Electroweak scale neutrinos and Higgses

Alfredo Aranda

Facultad de Ciencias - Universidad de Colima Dual CP Institute of High Energy Physics

XIII Mexican School of Particles and Fields - 2008

Alfredo Aranda (Colima - DCPIHEP)

EW scale neutrinos and Higgses

Outline

Standard Model

- Particle Content
- Gauge Structure
- The missing ingredient

Beyond the Standard Model

- Experimental Evidence
- Pseudo-experimental evidence
- Theoretical evidence
- Going beyond
- Minimal model
 - Electroweak scale additions
 - The Model

Model with Higgs triplets

- Additional field content
- Virtues

Particle Content

Gauge Structure.

interactions

- $I SU(3)_C \times SU(2)_W \times U(1)_Y$
- 8 gluon fields for the Strong interaction.
- 3 gauge fields for the Weak interaction.
- I gauge field for the Electromagnetic interaction.

Gauge Structure.

interactions

- $I SU(3)_C \times SU(2)_W \times U(1)_Y$
- 8 gluon fields for the Strong interaction.
- 3 gauge fields for the Weak interaction.
- I gauge field for the Electromagnetic interaction.

$$\begin{pmatrix} \nu_{e} \\ e^{-} \end{pmatrix}_{L} \begin{pmatrix} \nu_{\mu} \\ \mu^{-} \end{pmatrix}_{L} \begin{pmatrix} \nu_{\tau} \\ \tau^{-} \end{pmatrix}_{L} \begin{pmatrix} u \\ d \end{pmatrix}_{L} \begin{pmatrix} c \\ s \end{pmatrix}_{L} \begin{pmatrix} t \\ b \end{pmatrix}_{L}$$

$$e_{R} \mu_{R} \tau_{R} \quad u_{R} d_{R} c_{R} s_{R} t_{R} b_{R}$$

Higgs - The missing ingredient.

Massive force carriers!

- **()** Principle of Gauge Symmetry \rightarrow Massless Gauge bosons.
- 2 Massive Gauge bosons \rightarrow inconsistent theory!
- Solution: Spontaneous Symmetry Breaking Higgs Mechanism

Higgs - The missing ingredient.

Massive force carriers!

- **()** Principle of Gauge Symmetry \rightarrow Massless Gauge bosons.
- 2 Massive Gauge bosons \rightarrow inconsistent theory!
- Solution: Spontaneous Symmetry Breaking Higgs Mechanism

SM predicts the existence of a new particle, the Higgs.

Higgs - The missing ingredient.

Massive force carriers!

- **()** Principle of Gauge Symmetry \rightarrow Massless Gauge bosons.
- 2 Massive Gauge bosons \rightarrow inconsistent theory!
- Solution: Spontaneous Symmetry Breaking Higgs Mechanism

Experimental Evidence

- Neutrinos are MASSIVE.
- Baryon Asymmetry A mystery.
- Oark Matter
- Oark Energy

Experimental Evidence

- Neutrinos are MASSIVE.
- Baryon Asymmetry A mystery.
- Oark Matter
- Oark Energy

Experimental Evidence

Experimental Evidence

Pseudo-experimental Evidence

Gauge coupling unification.

Pseudo-experimental Evidence

Gauge coupling unification.

Pseudo-experimental Evidence

Gauge Hierarchy problem.

Pseudo-experimental Evidence

Gauge Hierarchy problem.

Theoretical Evidence

Alfredo Aranda (Colima - DCPIHEP)

EW scale neutrinos and Higgses

XIII-EMPC: October 6, 2008 10 / 33

How do we go beyond the Standard Model?

Approaches

- Grand Unified Theories.
- Supersymmetry.
- Extra dimensions.
- $\textcircled{4} \bigcirc \diamondsuit \bigcirc \bigcirc$

How do we go beyond the Standard Model?

Approaches

- Grand Unified Theories.
- Supersymmetry.
- Extra dimensions.

Paradigm: Something is happening at high (very high) energy scales.

Minimalistic additions

Proposal

Any addition to the Standard Model should NOT introduce higher energy scales ^a.

