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Abstract.
Early Inflation and Dark Energy are two cosmological epochs where the universe accelerates and

we present the possibility that these stages are due to the same particle the uniton field φ . After
Inflation the field φ decays and reheats the universe. To obtain Dark Energy φ must be regenerated
via a quantum process (back decay). This back decay happens at a late time, close to present time,
and therefore our unification allows to unify Inflation with Dark Energy but also and explains the
coincidence problem.

INTRODUCTION

Dark Energy "DE" and early Inflation [1] are the two known stages of positive accelera-
tion of our universe. They are both separated by a long period of time where our universe
was dominated by radiation first and later by matter so that structure was able to form.
From a particle physics point of view the most appealing candidate for the DE is a scalar
field [4]-[5] which interacts weakly with standard model "SM" particles. Here we will
assume that DE and inflation are given in terms of the same scalar field and we will call
this field the "uniton" φ , from inflaton-dark energy unification [6]. Inflation takes place
when the scalar potential is flat enough and by choosing the right potential V (φ) we can
easily achieve it, however, most of the time our universe was in a decelerating phase
and this phase must be naturally explained by any inflation-dark energy unification. We
reheat the universe and obtain a long period of deceleration by coupling the uniton to
another scalar ϕ . After early inflation the uniton decays into ϕ , reheating the universe,
while at low energies (close to present time) ϕ decays back and regenerates the uniton.
The appearance of DE is then via a quantum process and not only through its classical
evolution. The standard reheating process is enhanced in our class of models since the
conditions for instant preheating [8] are easily met and we have an efficient decay. In
the reheating epoch the uniton evolves through a region where the mass of ϕ vanishes
but the potential V (φ) does not. To reheat the universe with the standard model "SM"
particles we couple ϕ to the SM particles at high energies, where ϕ and SM particles
are relativistic, via a 2↔ 2 process. They achieve thermal equilibrium "TE" and remain
in TE as long as ϕ and the SM particles remain relativistic. The quantum regeneration
scenario for DE, presented here, has some interesting generic properties and can be ob-
servationally or experimentally tested. The explicit form of the uniton potential V (φ) is
not important as long as if inflates the universe at an early and late epoch and the uniton



field evolves a through region (e.g. |φ | ¿ 1) where the conditions for instant preheating
are met. The field ϕ remains relativistic until present time and therefore we have more
relativistic energy density given by

Ωϕ =
gϕ

gr
Ωr (1)

with gϕ = 1,gr = gϕ +gSM the relativistic degrees of freedom. This extra Ωϕ is favored
by the cosmological data [9] and since the interaction between DE and ϕ remains at low
energies it can also have phenomenological consequence in structure formation and the
evolution of DE. In fact, an interacting DE has been proposed to explain a w smaller
than -1 for DE [10]. In models where inflation and reheating takes place at a low energy,
as in the model presented here with E ≤ EI = O(100)TeV , the temperature is large to
produce all SM particles but low enough so that ϕ could be produced at LHC. Of course
we should be careful not to contradict present day constrained from charged particles
[11] or a long range force [12].

GENERAL FRAMEWORK

Our starting point is a flat FRW universe with the uniton φ , a second ϕ scalar field and
the SM. We take the lagrangian L = LSM + L̃, where LSM is the SM lagrangian,

L̃ =
1
2

∂µφ∂ µφ +
1
2

∂µϕ∂ µϕ−V (φ)−B(ϕ)−Vint(φ ,ϕ,SM). (2)

The uniton potential is V (φ) while Vint is the complete interaction potential. The po-
tential B(ϕ) may be required to stabilize ϕ , e.g. B(ϕ) = λϕ4 for Vint in eq.(20). The
requirement for V is that it satisfies the slow roll conditions |V ′/V | < 1, |V ′′/V | < 1,
where a prime denotes derivative w.r.t. to φ , at the inflation epoch and at present time
for DE. We also take V such that φ evolves through regions where instant preheating is
possible, e.g. V (φ = 0) 6= 0. The interaction term Vint has two important consequences.
On the classical level it couples the differential equations of φ and ϕ through derivatives
of Vint while at a quantum level it allows for a particle decay.

