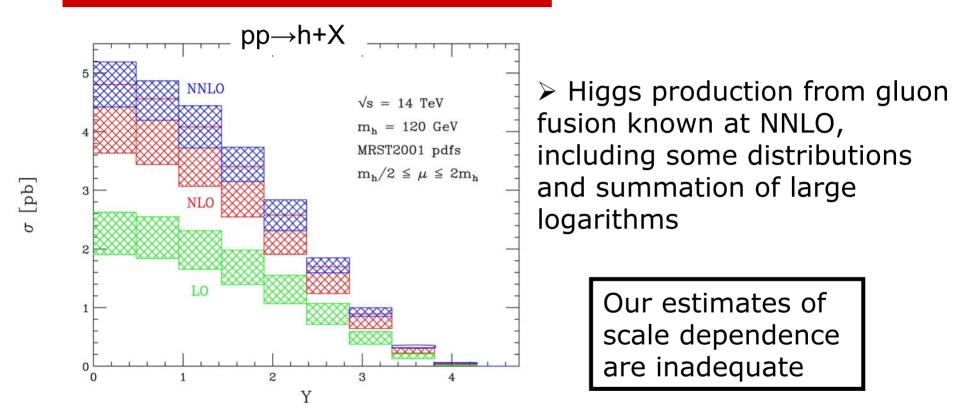
- Precise predictions for Higgs production & backgrounds
- Understanding uncertainties on predictions
 PDFs, scale uncertainties, model dependence
- Implementing NLO/NNLO in useful Monte Carlo programs
 - Including distributions
- Can we distinguish the Standard Model Higgs from all other possibilities?

Tremendous progress on all these fronts

Large Rates for Higgs at the LHC



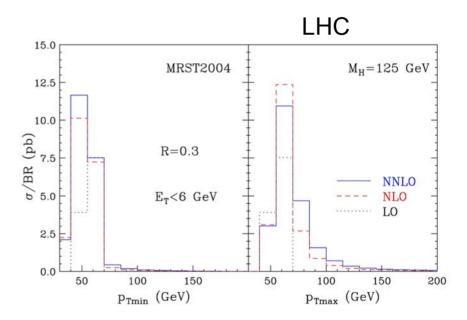
Total cross sections known to NLO or NNLO


Production Mechanisms in Hadron Colliders

Gluon fusion

- ➤ Largest rate for all M_h at LHC and Tevatron
- Rate known to NNLO in large M_t limit
 Effect is 15-20% for M_h < 200 GeV
- Soft gluon resummation increases rate +6%
- EW 2-loop effects increase rate 5-8%

Need to go beyond Total Cross Sections



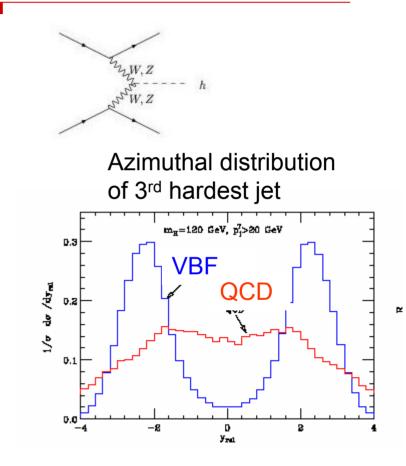
NNLO Monte Carlos

> NNLO MC for $gg \rightarrow h \rightarrow \gamma\gamma$ and $h \rightarrow WW$

> Photons isolated: Total energy in cone of ΔR =.3 less than 6 GeV

Note impact of NNLO corrections

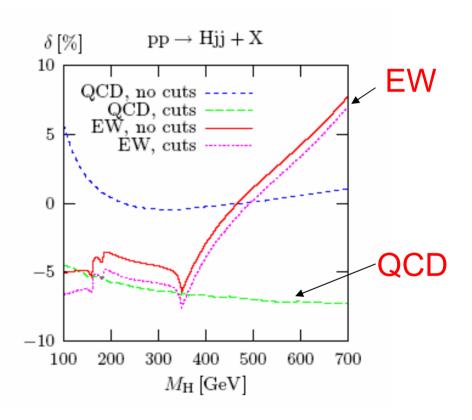
Gluon Fusion in Large Mt Limit


- Good approximation for small transverse momenta of accompanying jets and for parton energy << M_t
 - h+ 1 Jet, h+ 2 Jets at NLO known
- New: approximate NNLO gluon fusion total rate for finite M_t