Effects of additions should be testable at future accelerators: LHC/ILC

^aA.A, Omar Blanno and J. Lorenzo Díaz-Cruz, Physics Letters B 660, 62-66 (2008)

Right-handed neutrinos at the Electroweak scale

The model

- SM particle content and gauge interactions.
- Existence of 3 RH neutrinos with a mass scale of EW size.
- Global U(1)_L spontaneously (and/or explicitly) broken at the EW scale by a single complex scalar field.
- Higgs sector: SU(2)_L doublet Higgs field Φ and a SM singlet complex scalar field η.

Neutrino and scalar sector

The Lagrangian

$$\mathcal{L}_{\nu H} = \mathcal{L}_{\nu y} - V \; ,$$

with

$$\mathcal{L}_{\nu y} = -y_{lpha i} ar{L}_{lpha} N_{Ri} \Phi - rac{1}{2} Z_{ij} \eta ar{N}^c_{Ri} N_{Rj} + h.c. \; ,$$

$$V = \mu_D^2 \Phi^{\dagger} \Phi + \frac{\lambda}{2} \left(\Phi^{\dagger} \Phi \right)^2 + \mu_S^2 \eta^* \eta + \lambda' \left(\eta^* \eta \right)^2$$

+ $\kappa \left(\eta \Phi^{\dagger} \Phi + h.c. \right) + \lambda_m \left(\Phi^{\dagger} \Phi \right) \left(\eta^* \eta \right).$

Breaking the symmetry

$$\Phi = \left(egin{array}{c} 0 \ rac{\phi^0 +
u}{\sqrt{2}} \end{array}
ight) \ \ ext{and} \ \ rac{\eta}{\eta} = rac{
ho +
u + i\sigma}{\sqrt{2}} \ ,$$

(1)

Breaking the symmetry

$$\Phi = \left(egin{array}{c} 0 \ rac{\phi^0 + v}{\sqrt{2}} \end{array}
ight) \ \ ext{and} \ \ \eta = rac{
ho + u + i\sigma}{\sqrt{2}} \ ,$$

Scalar masses

$$M_{\rm S}^2 = \begin{pmatrix} \lambda v^2 & vu(\lambda_m - \sqrt{2}r) \\ vu(\lambda_m - \sqrt{2}r) & 2\lambda'u^2 + \frac{1}{\sqrt{2}}rv^2 \end{pmatrix}$$
(2)
$$M_{\sigma}^2 = \frac{rv^2}{\sqrt{2}}$$
(3)

(1)

Physical states

$$\mathcal{H} = \begin{pmatrix} \phi^{0} \\ \rho \end{pmatrix} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} h \\ H \end{pmatrix}$$
(4)

Physical states

$$\mathcal{H} = \begin{pmatrix} \phi^{0} \\ \rho \end{pmatrix} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} h \\ H \end{pmatrix}$$
(4)

Lagrangian

$$\mathcal{L}_{\nu y} \supset \left(-\frac{y_{\alpha i}}{\sqrt{2}} \bar{\nu}_{L\alpha} N_{Ri} (c_{\alpha} h - s_{\alpha} H) + h.c. \right) - \left(\frac{i}{2\sqrt{2}} Z_{ij} \bar{N}_{Ri}^{c} N_{Rj} \sigma + h.c. \right) - \left(\frac{1}{2\sqrt{2}} Z_{ij} \bar{N}_{Ri}^{c} N_{Rj} (s_{\alpha} h + c_{\alpha} H) + h.c \right) .$$
(5)

Neutrino masses

Seesaw

$$m_
u = \left(egin{array}{cc} 0 & m_D \ m_D & M_M \end{array}
ight)$$

•
$$(m_D)_{\alpha i} = y_{\alpha i} v / \sqrt{2}$$

- Consider the third family $(2 \times 2 \text{ matrix})$
- Assume $m_D << M_M o m_1 = -m_D^2/M_M$ and $m_2 = M_M$
- Requiring $m_1 \sim O(eV)$ and $m_2 \sim (10 100)$ GeV leads to $y_{\tau i} \leq 10^{-6}$ (comparable to Yukawa coupling of the electron).

