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Abstract. We present an analytical description of neutrino oscillations in matter based on the
Magnus expansion of the time evolution operator. This approach incorporates in a simple and, at
the same time, accurate way the Earth matter effects on the flavor transition probabilities in a wide
interval of the neutrino energies. As a concrete application, we examine the daily change in the
observed flux of the electron neutrinos coming from the sun.
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INTRODUCTION

The determination of the angle θ13 and the CP-violating phase in the leptonic mixing
matrix, as well as the determination of the neutrino mass hierarchy, will be the main
goals of the next generation of neutrino oscillations experiments. In turn, the interpreta-
tion of the forthcoming results will require more careful theoretical descriptions of neu-
trino oscillations that incorporate sub-leading processes. A subject of particular interest
within this context, refers to the matter effects on the flavor transformations for neutrinos
propagating through the Earth. The problem has been investigated by direct numerical
integration of the equation that governs flavor evolution in a medium. Besides, analytic
calculations have been implemented to simplify the numerical computations and to gain
a better understanding of the underlying physics. For a varying density these studies
have been developed on the basis of the perturbation theory, both in the low [1] and high
[2] energy regimes. In this work, we present a novel analytic description of the effect
based on the Magnus exponential expansion of the time-displacement operator U (t, t0)
[3]. This approach incorporates in a simple way the Earth matter effects on the transi-
tion probabilities for neutrinos within a wide interval of energies and, in the case of solar
neutrinos, it makes possible a accurate description of regeneration phenomenon.

FORMALISM

The evolution of the flavor amplitudes of a neutrino system is conveniently described
in terms of the operator U (t, t0), which satisfies the Schrödinger-like equation [4]
(}= c = 1)

i
d U

dt
(t, t0) = H(t)U (t, t0), (1)

with the initial condition U (t0, t0) = I.



Typically, the quantity of interest is the probability Pνe of observing an electron
neutrino at a distance L ' t f − t0 from a source. If |ν(t f )〉 represents the neutrino state
at time t f , then Pνe = |〈νe|ν(t f )〉|2 = |〈νe|U (t f , t0)|ν(t0)〉|2, where |ν(t0)〉 denotes a
certain initial state. We consider oscillations between two neutrino flavors, let say νe
and νa. In the relativistic limit and after discarding an overall phase, the Hamiltonian of
the system in the flavor basis {|νe〉, |νa〉} can be written as

H(t) =
∆0

2

( −cos2θ sin2θ
sin2θ cos2θ

)
+

V (t)
2

(
1 0
0 −1

)
, (2)

where θ is the mixing angle in vacuum and we have defined ∆0 ≡ δm2/2E, with E
the neutrino energy and δm2 the squared mass difference. The effect of the medium is
accounted for by means of V (t) = Ve(t)−Va(t), the difference of the potential energies
for νe and νa. To lowest order in the Fermi constant GF , in normal matter V (t) =√

2GFne(t), where ne(t) is the number density of electrons along the neutrino path.
The evolution operator in the flavor basis can be expressed as U (t f , t0) =

Um(t f )U A (t f , t0)U†
m(t0), in terms of the corresponding operator U A (t, t0) in

the adiabatic basis of the (instantaneous) eigenstates {|ν1m(t)〉, |ν2m(t)〉} of H(t).
Here, Um(t) ≡ U(θm(t)) is the orthogonal 2 × 2 matrix that, at each time, di-
agonalizes the matrix in Eq. (2). The mixing angle in matter θm(t) is given by
sin2θm(t) = ∆0 sin2θ/∆m(t), where ∆m(t) = ∆0 [(ε(t) − cos2θ)2 + sin2 2θ ]1/2

stands for the difference between the energy eigenvalues expressed in terms the
non-dimensional quantity ε(t) = V (t)/∆0 = 2EV (t)/δm2.

If V (t) is symmetric with respect to the middle point of the neutrino trajectory
t̄ = (t f + t0)/2, then θm(t f ) = θm(t0) ≡ θ 0

m and U (t f , t0) = Um(t0) U A (t f , t0)U†
m(t0).

This is the situation for the Earth, in which case θ 0
m is the angle evaluated at the surface.

In what follows, we restrict ourselves to such a case and find an analytical approximation
for U (t f , t0) in terms of U A (t f , t0) calculated by means of the first two terms in the
expansion of the Magnus operator.

Proceeding in this manner, after some algebraic manipulations we arrive at

U A (t f , t0)∼=



(
cosξ − i sinξ ξ(2)

ξ

)
eiφt̄→t f i sinξ ξ(1)

ξ

i sinξ ξ(1)
ξ

(
cosξ + i sinξ ξ(2)

ξ

)
e−iφt̄→t f


 , (3)

where φx→y =
∫ y

x dt ′∆m(t ′), ξ =
√

ξ 2
(1) +ξ(2), ξ(1) = 2

∫ t f
t̄ dt ′ θ̇m(t ′) sinφt̄→t ′ , and ξ(2) =

∫ t f
t0 dt ′

∫ t ′
t0 dt ′′ θ̇m(t ′)θ̇m(t ′′) sinφt ′→t ′′ .

Suppose that |ν(t0)〉 = α |νe〉+ β |νa〉, with α and β non-negative (real) numbers
satisfying α2 +β 2 = 1, then

Pνe = α2 +(β 2−α2)(ImUea)2 +2αβ (ImUee)(ImUea), (4)

with ImUee = cos2θ 0
m ImU A

11 + sin2θ 0
m ImU A

12 and ImUea = −sin2θ 0
m ImU A

11 +
cos2θ 0

m ImU A
12 , where, according to Eq. (3), ImU A

12 = sinξ ξ(1)/ξ and ImU A
11 =



cosξ sinφt̄→t f− sinξ ξ(2)/ξ cosφt̄→t f . As we see, to this order only the imaginary parts
of the matrix elements of the evolution operator are relevant to the calculation of Pνe .
Formula (4) represents our main result and, in order to illustrate its usefulness, in the
next section we will apply it to the regeneration effect of solar neutrinos when they goes
trough the Earth.