	K^{NLO}	K ^{nnlo}
$m_H = 130 \text{ GeV}$		
pointlike	1.800	2.140
exact	1.797	n.a.
appr.	1.796	2.136
$m_H = 280 \text{ GeV}$		
pointlike	1.976	2.420
exact	1.958	n.a.
appr.	1.959	2.394

Marzani et al, arXiv: 0809.4934

Vector Boson Fusion


- QCD corrections increase LO rate by 5-10%
- Implemented for distributions
- Important channel for extracting couplings
- Need to separate gluon fusion contribution from VBF
 - Central jet veto
 - Many of the backgrounds known at NLO (Zeppenfeld et al)

Del Duca, Frizzo, Maltoni, JHEP05 (2004) 064

When are EW Corrections Needed?

- Electroweak corrections to vector boson fusion are of similar size as QCD corrections (-4%, -7%)
- Partial cancellation between EW & QCD

Ciccolini, Denner, Dittmaier, arXiv:0710.4749

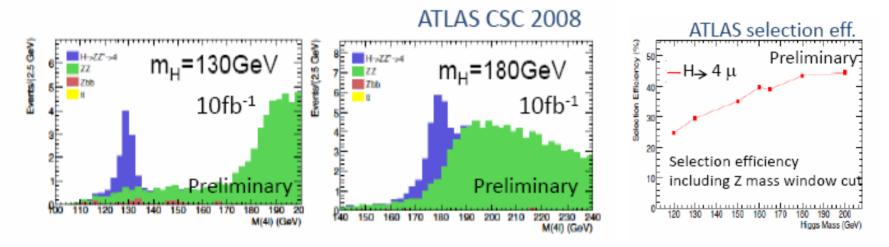
Much work done computing backgrounds

- \succ $\gamma\gamma$ directly measured from sidebands
 - Calculated at NLO
- \succ WW \rightarrow lvlv
 - NLO, NLO+soft gluon resummation, spin correlations in MC@NLO
 - gluon fusion at NNLO
- \succ ZZ \rightarrow 4l can be measured from sidebands
 - > NLO known
- tt, tt+jet known at NLO
- ➢ VV pair production from VBF at NLO

More Backgrounds Needed @ NLO

- \succ tt with finite width effects
- VV+jets
- ≻ Vtt
- ≻ VVbb
- ≻ ttjj
- ≻ ttbb

Much progress made


I haven't reviewed the status of implementation of higher order corrections in Monte Carlos

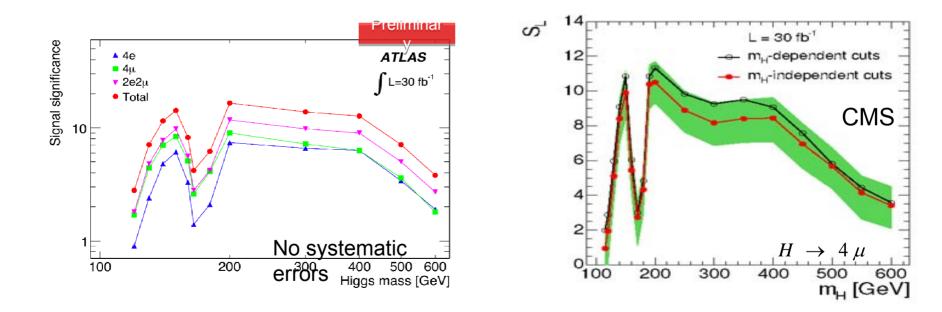
Improvement in LHC Higgs Studies

- Many analyses with full GEANT simulations
- New (N)NLO Monte Carlos for signal and background
- New approaches to match parton showers and matrix elements

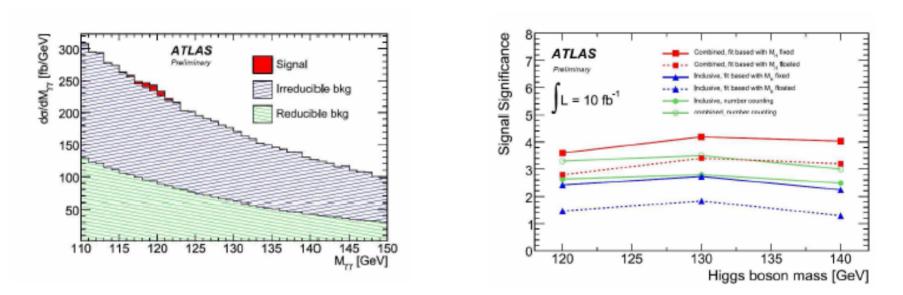
Golden Channel: $h \rightarrow ZZ \rightarrow 4$ leptons