We define the energy density and pressure for the field φ as

ρφ =
1
2

φ̇ 2 +V, pφ =
1
2

φ̇ 2−V (3)

and
ρϕ =

1
2

ϕ̇2 +B+Vint , pϕ =
1
2

ϕ̇2−B−Vint (4)

for ϕ. The total energy density and pressure are then given by ρ = ρφ +ρϕ , p = pφ + pϕ .
The classical evolution of φ and ϕ is given by the equations of motion [14]

φ̈ +3Hφ̇ +V ′+V ′
int = 0 (5)

ϕ̈ +3Hϕ̇ +Bϕ +Vint,ϕ = 0 (6)

with H2 = ρ/3 and 8πG≡ 1.



UNITON POTENTIAL V(φ)

The choice of V is not essential in this class of models as long as it is flat at a high
energy and late time to give an accelerating universe and that the evolution of the field φ
go through values where V 6= 0 with mϕ = 0 so that |ṁϕ/m2

ϕ | À 1. However, to be more
specific we present as an example the potential [6]

V (φ) =
VI

2

(
1− 2

π
arctan[kφ ]

)
(7)

with VI,k constant parameters. The potential in eq.(7) can be motivated by the interaction
AB → C → A′B′, with the exchange of a scalar particle with propagator 1/(E2

c − p2
c −

m2
c). The Yukawa potential VY ∝ e−mr/r is obtained as the fourier transformation for

Ec ' 0 while our potential corresponds to zero momentum with pc = 0 and Ec =
mA−mB. Integrating the propagator with imaginary energy Ec = iẼc we get a potential
Vs ∝

∫ ∞
−∞ dEc/(E2

c −m2
c) =−iπ/mc and an euclidian action SE =−iS ∝−iVs ∝−π/mc.

This SE gives an exponentially suppressed transition rate connecting a maximum (e.g. at
VI) to a minimum (e.g. V = 0), i.e. a sphaleron configuration. If we take the integration
limits as Emax = mA−mB = φ we have V ∝

∫ φ
−φ dẼc/(Ẽ2

c + m2
c) = 2arctan[φ/mc])/mc

corresponding to V in eq.(7). We could identify the energy scale VI as the ultraviolet
cutoff scale above which susy (or another symmetry) gives a vanishing V .

We constrain the values of VI,k in eq.(7) by demanding that during inflation cδρ/ρ =
V 3/2/V ′ = 5.2× 10−4,c =

√
75π2 and at present time the DE density V (φo = 1) '

Vo = (2×10−3eV )4. The potential in eq.(7) has V ′ =−VIk/[π(1+ k2φ 2)], m2
φ0 = V ′′ =

2VIk3φ/[π(1 + k2φ 2)2] and the limits V (−∞) = VI,V (0) = VI/2 and V (∞) = 0. If we
take k À 1 (as will be needed later on) then the potential V satisfies the slow roll
conditions and accelerates the universe for φ < −k−1/3 and for φ ≥ 1. During the last
60 e-folds of inflation we have k−1/3 ≤−φ ¿ 1 and the potential can be approximated
by V 'VI , V ′ '−VI/kφ 2 '−VIk−1/3 and V 3/2/V ′ 'V 1/2

I k1/3 while for φ ' 1 we have
V (φo' 1) =Vo'VI/k. We then obtain the values k' 1066À 1 and VI ' 10−53¿ 1. The
dimension of VI is [VI] = [E4] so we obtain an inflationary epoch EI = V 1/4

I ' 100TeV
while [k] = [1/E] and 1/k = O(EI(VI/m4

pl)) = O(E5
I ).

Decay

In a non expanding universe the number density n = N/Vol, where N is the total
number of particles and Vol the volume, evolves as n(t) = nie−Γ(t−ti) where Γ is the
transition (constant) rate. The differential transition rate is given by [13]

dΓ = Vol(2π)4|Mab|2δ 4(PI−PF)Πa
1

2EaVol
Πb

d3 pb

2Eb(2π)3 (8)

where PI(PF) is the initial (final) momentum, Vol is the volume (normalized to one
particle per volume) and Mab ≡ 〈b|M|a〉 is the transition amplitude. The conservation



of energy-momentum requires that initial and final energies are equal, Ei = E f and
pi = p f . In a process of a identical initial particles with energy Ea and mass ma and
a final state consisting of b particles with the same energy Eb and mass mb so that
Ei = aEa = bEb = E f differential transition rate is