DAY-NIGHT NEUTRINO ASYMMETRY

The relevant quantity in connection with the solar neutrinos is the probability for a neu-
trino born as a νe in the interior of the Sun, to remain as a νe at the Earth. The os-
cillation parameters controlling the leading effects are θ = θ12 and δm2 = δm2

12. If
the phase information is lost, as will typically happen for neutrinos traveling a long
distance to the detection point, then according to the LMA-MSW solution the aver-
aged survival probability for the electron neutrinos can be written as P(νe → νe) =
sin2 θ + cos2θ cos2θ 0¯− cos2θ 0¯ freg [5], where θ 0¯ denotes the matter mixing angle at
the production point in the interior or the Sun. The regeneration factor freg = P2e−sin2 θ
represents the terrestrial matter effects expressed as the difference between the probabil-
ity for ν2 to become νe after traversing the Earth P2e≡P(ν2→ νe) = |〈νe|U (t f , t0)|ν2〉|2
and the same probability in vacuum |〈νe|ν2〉|2 = sin2 θ .

We determine freg by calculating P2e in terms of Eq. (4), with |ν(t0)〉 = |ν2〉 =
sinθ |νe〉+ cosθ |νµ〉. Accordingly, we get

freg = cos2θ̃ 0
m cos2θ 0

m(ImU A
12 )2 + sin2θ̃ 0

m sin2θ 0
m(ImU A

11 )2

−sin(2θ̃ 0
m +2θ 0

m)(ImU A
12 )(ImU A

12 ) . (5)

Here, θ̃ 0
m = θ 0

m− θ is the rotation angle that relates the basis of the mass eigenstates
{|ν1,〉, |ν2〉} with the adiabatic one, evaluated on the surface of the Earth.

In order to compare our results with those corresponding to the first and second order
in the ε-perturbative we consider the so called mantle-core-mantle model for the density
inside the Earth [6]. In this simple model the electron density is approximated by a
double step function and the radius of the core and the thickness of the mantle are
assumed to be half of the Earth’s radius R⊕: ne(r)/NA = 5.95 cm−3 for r ≤ R⊕/2
and ne(r)/NA = 2.48 cm−3 for R⊕/2 < r ≤ R⊕. Following Ref. [7] we introduce the
function δ (E) = ( f (appr)

reg (E)− f (exact)
reg (E))/ f̄reg(E), where f (appr)

reg is given by a certain
(approximated) analytical expression, f (exact)

reg is obtained from the exact (numerical)
solution and f̄reg(E) = 1/2 ε0 sin2 θ is the average regeneration factor evaluated at
the surface layer. Essentially, δ (E) represents the relative error of the approximated
expression.

In Fig. 1 we plotted δ (E) as a function of the energy for neutrinos that cross the
Earth through its center, in the energy interval relevant for 8B solar neutrinos. As shown
there, the relative errors associated to the Magnus approximations are always smaller
than those corresponding to the perturbative calculations. The lowest-order Magnus
result, derived by putting ξ(2) = 0 in Eq. (5), works even better than the second-order
perturbative expressions, reducing the relative error to less than 0.5% within the energy
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FIGURE 1. The relative error δ as a function of the energy for a neutrino crossing the center of the
Earth. Left panel corresponds to the envelopes of |δ |. The oscillation parameters are δm2

21 = 8×10−5 eV2

and tan2 θ12 = 0.4. (a) and (b) correspond to the first and second order of the perturbative approach,
respectively, and (c) and (d) correspond to the first and second order Magnus calculation in the adiabatic
basis, respectively.

interval. If the second order term in the Magnus expansion is incorporated, then δ (E)
decrease by almost one order of magnitude. Even though here we restricted us to the low
energy regime, the same formalism can be applied to higher energies and, in particular,
to analyses matter effects on the oscillations of atmospheric neutrinos [3].

ACKNOWLEDGMENTS

ADS is supported by a postdoctoral grant from the UNAM. All the authors acknowledge
the support of PAPIIT-UNAM through grants IN115707 and IN115607 and CONACyT
through grant 46999-F.

REFERENCES

1. A. N. Ioannisian and A. Y. Smirnov, Phys. Rev. Lett. 93, 241801 (2004). E. K. Akhmedov, M. A. Tór-
tola, and J. W. Valle, JHEP 057, 0405 (2004). A. N. Ioannisian, N. A. Kazarian, A. Y. Smirnov and
D. Wyler, Phys. Rev. D 71, 033006 (2005).

2. E. Kh. Akhmedov, M. Maltoni, and A. Yu Smirnov, Phys. Rev. Lett. 95, 211801 (2005). B. Brah-
machari, S. Choubey, and P. Roy, Nucl. Phys. B 671, 483 (2003). W. Liao, Phys. Rev. D 77, 053002
(2008). J. Arafune, M. Koike, and J. Sato, Phys. Rev. D 56, 3093 (1997).

3. A. D. Supanitsky, J. C. D’Olivo and G. Medina-Tanco, Phys. Rev. D 78, 045024 (2008).
4. J. C. D’Olivo and J. A. Oteo, Phys. Rev. D 42, 256 (1990).
5. A. Y. Smirnov, arXiv:hep-ph/0702061 (2007).
6. F. D. Stacey, Physics of the Earth, Wiley, New York, 1977.
7. A. N. Ioannisian, N. A. Kazarian, A. Y. Smirnov and D. Wyler, Phys. Rev. D 71, 033006 (2005).