Need excellent lepton ID

Below M_h ~130 GeV, rate is too small for discovery

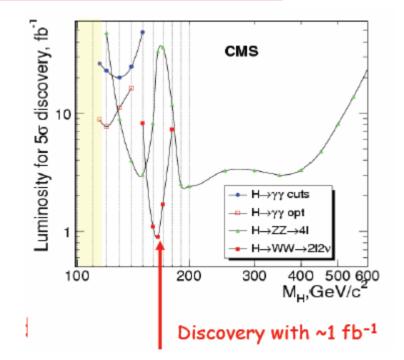

$H \rightarrow ZZ^* \rightarrow 4I$

4 lepton invariant mass (GeV)


Could be early discovery! $H \rightarrow 2e2\mu$ No. of events at 5o discovery luminosity $\int L = 9.2 \text{ fb}^{-1}$ CMS 12 Higgs 10 Zbb 50 150 200 250 100

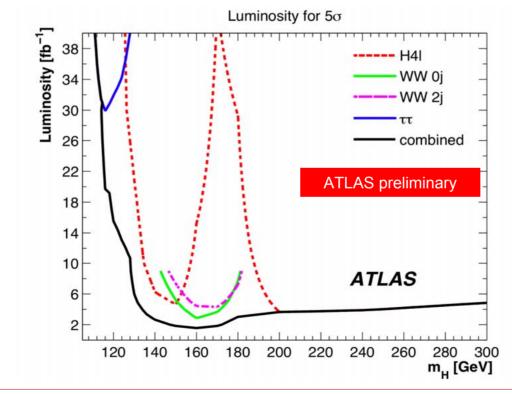
 $H \rightarrow ZZ^* \rightarrow 4I$

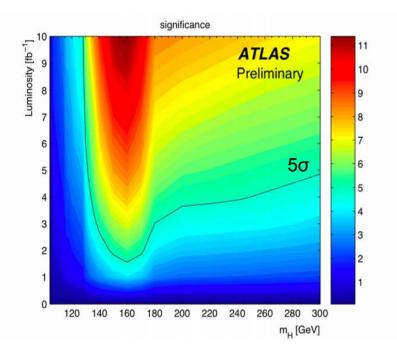
Data-driven methods to estimate backgrounds
 5σ discovery with less than 30 fb⁻¹


 $\rightarrow \gamma \gamma$

Higgs plus jet production may provide better Signal/Background

ATL-PHYS-PROC-2008-014

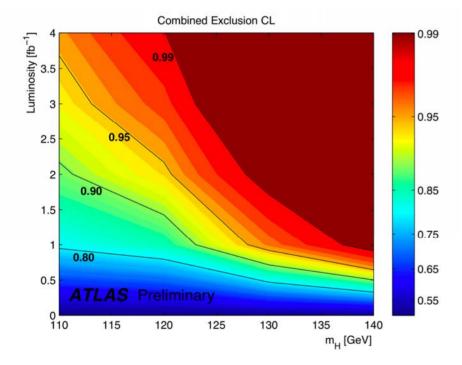

CMS SM Higgs, 2008


>Improvement in $\gamma\gamma$ channel from earlier studies >Note: no tth discovery channel

ATLAS SM Higgs, 2008

> Observation: gg \rightarrow h $\rightarrow\gamma\gamma$, VBF h $\rightarrow\tau\tau$, h \rightarrow WW \rightarrow lvlv, and h \rightarrow ZZ \rightarrow 4l

ATLAS SM Higgs, 2008


Discovery:

- Need ~20 fb⁻¹ to probe M_h =115 GeV
- 10 fb⁻¹ gives 5 σ discovery for 127 < M_h < 440 GeV
- 3.3 fb⁻¹ gives 5 σ discovery for 136< M_h 190 GeV