Γ = cab|Mab|2na−1
a pb−1

b Eb−a−3
a (9)

cab = (a/b)b−22(1−a−b)(2π)3−2b/a. In the limit where the decaying particle is non-
relativistic with Ea ' ma À mb, pb ' Eb then eq.(9) becomes

Γ = cab|Mab|2na−1
a E2b−a−4

a = cab|Mab|2na−1
a m2b−a−4

a (10)

On the other hand if all particles involved are relativistic and in TE then eq.(9) with
na = cnT 3,cn = gaζ (3)/π2 and Ea = T is

Γ = c̃ab|Mab|2E2(b+a)−7
a , (11)

c̃ab = cabca−1
n . In quantum field theory it is common to take the interaction between

two scalar fields as power laws with Vint = gφ mϕn/2 with m > 0,n > 0 and n +m≤ 4.
However, the potential for DE is in general a non renormalizable potential and has a
more complicated expression such as an exponential e−αφ or an inverse power 1/φ α .
Therefore, we will consider a generic interaction potential Vint(φ ,ϕ). The quantum states
in field theory are perturbations around the minimum of the potential, however, since a
scalar field that is cosmologically evolving has not reached its lowest energy state, we
must expand φ around its classical average φ0(t) at any given time, φ(t) = φ0(t)+δφ(t),
and it is the fluctuation δφ that gives the quantum state. An expansion around a stable
point of the potential V , as in a quadratic potential, the creation of particles are not
energetically favored. However when the perturbations are unstable the creation of
particles is energetically favored. Let us assume an interaction term Vint = gh(φ)ϕn with
h not necessarily a positive power law function of φ . If we expand h in a Taylor series
around φ0(t) the interaction term Vint gives an effective coupling

Vint ' gh0ϕn +gh′0 δφ ϕn +
1
2

gh′′0 δφ 2 ϕn + ... (12)

between a quantum fields δφ with 1≤ a and b quantum fields δϕ with 1≤ b≤ n, after
expanding ϕ = ϕ0 + δϕ . Since φ is dynamically evolving, the expansion point φ0 and
all the couplings h0,h′0, ... are functions of time. Considering a polynomial interaction
we can determine the process of an initial state of a-particles going into a final state of
b-particles. The transition amplitude is

Mab =
1

a!b!
da

dφ a
dbVint

dϕb (13)

and the total transition rate is then given by Γ = Σa,bΓab where a takes the value from
1≤ a≤ amax and 1≤ b≤ bmax. Clearly the total transition rate Γ will be dominated by
the largest Γab. If we take a polynomial potential

Vint(φ ,ϕ) = gφ mϕn (14)



with arbitrary values of m,n and use eq.(13) we have

Mab =
m!n!

a!(m−a)!b!(n−b)!
gφ m−aϕn−b (15)

and eq.(9) becomes
Γab = Γ12Γa−1

i Γb−2
f (16)

Γ0 ≡ c0g2φ 2(m−1)ϕ2(n−2)

mφ
, Γi ≡

nφ

φ 2mφ
, Γ f ≡

m2
φ

ϕ2 (17)

and c0 = ( m!n!
a!(m−a)!b!(n−b)!)

2cab. The quantity Γ12 corresponds to the decay with a =
1,b = 2, Γi gives the contribution from a larger number (a > 1) of initial decaying
particles φ while Γ f corresponds to a larger number (b > 2) of final product particles
ϕ . We clearly see that if Γi = nφ/φ 2mφ > 1 then a large value of ”a” gives a bigger Γab
or if Γ f = m2

φ/ϕ2 > 1 when ”b” takes its maximum value b = n.
In the decay of φ two different and complementary scenarios take place. On the one

hand we have Γ/H À 1 giving an exponentially suppressed ρφ after the decay. On the
other hand, the conditions for a non adiabatic process and instant preheating are met,
i.e. we have ṁϕ/m2

ϕ > 1, since the potential V (φ) 6= 0 while φ roles down its potential
around the value φ = 0 and the mass of ϕ , m2