(6)

Neutrino eigenstates

$$\nu_{\tau} = \cos \theta \, \nu_{L1} + \sin \theta \, \nu_{R2}$$
$$N = -\sin \theta \, \nu_{L1} + \cos \theta \, \nu_{R2}$$

with $\theta = \sqrt{m_D/m_2} \approx 10^{-(5-6)}$.

Neutrino eigenstates

$$\nu_{\tau} = \cos\theta \nu_{L1} + \sin\theta \nu_{R2}$$
$$N = -\sin\theta \nu_{L1} + \cos\theta \nu_{R2}$$

with $\theta = \sqrt{m_D/m_2} \approx 10^{-(5-6)}$.

Relevant terms

$$\mathcal{L} \supset h \left[\bar{\nu}_{L1}^{c} \nu_{L1} \left(-\frac{Z}{2\sqrt{2}} s_{\theta}^{2} s_{\alpha} \right) + \bar{\nu}_{R2}^{c} \nu_{R2} \left(-\frac{Z}{2\sqrt{2}} c_{\theta}^{2} s_{\alpha} \right) + h.c. \right] \\ + \bar{\nu}_{L1} \nu_{R2} \left(\frac{Y_{\nu}}{\sqrt{2}} (s_{\theta}^{2} - c_{\theta}^{2}) c_{\alpha} \right) + \bar{\nu}_{R2} \nu_{L1} \left(\frac{Y_{\nu}}{\sqrt{2}} (s_{\theta}^{2} - c_{\theta}^{2}) c_{\alpha} \right)$$

where $y^*_
u = y_
u$ and $Z \equiv Z_{11}$

Higgs decays

$$\begin{split} &\Gamma(h \to \bar{\nu}_1 \nu_1) = \frac{m_h}{64\pi} |Z|^2 s_{\theta}^4 s_{\alpha}^2 \\ &\Gamma(h \to \bar{\nu}_2 \nu_2) = \frac{m_h}{64\pi} |Z|^2 c_{\theta}^4 s_{\alpha}^2 \left(1 - \frac{4m_2^2}{m_h^2}\right)^{3/2} \\ &\Gamma(h \to \bar{\nu}_1 \nu_2) = \frac{m_h}{16\pi} y_{\nu}^2 (s_{\theta}^2 - c_{\theta}^2)^2 c_{\alpha}^2 \left(1 - \frac{m_2^2}{m_h^2}\right)^2 \end{split}$$

Possible signatures

Higgs decay	$\nu_2 \rightarrow \nu_1 Z^*$	$ u_2 \rightarrow IW^*$	$\nu_2 \rightarrow \nu_1 \gamma$
$h \rightarrow \nu_1 \nu_2$	$I^{+}I^{-} + X$	I + I' + X	$\gamma + X$
	$qar{q} + X$	$I + q \bar{q}' + X$	
$h \rightarrow \nu_2 \nu_2$	$I^+I^- + I^+I^- + X$	I + I' + I'' + I''' + X	
	$I^+I^- + q\bar{q} + X$	$I + I' + I'' + q\bar{q} + X$	$\gamma + \gamma + X$
	$qar{q}+qar{q}+X$	$I+I'+q\bar{q}+q\bar{q}+X$	
$h \rightarrow \nu_1 \nu_1$	-	-	-

Higgs Branching ratios

Higgs Branching ratios

Alfredo Aranda (Colima - DCPIHEP)

EW scale neutrinos and Higgses

XIII-EMPC: October 6, 2008 22/33

Higgs Branching ratios

Neutrino decay

2 - body

$$\Gamma = rac{(B^2+C^2)(m_2^2-M_v^2)^2(1+2rac{M_v^2}{m_2^2})}{8\pi M_v^2 m_2^2}\,.$$

3 - body

$$\Gamma = rac{m_2^5}{384\pi^3 M_v^4} \left[(B^2+C^2)(a_f^2+b_f^2)
ight] \; ,$$

A model with Higgs triplets

Additional fields ^a	SU(2) _W	U(1) _Y
$\mathcal{L}_{\mathcal{R}}^{\mathcal{M}}=ig(u_{\mathcal{R}} ~~ oldsymbol{e}_{\mathcal{R}}^{\mathcal{M}}ig)$	2	0
$\tilde{\chi} = \left(\chi^0 \ \chi^+ \ \chi^{++}\right)^T$	3	-2
$\xi = \left(\xi^+ \ \xi^0 \ \xi^+ ight)^T$	3	0
e_L^M	1	0
$\phi_{ extsf{S}}$	1	0