Luminosity numbers include estimates of systematic effects and uncertainties

Herndon, ICHEP 2008

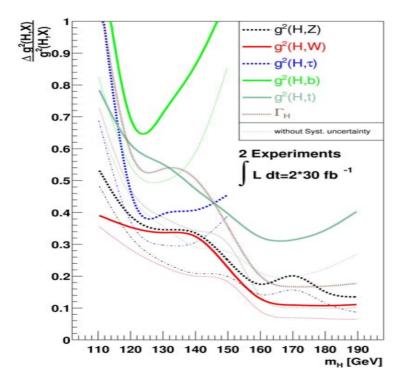
ATLAS SM Higgs, 2008

Exclusion:

- 2.8 fb⁻¹ excludes at 95% CL $M_h = 115$ GeV
- 2 fb⁻¹ gives exclusion at 95% CL for 121 < $M_h < 460$ GeV

Herndon, ICHEP 2008

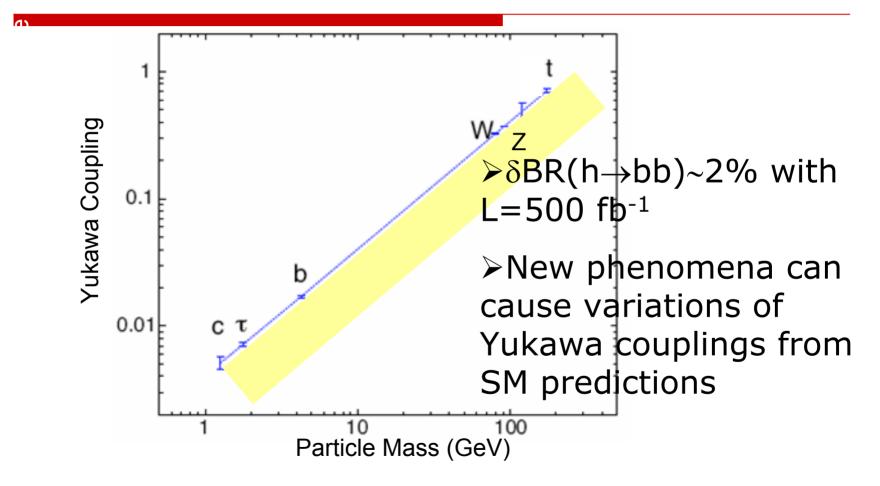
Is it *the* Higgs?


> Measure couplings to fermions & gauge bosons $\frac{\Gamma(h \to b\bar{b})}{\Gamma(h \to \tau^+ \tau^-)} \approx 3 \frac{m_b^2}{m_\tau^2}$

> Measure spin/parity
$$J^{PC} =$$

Measure self interactions

$$V = \frac{M_{h}^{2}}{2}h^{2} + \frac{M_{h}^{2}}{2v}h^{3} + \frac{M_{h}^{2}}{8v^{2}}h^{4}$$
 Need good
ideas here!


Higgs Couplings Difficult

Extraction of couplings requires understanding NLO QCD corrections for signal & background

Ratios of couplings easier

ILC Goal: Precision Measurements of Yukawa Couplings

On Very General Grounds.....

We expect a Higgs boson or something like it.... $G_r E^2 \left(M_r^2 \right)$

$$A(W_{L}^{+}W_{L}^{-} \to Z_{L}Z_{L}) = -\frac{G_{F}E^{2}}{8\sqrt{2}\pi} \left(\frac{M_{h}^{2}}{E^{2} - M_{h}^{2}}\right)$$

Unitarity \rightarrow Light Higgs: $M_h < 800 \text{ GeV}$ No Higgs: $\Lambda_c \sim 1.2 \text{ TeV} \leftarrow$ Unitarityviolation

Expect a light Higgs or New Physics below 1 TeV

Lee, Quigg, Thacker, PRD16, 1519 (1977)

Standard Model is Effective Low Energy Theory

- We don't know what's happening at high energy
 - > We haven't found the Higgs!
- > Effective theory approach: $L \approx L_{SM} + \sum_{i} f_{i} \frac{O_{i}}{\Lambda^{2}} + ...$
- Compute deviations from SM due to new operators and compare with experimental data

LHC job is to probe physics which generates these operators

Little Hierarchy Problem

- Unitarity arguments suggest new physics is at 1 TeV scale
- Much possible new physics is excluded at this scale
 - Look at possible dimension 6 operators
 - Many more operators than shown here
 - Limits depend on what symmetry is violated