ϕ = 6gφϕ , vanishes. Taking into account
these facts we expect an efficient decay of φ into ϕ . Furthermore, since ϕ is coupled to
the SM it will decay into SM particles and the resulting energy density ρφ will essentially
vanish giving rise to a relativistic ρR = ρSM +ρϕ . If inflation ends with a small value of
φ than the decay and reheating of the universe will take place immediately afterwards at
the energy scale EI . After inflation the field φ is non-relativistic, in the comoving frame
its momentum is negligible compared to its mass, and we have m2

φ > V ' ρφ . Form
eq.(10) with a = 1,b = 3 and Ea = Eφ = mφ we have

Γ =
g2mφ

192π3 , H =
√

ρφ

3
,

Γ
H

=
g2

192π3

√
3m2

φ

ρφ
. (18)

We see form eq.(18) for as long as g4m2
ϕ À ρφ the field φ will decay into ϕ . If Γ/H À 1

then we will have an efficient decay and ρφ will be exponentially small. Now, the instant
preheating takes place the non adiabaticity condition [8]

∣∣∣∣∣
ṁϕ

m2
ϕ

∣∣∣∣∣ =
∣∣∣∣
(

φ̇
φ

+
ϕ̇
ϕ

)
1

2mϕ

∣∣∣∣≥
∣∣∣∣∣
V 1/2

mϕφ

∣∣∣∣∣À 1 (19)

where we have used φ̇ 2 = 2(1 + wφ )/(1−wφ )V . After inflation the energy density ρφ
redshifts with an equation of state wφ 6=−1 and mϕφ ≈ 0 for φ ≈ 0 giving |ṁϕ/m2

ϕ |À 1
in eq.(19).



INTERACTION TERM

We will now choose an interaction term which allows for φ to decay into a relativistic
scalar field ϕ at a high energy EI . This field ϕ is coupled to SM particles denoted by χ
and ψ . As soon as ϕ is produced it decays into χ and ψ , which are also relativistic
at the energy EI . As long as ϕ , χ or ψ are relativistic they remain in TE. We will
assume that ϕ remains relativistic while it is couple to the SM (otherwise the number
density nϕ would be exponentially suppressed and the uniton would not be regenerated).
Finally, the ϕ will regenerate φ at a late time when the universe energy is given by EBD,
with EI À EBD > Eo = 10−3eV . From eq.(11) we see that if want to have a late time
regeneration E ¿ 1 the coupling between ϕ and φ , which are relativistic, must have
a + b < 4.5 so that the exponent of E in eq.(11), using H ≈ √ρ ∼ E2, is negative. We
take then the simplest interaction potential as [6]

Vint(φ ,ϕ,SM) = gφ ϕ3 +hϕ2χ2 + h̃ϕ2ψ̄ψ . (20)

The first term gives rise to the uniton decay into ϕ at a high energy and a late time
regeneration via ϕ decay. The second and third terms are the coupling of ϕ with
SM particles χ,ψ allowing for reheating our universe. All other SM particles will be
produced by χ,ψ . If the fields χ ,ψ acquire a large mass then ϕ will no longer be coupled
at T < mχ since below this temperature nχ ,nψ are exponentially suppressed and Γ/H
will be smaller than one. However, the ϕ temperature will still redshift as T ∼ 1/a(t)
since it is relativistic.

Let us now describe the three different decay processes, the uniton decay, the SM
reheating and the back regeneration of the uniton.

Universe Reheating

The reheating of the universe takes place via the process [6]

ϕ +ϕ ↔ χ + χ (21)
ϕ +ϕ ↔ ψ +ψ (22)

with a cross section for relativistic particles σ = h2/E2 (we take the same strength for
the χ and ψ) and an interaction rate [6]

Γ =
h2E
32π3 , H =

√
ρr

3Ωr
≡ cHE2,

Γ
H

=
cR h2

E
(23)

with T = E, c̃22 ' 1/32π3,c2
H ≡ grπ2/90Ωr and cR ≡ c(ER),c(E) ≡ (cH32π3)−1. For

E > 102GeV we have gr ' 106,Ωr ' 1 and cR ' 10−3. Clearly eq.(23) maintains a
TE for E ≤ ER ≡ cRh2. A good choice of h is then h2 ' EI so that the interaction
takes place at ER = TR ' EI . The amount of ρϕ can then be easily determined and it
is Ωϕ = Ωr/gr. In terms of ∆Nν , extra neutrinos degrees of freedom, we have ∆Nν =
(8/7)(gϕ/gν)(T/Tν)4 with ∆Nν = 2.2(0.57) for T = Tγ(Tν) (if ϕ decouples at a higher



energy than the neutrinos then ∆Nν < 0.57). A central value of 0.5 < ∆Nν < 2.1 is
favored by the cosmological data [9].