An additional $U(1)_M$ under which

$$L^M_R, \ \mathbf{e}^M_L \to \mathbf{e}^{i\theta_M} L^M_R, \ \mathbf{e}^M_L; \ \ \tilde{\chi} \to \mathbf{e}^{-2i\theta_M} \tilde{\chi}, \ \ \phi_S \to \mathbf{e}^{-i\theta_M} \phi_S$$

^aAA, J. Hernández-Sánchez and P.Q Hung; arXiv:0809.2791

Virtues

- Since ν_R is not an SU(2)_L singlet, it does not couple to $\overline{L}_L \tilde{\Phi}$
- The Dirac mass for neutrinos comes from the term $\mathcal{L}_{S} = -g_{sl}\bar{L}_{L}\phi_{S}L_{R}^{M} + h.c.$ which leads to $M_{\nu}^{D} = g_{sl}v_{s}$.
- The Dirac mass for neutrinos is independent of the EW scale
- The U(1)_M symmetry forbids the terms $g_L L_L^T \sigma_2 \tau_2 \tilde{\chi} L_L$ and $L_L^T \sigma_2 \tau_2 \tilde{\chi} L_R^M$ at tree level.
- The Dirac mass for the neutrinos comes from v_s and M_L arises at the one-loop level and can be much smaller than M_R .

Neutrino masses

Majorana mass matrix: ۲

$$\mathcal{M} = \left(egin{array}{cc} M_L & m_
u^D \ m_
u^D & M_R \end{array}
ight)$$

- where $M_l \sim \epsilon (m_{\nu}^D)^2 / M_R < 10^{-2} (m_{\nu}^D)^2 / M_R$.
- If $g_{sl} \sim O(g_M)$ and $v_M >> v_S \rightarrow -(g_{sl}^2/g_M)(v_s/v_m)v_s(1-\epsilon)$ and $M_{\rm P}$, where $\epsilon < 10^{-2}$
- Since $v_M \sim \Lambda_{FW}$, and $m_{\nu} < 1 \text{ eV}$

$$v_{\rm S} pprox \sqrt{(1 {\rm eV}) imes v_M} \sim {\rm O}(10^{5-6} {\rm eV})$$

Scalar phenomenology

χ^{++}

Doubly charged Higgs \rightarrow interesting phenomenology.

Different from that of the general two triplets model due to the following observations:

- Due to the $U(1)_M$ symmetry of the model the decay $\Gamma(\chi^{++} \rightarrow I^+ I^+)$ is not present.
- Specific modes of the model: $\Gamma(\chi^{++} \rightarrow I_i^M I_i^M)$ and $\Gamma(\chi^{++} \to I \phi_S I_M)$ or even $\Gamma(\chi^{++} \to I \phi_S \phi_S)$.

χ^{++} decays

Relevant decays

- $B(\chi^{++} \rightarrow I_M^+ I_M^+)$ • $B(\chi^{++} \rightarrow W^+W^+)$
- $B(\chi^{++} \rightarrow H_3^+ W^+)$
- $B(\chi^{++} \rightarrow I^+ \nu W^+)$
- $B(\chi^{++} \rightarrow l^+ \phi_{\rm S} l_M^+)$

Virtues

χ^{++} branching ratios

χ^{++} branching ratios

Final remarks

- Minimal testable extensions of the SM lead to interesting phenomenology
- Addition of EW scale RH neutrinos and a complex scalar
- Role of the MAJORON underway

Final remarks

- Minimal testable extensions of the SM lead to interesting phenomenology
- Addition of EW scale RH neutrinos and a complex scalar
- Role of the MAJORON underway

- Triplet Higgses and RH neutrinos might be related
- Seesaw testable at colliders!
- Rich and testable phenomenology