New operators	Experimental limits
---------------	---------------------

$\frac{(\bar{d}s)(\bar{d}s)}{\Lambda^2}$	$\Lambda > 1000 \ TeV$
$\frac{m_b(\bar{s}\sigma_{\mu\nu}F^{\mu\nu}b)}{\Lambda^2}$	$\Lambda > 50 \ TeV$
$rac{(h^+D_\mu h)^2}{\Lambda^2}$	$\Lambda > 5 TeV$
$\frac{(D^2h^+D^2h}{\Lambda^2}$	$\Lambda > 5 TeV$

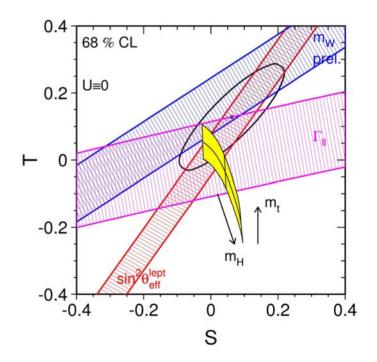
New Physics must be at scale $\Lambda > 5$ TeV

Many New Models...

Supersymmetry

- Trusty standard
- > NMSSM, MSSM with CP violation....

Little Higgs

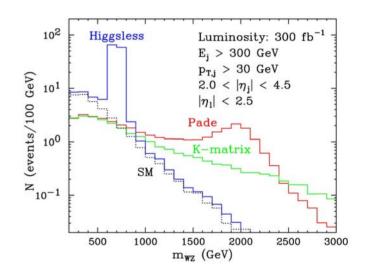

Higgs is pseudo Goldstone boson

Extra dimensions

- Higgs is component of gauge field in extra-D
- Higgsless: Symmetry breaking from boundary conditions
- Strong electroweak symmetry breaking
 - Technicolor, top-color

Higgs Mass Limits ASSUME Standard Model

- It's easy to construct models which evade Higgs mass limits
- > All you need is large $\Delta \rho = \alpha \Delta T$
 - Models typically have new particles.....

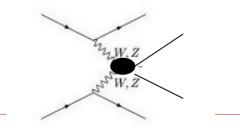

What if no Higgs?

- Technicolor models unitarize WW scattering with ρ-like particle
- Extra dimension models have new possibilities for EWSB
 - Higgs could be 5th dimension of gauge field
 - Or....generate EWSB from boundary conditions on branes (Higgsless)
- Models generically have "tower" of Kaluza Klein particles (massive vector particles): Vn

Experimental Signatures of Extra-D Higgsless Models

- Look for massive W, Z, γ like particles in vector boson fusion
 - Need small couplings to fermions to avoid precision EW constraints
 - Narrow resonances in WZ channel

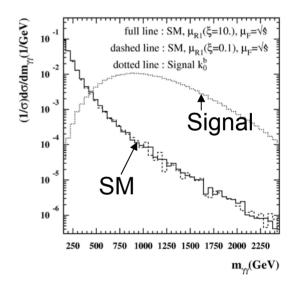
LHC: $pp \rightarrow WZ + X$


Different resonance structure from SM!

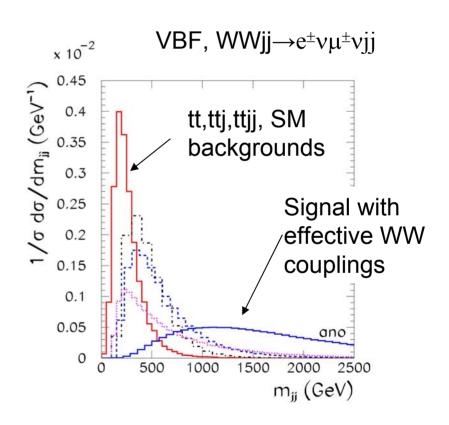
WW Scattering without a Higgs

- Construct effective Lagrangian without Higgs
 - Gauge boson interactions grow with energy
 - This Lagrangian violates unitarity

This is counting experiment


 Example: Search for anomalous WWγγ vertex through gauge boson fusion

Normalized to show difference in shape of signal and background


LHC

Eboli et al, hep-ph/0310141

No light Higgs/No KK particles/No techni-p Scenario

- No resonance
 - Effective Lagrangian couplings grow with energy
- Counting experiments
- Very hard!

Conclusion

- Theory challenges relate to understanding predictions for signal and background and implementing them in Monte Carlo programs
- Waiting for data!
- Electroweak symmetry breaking sector is win-win