Back Decay and Quantum Regeneration

Now, let us see the case for the back decay and quantum regeneration of the uniton
field φ . This process will take place at late time and low energies E = EBD. Therefore
the classical potential V ¿ EBD and mφ ¿ EBD. So the uniton will be relativistic and
from eq.(20) the process ϕ +ϕ → ϕ +φ gives [6]

Γ =
g2E
32π3 , H =

√
ρr

3Ωr
= cHE2,

Γ
H

=
cBD g2

E
(24)

For low energy, E ¿MeV , we have gr ' 5 and cBD ≡ c(EBD)' 10−3√Ωr. The process
takes place for E ≤EBD≡ cBDg2. An interesting choice is g'EI , which gives EBD¿EI .
With this choice we reduce the number of free parameters and we relate the energy scale
of the back decay to that of the end of inflation

ER ≡ cRh2 ≈ EI, EBD ≡ cBDg2 ≈ E2
I ,

g = h2 = qEI (25)

with q a proportionality constant. The fine structure constant of these interactions
are αI ≡ h2/4π = EI/4π and αBD ≡ g2/4π = E2

I /4π which for EI = 100TeV gives
αI = 10−14,αBD = 10−27 to be compared with αem = 1/137, the electromagnetic fine
structure constant. The constraint on light particles coupled to electrons from astrophys-
ical considerations is α < 0.5 10−26 [11] or to baryons from a long range force [12]
imply that the SM field χ and ψ must be a neutral particles such as neutrino.

Using eqs.(7) and (18) we have the φ decay rate Γ≈ g2mφ = E2
I V 1/2

I k and

Γ
H
≈ g2

√
m2

φ

ρφ
' E2

I k = 1040 À 1 (26)

and eq.(19) is also satisfied. Therefore we have an efficient decay and the field φ
ceases to exist until it is regenerated at late time by the back decay process. The
universe will therefore be in a decelerating phase for a long period of time, from
reheating at EI ' 100TeV to ϕ decay at EBD = E2

I = 1eV (c.f. eq.(24)) when ϕ starts to
regenerate φ giving ΩφBD = ΩϕBD with ρϕBD ' E4

BD = E8
I . For V ≈ ρφ ≈ ρϕBD we have

φ > 1/kVI ' 10−12, using V ' VI/kφ (valid for φk ≥ 1). Once φ is regenerated it will
grow and its potential will start dominating the universe with φ = O(1) for V ≈ Vo,
independent of its initial conditions (tracker behavior). The slow roll conditions are
satisfied and the universe will enter an acceleration period or DE domination. This late
time decay gives an understanding why DE appears at such a late time.



SUMMARY AND CONCLUSIONS

We have presented a model where inflation at and dark energy can be achieved via a
single scalar field φ , the uniton. In order to have a long period of hot and decelerating
universe we couple φ to another field ϕ . The inflation, reheating and back decay scales,
using eq.(25) with q = 10, are

EI ' 100TeV, ER ' 1TeV, EBD ' 1eV (27)

The scale EI is very interesting since it is on the upper limit of susy. This inflationary
scale EI is low compared to the standard 1016GeV but it is large enough to have a
reheating temperature to produce all SM particles and it is within the phenomenological
range at LHC. Moreover, it is phenomenological welcome [3] and since it is low scale
one does not have gravitino overabundance problems and it has a spectral index ns =
0.97. More relativistic energy and a w < −1 are phenomenological favored [9] and
our model can explain both since it predicts the existence of Ωϕ and we have an
interacting dark energy giving a w <−1. The universe is dominated by ρφ at high energy
ρφ > E4

I = (100TeV )4 and low energy ρφ ¿ ρBD = (1eV )4 while radiation or matter
dominates the universe otherwise. We stress the fact that the quantum regeneration of the
uniton drives the transition between the decelerating universe to the dark energy phase,
it is not longer classical but it is essentially due to quantum effects and the low value of
EBD explains the coincidence problem.
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